Newer
Older
Tomasz Wlostowski
committed
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"00000013",
version => x"00000002",
Tomasz Wlostowski
committed
date => x"20120113",
name => "WB-VIC-Int.Control ")));
component xwb_vic
generic (
g_interface_mode : t_wishbone_interface_mode;
g_address_granularity : t_wishbone_address_granularity;
g_num_interrupts : natural;
g_init_vectors : t_wishbone_address_array := cc_dummy_address_array;
g_retry_timeout : integer := 0);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
irqs_i : in std_logic_vector(g_num_interrupts-1 downto 0);
irq_master_o : out std_logic);
end component;
constant c_wb_serial_lcd_sdb : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"00",
wbd_endian => c_sdb_endian_big,
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
addr_first => x"0000000000000000",
addr_last => x"00000000000000ff",
product => (
vendor_id => x"0000000000000651", -- GSI
device_id => x"b77a5045",
version => x"00000001",
date => x"20130222",
name => "SERIAL-LCD-DISPLAY ")));
component wb_serial_lcd
generic(
g_cols : natural := 40;
g_rows : natural := 24;
g_hold : natural := 15; -- How many times to repeat a line (for sharpness)
g_wait : natural := 1); -- How many cycles per state change (for 20MHz timing)
port(
slave_clk_i : in std_logic;
slave_rstn_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
di_clk_i : in std_logic;
di_scp_o : out std_logic;
di_lp_o : out std_logic;
di_flm_o : out std_logic;
di_dat_o : out std_logic);
end component;
function f_wb_spi_flash_sdb(g_bits : natural) return t_sdb_device;
component wb_spi_flash is
generic(
g_port_width : natural := 1; -- 1 for EPCS, 4 for EPCQ
g_addr_width : natural := 24; -- log of memory (24=16MB)
Wesley W. Terpstra
committed
g_idle_time : natural := 3;
g_dummy_time : natural := 8;
Wesley W. Terpstra
committed
-- leave these at defaults if you have:
-- a) slow clock, b) valid constraints, or c) registered in/outputs
g_input_latch_edge : std_logic := '1'; -- rising
g_output_latch_edge : std_logic := '0'; -- falling
g_input_to_output_cycles : natural := 1); -- between 1 and 8
port(
Wesley W. Terpstra
committed
clk_i : in std_logic;
rstn_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
Wesley W. Terpstra
committed
-- For properly constrained designs, set clk_out_i = clk_in_i.
clk_out_i : in std_logic;
clk_in_i : in std_logic;
ncs_o : out std_logic;
oe_o : out std_logic_vector(g_port_width-1 downto 0);
Wesley W. Terpstra
committed
asdi_o : out std_logic_vector(g_port_width-1 downto 0);
data_i : in std_logic_vector(g_port_width-1 downto 0);
external_request_i : in std_logic := '0'; -- JTAG wants to use SPI?
Wesley W. Terpstra
committed
external_granted_o : out std_logic);
end component;
component xwb_remapper is
generic (
g_num_ranges : integer := 1;
g_base_in : t_wishbone_address_array;
g_base_out : t_wishbone_address_array;
g_mask_in : t_wishbone_address_array;
g_mask_out : t_wishbone_address_array);
port (
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
master_i : in t_wishbone_master_in;
master_o : out t_wishbone_master_out);
end component xwb_remapper;
-----------------------------------------------------------------------------
-- I2C to Wishbone bridge, following protocol defined with ELMA
-----------------------------------------------------------------------------
component wb_i2c_bridge is
generic
(
-- FSM watchdog timeout, see Appendix A in the component documentation for
-- an example of setting this generic
g_fsm_wdt : positive
);
port
(
-- Clock, reset
clk_i : in std_logic;
rst_n_i : in std_logic;
-- I2C lines
scl_i : in std_logic;
scl_o : out std_logic;
scl_en_o : out std_logic;
sda_i : in std_logic;
sda_o : out std_logic;
sda_en_o : out std_logic;
-- I2C address
i2c_addr_i : in std_logic_vector(6 downto 0);
-- Status outputs
-- TIP : Transfer In Progress
-- '1' when the I2C slave detects a matching I2C address, thus a
-- transfer is in progress
-- '0' when idle
-- ERR : Error
-- '1' when the SysMon attempts to access an invalid WB slave
-- WDTO : Watchdog timeout (single clock cycle pulse)
-- '1' -- timeout of watchdog occured
-- '0' -- when idle
tip_o : out std_logic;
err_p_o : out std_logic;
wdto_p_o : out std_logic;
-- Wishbone master signals
wbm_stb_o : out std_logic;
wbm_cyc_o : out std_logic;
wbm_sel_o : out std_logic_vector(3 downto 0);
wbm_we_o : out std_logic;
wbm_dat_i : in std_logic_vector(31 downto 0);
wbm_dat_o : out std_logic_vector(31 downto 0);
wbm_adr_o : out std_logic_vector(31 downto 0);
wbm_ack_i : in std_logic;
wbm_rty_i : in std_logic;
wbm_err_i : in std_logic
);
end component wb_i2c_bridge;
------------------------------------------------------------------------------
-- MultiBoot component
------------------------------------------------------------------------------
component xwb_xil_multiboot is
port
(
-- Clock and reset input ports
clk_i : in std_logic;
rst_n_i : in std_logic;
-- Wishbone ports
wbs_i : in t_wishbone_slave_in;
wbs_o : out t_wishbone_slave_out;
-- SPI ports
spi_cs_n_o : out std_logic;
spi_sclk_o : out std_logic;
spi_mosi_o : out std_logic;
spi_miso_i : in std_logic
);
end component xwb_xil_multiboot;
constant c_xwb_xil_multiboot_sdb : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"00",
wbd_endian => c_sdb_endian_big,
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
addr_first => x"0000000000000000",
addr_last => x"000000000000001f",
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"11da333d", -- echo "WB-Xilinx-MultiBoot" | md5sum | cut -c1-8
version => x"00000001",
date => x"20140313",
name => "WB-Xilinx-MultiBoot")));
constant c_DUMMY_SDB_DEVICE : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"01",
wbd_endian => c_sdb_endian_big,
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
addr_first => x"0000000000000000",
addr_last => x"00000000000000ff",
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"ffffffff",
version => x"00000001",
date => x"20150722",
name => "Unused-Device ")));
-- For backward compatibility
constant cc_dummy_sdb_device : t_sdb_device := c_DUMMY_SDB_DEVICE;
end wishbone_pkg;
-- f_wb_wr: processes a write reqest to a slave register with select lines. valid modes are "owr", "set" and "clr"
function f_wb_wr(pval : std_logic_vector; ival : std_logic_vector; sel : std_logic_vector; mode : string := "owr") return std_logic_vector is
variable n_sel : std_logic_vector(pval'range);
variable n_val : std_logic_vector(pval'range);
variable result : std_logic_vector(pval'range);
begin
for i in pval'range loop
n_sel(i) := sel((i-pval'low) / 8); -- subtract the low index for when register width > wishbone data width
n_val(i) := ival(i-pval'low);
end loop;
if(mode = "set") then
result := pval or (n_val and n_sel);
elsif (mode = "clr") then
result := pval and not (n_val and n_sel);
else
result := (pval and not n_sel) or (n_val and n_sel);
end if;
return result;
end f_wb_wr;
function f_ceil_log2(x : natural) return natural is
begin
if x <= 1
then return 0;
else return f_ceil_log2((x+1)/2) +1;
end if;
end f_ceil_log2;
Tomasz Wlostowski
committed
function f_sdb_embed_product(product : t_sdb_product)
Tomasz Wlostowski
committed
return std_logic_vector -- (319 downto 8)
variable result : std_logic_vector(319 downto 8);
result(319 downto 256) := product.vendor_id;
result(255 downto 224) := product.device_id;
result(223 downto 192) := product.version;
result(191 downto 160) := product.date;
Tomasz Wlostowski
committed
for i in 0 to 18 loop -- string to ascii
result(159-i*8 downto 152-i*8) :=
std_logic_vector(to_unsigned(character'pos(product.name(i+1)), 8));
end loop;
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_product(sdb_record : std_logic_vector(319 downto 8))
return t_sdb_product
is
variable result : t_sdb_product;
begin
result.vendor_id := sdb_record(319 downto 256);
result.device_id := sdb_record(255 downto 224);
result.version := sdb_record(223 downto 192);
result.date := sdb_record(191 downto 160);
Tomasz Wlostowski
committed
for i in 0 to 18 loop -- ascii to string
result.name(i+1) := character'val(to_integer(unsigned(sdb_record(159-i*8 downto 152-i*8))));
end loop;
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_embed_component(sdb_component : t_sdb_component; address : t_wishbone_address)
Tomasz Wlostowski
committed
return std_logic_vector -- (447 downto 8)
is
variable result : std_logic_vector(447 downto 8);
Tomasz Wlostowski
committed
constant first : unsigned(63 downto 0) := unsigned(sdb_component.addr_first);
constant last : unsigned(63 downto 0) := unsigned(sdb_component.addr_last);
variable base : unsigned(63 downto 0) := (others => '0');
begin
base(address'length-1 downto 0) := unsigned(address);
Tomasz Wlostowski
committed
result(447 downto 384) := std_logic_vector(base);
result(383 downto 320) := std_logic_vector(base + last - first);
Tomasz Wlostowski
committed
result(319 downto 8) := f_sdb_embed_product(sdb_component.product);
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_component(sdb_record : std_logic_vector(447 downto 8))
return t_sdb_component
is
variable result : t_sdb_component;
begin
result.addr_first := sdb_record(447 downto 384);
result.addr_last := sdb_record(383 downto 320);
result.product := f_sdb_extract_product(sdb_record(319 downto 8));
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_embed_device(device : t_sdb_device; address : t_wishbone_address)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 496) := device.abi_class;
result(495 downto 488) := device.abi_ver_major;
result(487 downto 480) := device.abi_ver_minor;
result(479 downto 456) := (others => '0');
result(455) := device.wbd_endian;
result(454 downto 452) := (others => '0');
result(451 downto 448) := device.wbd_width;
Tomasz Wlostowski
committed
result(447 downto 8) := f_sdb_embed_component(device.sdb_component, address);
result(7 downto 0) := x"01"; -- device
Tomasz Wlostowski
committed
function f_sdb_extract_device(sdb_record : t_sdb_record)
return t_sdb_device
variable result : t_sdb_device;
result.abi_class := sdb_record(511 downto 496);
result.abi_ver_major := sdb_record(495 downto 488);
result.abi_ver_minor := sdb_record(487 downto 480);
result.wbd_endian := sdb_record(452);
result.wbd_width := sdb_record(451 downto 448);
result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8));
Tomasz Wlostowski
committed
assert sdb_record(7 downto 0) = x"01"
Tomasz Wlostowski
committed
report "Cannot extract t_sdb_device from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity failure;
return result;
end;
Tomasz Wlostowski
committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
function f_sdb_embed_msi(msi : t_sdb_msi; address : t_wishbone_address)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 456) := (others => '0');
result(455) := msi.wbd_endian;
result(454 downto 452) := (others => '0');
result(451 downto 448) := msi.wbd_width;
result(447 downto 8) := f_sdb_embed_component(msi.sdb_component, address);
result(7 downto 0) := x"03"; -- msi
return result;
end;
function f_sdb_extract_msi(sdb_record : t_sdb_record)
return t_sdb_msi
is
variable result : t_sdb_msi;
begin
result.wbd_endian := sdb_record(452);
result.wbd_width := sdb_record(451 downto 448);
result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8));
assert sdb_record(7 downto 0) = x"03"
report "Cannot extract t_sdb_msi from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity failure;
return result;
end;
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
function f_sdb_embed_integration(integr : t_sdb_integration)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 320) := (others => '0');
result(319 downto 8) := f_sdb_embed_product(integr.product);
result(7 downto 0) := x"80"; -- integration record
return result;
end f_sdb_embed_integration;
function f_sdb_extract_integration(sdb_record : t_sdb_record)
return t_sdb_integration
is
variable result : t_sdb_integration;
begin
result.product := f_sdb_extract_product(sdb_record(319 downto 8));
assert sdb_record(7 downto 0) = x"80"
report "Cannot extract t_sdb_integration from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end f_sdb_extract_integration;
function f_sdb_embed_repo_url(url : t_sdb_repo_url)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 8) := f_string2svl(url.repo_url);
result( 7 downto 0) := x"81"; -- repo_url record
return result;
end;
function f_sdb_extract_repo_url(sdb_record : t_sdb_record)
return t_sdb_repo_url
is
variable result : t_sdb_repo_url;
begin
result.repo_url := f_slv2string(sdb_record(511 downto 8));
assert sdb_record(7 downto 0) = x"81"
report "Cannot extract t_sdb_repo_url from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end;
function f_sdb_embed_synthesis(syn : t_sdb_synthesis)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 384) := f_string2svl(syn.syn_module_name);
result(383 downto 256) := f_string2bits(syn.syn_commit_id);
result(255 downto 192) := f_string2svl(syn.syn_tool_name);
result(191 downto 160) := syn.syn_tool_version;
result(159 downto 128) := syn.syn_date;
result(127 downto 8) := f_string2svl(syn.syn_username);
result( 7 downto 0) := x"82"; -- synthesis record
return result;
end;
function f_sdb_extract_synthesis(sdb_record : t_sdb_record)
return t_sdb_synthesis
is
variable result : t_sdb_synthesis;
begin
result.syn_module_name := f_slv2string(sdb_record(511 downto 384));
result.syn_commit_id := f_bits2string(sdb_record(383 downto 256));
result.syn_tool_name := f_slv2string(sdb_record(255 downto 192));
result.syn_tool_version := sdb_record(191 downto 160);
result.syn_date := sdb_record(159 downto 128);
result.syn_username := f_slv2string(sdb_record(127 downto 8));
assert sdb_record(7 downto 0) = x"82"
report "Cannot extract t_sdb_repo_url from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end;
function f_sdb_embed_bridge(bridge : t_sdb_bridge; address : t_wishbone_address)
return t_sdb_record
is
variable result : t_sdb_record;
Tomasz Wlostowski
committed
constant first : unsigned(63 downto 0) := unsigned(bridge.sdb_component.addr_first);
constant child : unsigned(63 downto 0) := unsigned(bridge.sdb_child);
variable base : unsigned(63 downto 0) := (others => '0');
begin
base(address'length-1 downto 0) := unsigned(address);
Tomasz Wlostowski
committed
result(511 downto 448) := std_logic_vector(base + child - first);
Tomasz Wlostowski
committed
result(447 downto 8) := f_sdb_embed_component(bridge.sdb_component, address);
result(7 downto 0) := x"02"; -- bridge
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_bridge(sdb_record : t_sdb_record)
return t_sdb_bridge
is
variable result : t_sdb_bridge;
begin
result.sdb_child := sdb_record(511 downto 448);
result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8));
assert sdb_record(7 downto 0) = x"02"
Tomasz Wlostowski
committed
report "Cannot extract t_sdb_bridge from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity failure;
return result;
function f_sdb_auto_device(device : t_sdb_device; enable : boolean := true; name: string := "")
return t_sdb_record
is
constant c_zero : t_wishbone_address := (others => '0');
variable v_device: t_sdb_device := device;
variable v_empty : t_sdb_record := (others => '0');
begin
if name /= "" then
v_device.sdb_component.product.name := f_string_fix_len(name , 19, ' ', false);
end if;
v_empty := f_sdb_embed_device(v_device, c_zero);
end f_sdb_auto_device;
function f_sdb_auto_bridge(bridge : t_sdb_bridge; enable : boolean := true; name: string := "")
return t_sdb_record
is
constant c_zero : t_wishbone_address := (others => '0');
variable v_bridge: t_sdb_bridge := bridge;
variable v_empty : t_sdb_record := (others => '0');
begin
if name /= "" then
v_bridge.sdb_component.product.name := f_string_fix_len(name , 19, ' ', false);
end if;
v_empty := f_sdb_embed_bridge(v_bridge, c_zero);
end f_sdb_auto_bridge;
function f_sdb_auto_msi(msi : t_sdb_msi; enable : boolean := true)
return t_sdb_record
is
constant c_zero : t_wishbone_address := (others => '0');
variable v_empty : t_sdb_record := (others => '0');
begin
if enable then
return f_sdb_embed_msi(msi, c_zero);
else
return v_empty;
end if;
end f_sdb_auto_msi;
subtype t_usdb_address is unsigned(63 downto 0);
type t_usdb_address_array is array(natural range <>) of t_usdb_address;
-- We map devices by placing the smallest ones first.
-- This is guaranteed to pack the maximum number of devices in the smallest space.
-- If a device has an address != 0, we leave it alone and let the crossbar confirm
-- that the address does not cause a conflict.
function f_sdb_auto_layout_helper(records : t_sdb_record_array)
return t_usdb_address_array
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
constant c_zero : t_usdb_address := (others => '0');
constant c_used_entries : natural := c_records'length + 1;
constant c_rom_entries : natural := 2**f_ceil_log2(c_used_entries);
constant c_rom_bytes : natural := c_rom_entries * c_sdb_device_length / 8;
variable v_component : t_sdb_component;
variable v_sizes : t_usdb_address_array(c_records'length downto 0);
variable v_address : t_usdb_address_array(c_records'length downto 0);
variable v_bus_map : std_logic_vector(c_records'length downto 0) := (others => '0');
variable v_bus_cursor: unsigned(63 downto 0) := (others => '0');
variable v_msi_map : std_logic_vector(c_records'length downto 0) := (others => '0');
variable v_msi_cursor: unsigned(63 downto 0) := (others => '0');
variable v_increment : unsigned(63 downto 0) := (others => '0');
variable v_type : std_logic_vector(7 downto 0);
begin
-- First, extract the length of the devices, ignoring those not to be mapped
for i in c_records'range loop
v_component := f_sdb_extract_component(c_records(i)(447 downto 8));
v_sizes(i) := unsigned(v_component.addr_last);
v_address(i) := unsigned(v_component.addr_first);
-- Silently round up to a power of two; the crossbar will give a warning for us
for j in 62 downto 0 loop
v_sizes(i)(j) := v_sizes(i)(j+1) or v_sizes(i)(j);
end loop;
-- Only map devices/bridges at address zero
if v_address(i) = c_zero then
v_type := c_records(i)(7 downto 0);
case v_type is
when x"01" => v_bus_map(i) := '1';
when x"02" => v_bus_map(i) := '1';
when x"03" => v_msi_map(i) := '1';
when others => null;
end case;
end if;
end loop;
-- Assign the SDB record a spot as well
v_address(c_records'length) := (others => '0');
v_sizes(c_records'length) := to_unsigned(c_rom_bytes-1, 64);
v_bus_map(c_records'length) := '1';
-- Start assigning addresses
for j in 0 to 63 loop
v_increment := (others => '0');
v_increment(j) := '1';
for i in 0 to c_records'length loop
if v_bus_map(i) = '1' and v_sizes(i)(j) = '0' then
v_bus_map(i) := '0';
v_address(i) := v_bus_cursor;
v_bus_cursor := v_bus_cursor + v_increment;
end if;
if v_msi_map(i) = '1' and v_sizes(i)(j) = '0' then
v_msi_map(i) := '0';
v_address(i) := v_msi_cursor;
v_msi_cursor := v_msi_cursor + v_increment;
end if;
end loop;
-- Round up to the next required alignment
if v_bus_cursor(j) = '1' then
v_bus_cursor := v_bus_cursor + v_increment;
end if;
if v_msi_cursor(j) = '1' then
v_msi_cursor := v_msi_cursor + v_increment;
end if;
end loop;
return v_address;
end f_sdb_auto_layout_helper;
function f_sdb_auto_layout(records : t_sdb_record_array)
return t_sdb_record_array
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
variable v_typ : std_logic_vector(7 downto 0);
variable v_result : t_sdb_record_array(c_records'range) := c_records;
constant c_address : t_usdb_address_array := f_sdb_auto_layout_helper(c_records);
variable v_address : t_wishbone_address;
begin
-- Put the addresses into the mapping
for i in v_result'range loop
v_typ := c_records(i)(7 downto 0);
v_address := std_logic_vector(c_address(i)(t_wishbone_address'range));
case v_typ is
when x"01" => v_result(i) := f_sdb_embed_device(f_sdb_extract_device(v_result(i)), v_address);
when x"02" => v_result(i) := f_sdb_embed_bridge(f_sdb_extract_bridge(v_result(i)), v_address);
when x"03" => v_result(i) := f_sdb_embed_msi (f_sdb_extract_msi (v_result(i)), v_address);
when others => null;
end case;
end loop;
return v_result;
end f_sdb_auto_layout;
function f_sdb_auto_layout(slaves : t_sdb_record_array; masters : t_sdb_record_array)
return t_sdb_record_array
is begin
return f_sdb_auto_layout(masters & slaves);
end f_sdb_auto_layout;
function f_sdb_auto_sdb(records : t_sdb_record_array)
return t_wishbone_address
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
constant c_address : t_usdb_address_array(c_records'length downto 0) := f_sdb_auto_layout_helper(c_records);
begin
return std_logic_vector(c_address(c_records'length)(t_wishbone_address'range));
end f_sdb_auto_sdb;
function f_sdb_auto_sdb(slaves : t_sdb_record_array; masters : t_sdb_record_array)
return t_wishbone_address
is begin
return f_sdb_auto_sdb(masters & slaves);
end f_sdb_auto_sdb;
--**************************************************************************************************************************--
-- START MAT's NEW FUNCTIONS FROM 18th Oct 2013
------------------------------------------------------------------------------------------------------------------------------
function f_sdb_create_array(g_enum_dev_id : boolean := false;
g_dev_id_offs : natural := 0;
g_enum_dev_name : boolean := false;
g_dev_name_offs : natural := 0;
device : t_sdb_device;
instances : natural := 1)
return t_sdb_record_array is
variable result : t_sdb_record_array(instances-1 downto 0);
variable i,j, pos : natural;
variable dev, newdev : t_sdb_device;
variable serial_no : string(1 to 3);
variable text_possible : boolean := false;
dev := device;
report "### Creating " & integer'image(instances) & " x " & dev.sdb_component.product.name
severity note;
for i in 0 to instances-1 loop
if(g_enum_dev_id) then
dev.sdb_component.product.device_id :=
std_logic_vector( unsigned(dev.sdb_component.product.device_id)
+ to_unsigned(i+g_dev_id_offs, dev.sdb_component.product.device_id'length));
end if;
-- find end of name
for j in dev.sdb_component.product.name'length downto 1 loop
if(dev.sdb_component.product.name(j) /= ' ') then
pos := j;
exit;
end if;
end loop;
-- convert i+g_dev_name_offs to string
serial_no := f_string_fix_len(integer'image(i+g_dev_name_offs), serial_no'length);
report "### Now: " & serial_no & " of " & dev.sdb_component.product.name severity note;
-- check if space is sufficient
assert (serial_no'length+1 <= dev.sdb_component.product.name'length - pos)
report "Not enough space in namestring of sdb_device " & dev.sdb_component.product.name
& " to add serial number " & serial_no & ". Space available " &
integer'image(dev.sdb_component.product.name'length-pos-1) & ", required "
& integer'image(serial_no'length+1)
newdev.sdb_component.product.name(pos+1) := '_';
for j in 1 to serial_no'length loop
newdev.sdb_component.product.name(pos+1+j) := serial_no(j);
end loop;
report "### to: " & newdev.sdb_component.product.name severity note;
result(i) := f_sdb_embed_device(newdev, (others=>'0'));
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
end loop;
return result;
end f_sdb_create_array;
function f_sdb_join_arrays(a : t_sdb_record_array; b : t_sdb_record_array) return t_sdb_record_array is
variable result : t_sdb_record_array(a'length+b'length-1 downto 0);
variable i : natural;
begin
for i in 0 to a'left loop
result(i) := a(i);
end loop;
for i in 0 to b'left loop
result(i+a'length) := b(i);
end loop;
return result;
end f_sdb_join_arrays;
function f_sdb_extract_base_addr(sdb_record : t_sdb_record) return std_logic_vector is
begin
return sdb_record(447 downto 384);
end f_sdb_extract_base_addr;
function f_sdb_extract_end_addr(sdb_record : t_sdb_record) return std_logic_vector is
begin
return sdb_record(383 downto 320);
end f_sdb_extract_end_addr;
function f_align_addr_offset(offs : unsigned; this_rng : unsigned; prev_rng : unsigned)
return unsigned is
variable this_pow, prev_pow : natural;
variable start, env, result : unsigned(63 downto 0) := (others => '0');
begin
start(offs'left downto 0) := offs;
--calculate address envelopes (next power of 2) for previous and this component and choose the larger one
this_pow := f_hot_to_bin(std_logic_vector(this_rng));
prev_pow := f_hot_to_bin(std_logic_vector(prev_rng));
-- no max(). thank you very much, std_numeric :-/
if(this_pow >= prev_pow) then
env(this_pow) := '1';
else
env(prev_pow) := '1';
end if;
--round up to the next multiple of the envelope...
if(prev_rng /= 0) then
result := start + env - (start mod env);
else
result := start; --...except for first element, result is start.
end if;
return result;
end f_align_addr_offset;
-- generates aligned address map for an sdb_record_array, accepts optional start offset
function f_sdb_automap_array(sdb_array : t_sdb_record_array; start_offset : t_wishbone_address := (others => '0'))
return t_sdb_record_array is
Wesley W. Terpstra
committed
constant len : natural := sdb_array'length;
variable this_rng : unsigned(63 downto 0) := (others => '0');
variable prev_rng : unsigned(63 downto 0) := (others => '0');
variable prev_offs : unsigned(63 downto 0) := (others => '0');
variable this_offs : unsigned(63 downto 0) := (others => '0');
variable device : t_sdb_device;
variable bridge : t_sdb_bridge;
variable sdb_type : std_logic_vector(7 downto 0);
variable i : natural;
variable result : t_sdb_record_array(sdb_array'length-1 downto 0); -- last
begin
prev_offs(start_offset'left downto 0) := unsigned(start_offset);
--traverse the array
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
-- find the fitting extraction function by evaling the type byte.
-- could also use the component, but it's safer to use Wes' embed and extract functions.
sdb_type := sdb_array(i)(7 downto 0);
case sdb_type is
--device
when x"01" => device := f_sdb_extract_device(sdb_array(i));
this_rng := unsigned(device.sdb_component.addr_last) - unsigned(device.sdb_component.addr_first);
this_offs := f_align_addr_offset(prev_offs, this_rng, prev_rng);
result(i) := f_sdb_embed_device(device, std_logic_vector(this_offs(31 downto 0)));
--bridge
when x"02" => bridge := f_sdb_extract_bridge(sdb_array(i));
this_rng := unsigned(bridge.sdb_component.addr_last) - unsigned(bridge.sdb_component.addr_first);
this_offs := f_align_addr_offset(prev_offs, this_rng, prev_rng);
result(i) := f_sdb_embed_bridge(bridge, std_logic_vector(this_offs(31 downto 0)) );
--other
when others => result(i) := sdb_array(i);
end case;
-- doesnt hurt because this_* doesnt change if its not a device or bridge
prev_rng := this_rng;
prev_offs := this_offs;
end loop;
report "##* " & integer'image(sdb_array'length) & " Elements, last address: " & f_bits2string(std_logic_vector(this_offs+this_rng)) severity Note;
return result;
end f_sdb_automap_array;
-- find place for sdb rom on crossbar and return address. try to put it in an address gap.
function f_sdb_create_rom_addr(sdb_array : t_sdb_record_array) return t_wishbone_address is
Wesley W. Terpstra
committed
constant len : natural := sdb_array'length;
constant rom_bytes : natural := (2**f_ceil_log2(sdb_array'length + 1)) * (c_sdb_device_length / 8);
variable result : t_wishbone_address := (others => '0');
variable this_base, this_end : unsigned(63 downto 0) := (others => '0');
variable prev_base, prev_end : unsigned(63 downto 0) := (others => '0');
variable rom_base : unsigned(63 downto 0) := (others => '0');
variable sdb_type : std_logic_vector(7 downto 0);
begin
--traverse the array
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
sdb_type := sdb_array(i)(7 downto 0);
if(sdb_type = x"01" or sdb_type = x"02") then
-- get
this_base := unsigned(f_sdb_extract_base_addr(sdb_array(i)));
this_end := unsigned(f_sdb_extract_end_addr(sdb_array(i)));
if(unsigned(result) = 0) then
rom_base := f_align_addr_offset(prev_base, to_unsigned(rom_bytes-1, 64), (prev_end-prev_base));
if(rom_base + to_unsigned(rom_bytes, 64) <= this_base) then
result := std_logic_vector(rom_base(t_wishbone_address'left downto 0));
end if;
end if;
prev_base := this_base;
prev_end := this_end;
end if;
end loop;
-- if there was no gap to fit the sdb rom, place it at the end
if(unsigned(result) = 0) then
result := std_logic_vector(f_align_addr_offset(this_base, to_unsigned(rom_bytes-1, 64),
this_end-this_base)(t_wishbone_address'left downto 0));
end if;
return result;
end f_sdb_create_rom_addr;
------------------------------------------------------------------------------------------------------------------------------
-- END MAT's NEW FUNCTIONS FROM 18th Oct 2013
------------------------------------------------------------------------------------------------------------------------------
function f_sdb_bus_end(
g_wraparound : boolean;
Tomasz Wlostowski
committed
g_layout : t_sdb_record_array;
g_sdb_addr : t_wishbone_address;
msi : boolean) return unsigned
alias c_layout : t_sdb_record_array(g_layout'length-1 downto 0) is g_layout;
-- How much space does the ROM need?
constant c_used_entries : natural := c_layout'length + 1;
Tomasz Wlostowski
committed
constant c_rom_entries : natural := 2**f_ceil_log2(c_used_entries); -- next power of 2
constant c_sdb_bytes : natural := c_sdb_device_length / 8;
constant c_rom_bytes : natural := c_rom_entries * c_sdb_bytes;
variable result : unsigned(63 downto 0) := (others => '0');
variable typ : std_logic_vector(7 downto 0);
variable last : unsigned(63 downto 0);
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
if not msi then
-- The ROM will be an addressed slave as well
result := (others => '0');
result(g_sdb_addr'range) := unsigned(g_sdb_addr);
result := result + to_unsigned(c_rom_bytes, 64) - 1;
end if;
for i in c_layout'range loop
typ := c_layout(i)(7 downto 0);
last := unsigned(f_sdb_extract_component(c_layout(i)(447 downto 8)).addr_last);
case typ is
when x"01" => if not msi and last > result then result := last; end if;
when x"02" => if not msi and last > result then result := last; end if;
when x"03" => if msi and last > result then result := last; end if;
when others => null;
end case;
end loop;
-- round result up to a power of two -1
for i in 62 downto 0 loop
result(i) := result(i) or result(i+1);
end loop;
if not g_wraparound then
result := (others => '0');
for i in 0 to c_wishbone_address_width-1 loop
result(i) := '1';
end loop;
end if;
return result;
end f_sdb_bus_end;
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
function f_xwb_bridge_manual_sdb(
g_size : t_wishbone_address;
g_sdb_addr : t_wishbone_address) return t_sdb_bridge
is
variable result : t_sdb_bridge;
begin
result.sdb_child := (others => '0');
result.sdb_child(c_wishbone_address_width-1 downto 0) := g_sdb_addr;
result.sdb_component.addr_first := (others => '0');
result.sdb_component.addr_last := (others => '0');
result.sdb_component.addr_last(c_wishbone_address_width-1 downto 0) := g_size;
result.sdb_component.product.vendor_id := x"0000000000000651"; -- GSI
result.sdb_component.product.device_id := x"eef0b198";
result.sdb_component.product.version := x"00000001";
result.sdb_component.product.date := x"20120511";
result.sdb_component.product.name := "WB4-Bridge-GSI ";
return result;
end f_xwb_bridge_manual_sdb;
function f_xwb_bridge_layout_sdb( -- determine bus size from layout
g_wraparound : boolean := true;
g_layout : t_sdb_record_array;
g_sdb_addr : t_wishbone_address) return t_sdb_bridge
is
variable address : t_wishbone_address;
begin
address := std_logic_vector(f_sdb_bus_end(g_wraparound, g_layout, g_sdb_addr, false)(address'range));
return f_xwb_bridge_manual_sdb(address, g_sdb_addr);
end f_xwb_bridge_layout_sdb;
Tomasz Wlostowski
committed
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
function f_xwb_msi_manual_sdb(
g_size : t_wishbone_address) return t_sdb_msi
is
variable result : t_sdb_msi;
begin
result.wbd_endian := '0';
result.wbd_width := x"7";
result.sdb_component.addr_first := (others => '0');
result.sdb_component.addr_last := (others => '0');
result.sdb_component.addr_last(c_wishbone_address_width-1 downto 0) := g_size;
result.sdb_component.product.vendor_id := x"0000000000000651"; -- GSI
result.sdb_component.product.device_id := x"aa7bfb3c";
result.sdb_component.product.version := x"00000001";
result.sdb_component.product.date := x"20160422";
result.sdb_component.product.name := "WB4-MSI-Bridge-GSI ";
return result;
end f_xwb_msi_manual_sdb;
function f_xwb_msi_layout_sdb( -- determine MSI size from layout
g_layout : t_sdb_record_array) return t_sdb_msi
is
constant zero : t_wishbone_address := (others => '0');
variable address : t_wishbone_address;
begin
address := std_logic_vector(f_sdb_bus_end(true, g_layout, zero, true)(address'range));
return f_xwb_msi_manual_sdb(address);
end f_xwb_msi_layout_sdb;
function f_xwb_dpram(g_size : natural) return t_sdb_device
variable result : t_sdb_device;
Tomasz Wlostowski
committed
result.abi_class := x"0001"; -- RAM device
result.abi_ver_major := x"01";
result.abi_ver_minor := x"00";
Tomasz Wlostowski
committed
result.wbd_width := x"7"; -- 32/16/8-bit supported
result.wbd_endian := c_sdb_endian_big;
Tomasz Wlostowski
committed
result.sdb_component.addr_first := (others => '0');
result.sdb_component.addr_last := std_logic_vector(to_unsigned(g_size*4-1, 64));
Tomasz Wlostowski
committed
result.sdb_component.product.vendor_id := x"000000000000CE42"; -- CERN
result.sdb_component.product.device_id := x"66cfeb52";
result.sdb_component.product.version := x"00000001";
result.sdb_component.product.date := x"20120305";
result.sdb_component.product.name := "WB4-BlockRAM ";
Tomasz Wlostowski
committed
return result;
end f_xwb_dpram;
Tomasz Wlostowski
committed
function f_bits2string(s : std_logic_vector) return string is
--- extend length to full hex nibble