Newer
Older
-- I2C address
i2c_addr_i : in std_logic_vector(6 downto 0);
-- Status outputs
-- TIP : Transfer In Progress
-- '1' when the I2C slave detects a matching I2C address, thus a
-- transfer is in progress
-- '0' when idle
-- ERR : Error
-- '1' when the SysMon attempts to access an invalid WB slave
-- WDTO : Watchdog timeout (single clock cycle pulse)
-- '1' -- timeout of watchdog occured
-- '0' -- when idle
tip_o : out std_logic;
err_p_o : out std_logic;
wdto_p_o : out std_logic;
-- Wishbone master signals
wbm_stb_o : out std_logic;
wbm_cyc_o : out std_logic;
wbm_sel_o : out std_logic_vector(3 downto 0);
wbm_we_o : out std_logic;
wbm_dat_i : in std_logic_vector(31 downto 0);
wbm_dat_o : out std_logic_vector(31 downto 0);
wbm_adr_o : out std_logic_vector(31 downto 0);
wbm_ack_i : in std_logic;
wbm_rty_i : in std_logic;
wbm_err_i : in std_logic
);
end component wb_i2c_bridge;
------------------------------------------------------------------------------
-- MultiBoot component
------------------------------------------------------------------------------
component xwb_xil_multiboot is
port
(
-- Clock and reset input ports
clk_i : in std_logic;
rst_n_i : in std_logic;
-- Wishbone ports
wbs_i : in t_wishbone_slave_in;
wbs_o : out t_wishbone_slave_out;
-- SPI ports
spi_cs_n_o : out std_logic;
spi_sclk_o : out std_logic;
spi_mosi_o : out std_logic;
spi_miso_i : in std_logic
);
end component xwb_xil_multiboot;
constant c_xwb_xil_multiboot_sdb : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"00",
wbd_endian => c_sdb_endian_big,
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
addr_first => x"0000000000000000",
addr_last => x"000000000000001f",
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"11da333d", -- echo "WB-Xilinx-MultiBoot" | md5sum | cut -c1-8
version => x"00000001",
date => x"20140313",
name => "WB-Xilinx-MultiBoot")));
end wishbone_pkg;
-- f_wb_wr: processes a write reqest to a slave register with select lines. valid modes are "owr", "set" and "clr"
function f_wb_wr(pval : std_logic_vector; ival : std_logic_vector; sel : std_logic_vector; mode : string := "owr") return std_logic_vector is
variable n_sel : std_logic_vector(pval'range);
variable n_val : std_logic_vector(pval'range);
variable result : std_logic_vector(pval'range);
begin
for i in pval'range loop
n_sel(i) := sel((i-pval'low) / 8); -- subtract the low index for when register width > wishbone data width
n_val(i) := ival(i-pval'low);
end loop;
if(mode = "set") then
result := pval or (n_val and n_sel);
elsif (mode = "clr") then
result := pval and not (n_val and n_sel);
else
result := (pval and not n_sel) or (n_val and n_sel);
end if;
return result;
end f_wb_wr;
function f_ceil_log2(x : natural) return natural is
begin
if x <= 1
then return 0;
else return f_ceil_log2((x+1)/2) +1;
end if;
end f_ceil_log2;
Tomasz Wlostowski
committed
function f_sdb_embed_product(product : t_sdb_product)
Tomasz Wlostowski
committed
return std_logic_vector -- (319 downto 8)
variable result : std_logic_vector(319 downto 8);
result(319 downto 256) := product.vendor_id;
result(255 downto 224) := product.device_id;
result(223 downto 192) := product.version;
result(191 downto 160) := product.date;
Tomasz Wlostowski
committed
for i in 0 to 18 loop -- string to ascii
result(159-i*8 downto 152-i*8) :=
std_logic_vector(to_unsigned(character'pos(product.name(i+1)), 8));
end loop;
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_product(sdb_record : std_logic_vector(319 downto 8))
return t_sdb_product
is
variable result : t_sdb_product;
begin
result.vendor_id := sdb_record(319 downto 256);
result.device_id := sdb_record(255 downto 224);
result.version := sdb_record(223 downto 192);
result.date := sdb_record(191 downto 160);
Tomasz Wlostowski
committed
for i in 0 to 18 loop -- ascii to string
result.name(i+1) := character'val(to_integer(unsigned(sdb_record(159-i*8 downto 152-i*8))));
end loop;
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_embed_component(sdb_component : t_sdb_component; address : t_wishbone_address)
Tomasz Wlostowski
committed
return std_logic_vector -- (447 downto 8)
is
variable result : std_logic_vector(447 downto 8);
Tomasz Wlostowski
committed
constant first : unsigned(63 downto 0) := unsigned(sdb_component.addr_first);
constant last : unsigned(63 downto 0) := unsigned(sdb_component.addr_last);
variable base : unsigned(63 downto 0) := (others => '0');
begin
base(address'length-1 downto 0) := unsigned(address);
Tomasz Wlostowski
committed
result(447 downto 384) := std_logic_vector(base);
result(383 downto 320) := std_logic_vector(base + last - first);
Tomasz Wlostowski
committed
result(319 downto 8) := f_sdb_embed_product(sdb_component.product);
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_component(sdb_record : std_logic_vector(447 downto 8))
return t_sdb_component
is
variable result : t_sdb_component;
begin
result.addr_first := sdb_record(447 downto 384);
result.addr_last := sdb_record(383 downto 320);
result.product := f_sdb_extract_product(sdb_record(319 downto 8));
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_embed_device(device : t_sdb_device; address : t_wishbone_address)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 496) := device.abi_class;
result(495 downto 488) := device.abi_ver_major;
result(487 downto 480) := device.abi_ver_minor;
result(479 downto 456) := (others => '0');
result(455) := device.wbd_endian;
result(454 downto 452) := (others => '0');
result(451 downto 448) := device.wbd_width;
Tomasz Wlostowski
committed
result(447 downto 8) := f_sdb_embed_component(device.sdb_component, address);
result(7 downto 0) := x"01"; -- device
Tomasz Wlostowski
committed
function f_sdb_extract_device(sdb_record : t_sdb_record)
return t_sdb_device
variable result : t_sdb_device;
result.abi_class := sdb_record(511 downto 496);
result.abi_ver_major := sdb_record(495 downto 488);
result.abi_ver_minor := sdb_record(487 downto 480);
result.wbd_endian := sdb_record(452);
result.wbd_width := sdb_record(451 downto 448);
result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8));
Tomasz Wlostowski
committed
assert sdb_record(7 downto 0) = x"01"
Tomasz Wlostowski
committed
report "Cannot extract t_sdb_device from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity failure;
return result;
end;
Tomasz Wlostowski
committed
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
function f_sdb_embed_integration(integr : t_sdb_integration)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 320) := (others => '0');
result(319 downto 8) := f_sdb_embed_product(integr.product);
result(7 downto 0) := x"80"; -- integration record
return result;
end f_sdb_embed_integration;
function f_sdb_extract_integration(sdb_record : t_sdb_record)
return t_sdb_integration
is
variable result : t_sdb_integration;
begin
result.product := f_sdb_extract_product(sdb_record(319 downto 8));
assert sdb_record(7 downto 0) = x"80"
report "Cannot extract t_sdb_integration from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end f_sdb_extract_integration;
function f_sdb_embed_repo_url(url : t_sdb_repo_url)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 8) := f_string2svl(url.repo_url);
result( 7 downto 0) := x"81"; -- repo_url record
return result;
end;
function f_sdb_extract_repo_url(sdb_record : t_sdb_record)
return t_sdb_repo_url
is
variable result : t_sdb_repo_url;
begin
result.repo_url := f_slv2string(sdb_record(511 downto 8));
assert sdb_record(7 downto 0) = x"81"
report "Cannot extract t_sdb_repo_url from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end;
function f_sdb_embed_synthesis(syn : t_sdb_synthesis)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 384) := f_string2svl(syn.syn_module_name);
result(383 downto 256) := f_string2bits(syn.syn_commit_id);
result(255 downto 192) := f_string2svl(syn.syn_tool_name);
result(191 downto 160) := syn.syn_tool_version;
result(159 downto 128) := syn.syn_date;
result(127 downto 8) := f_string2svl(syn.syn_username);
result( 7 downto 0) := x"82"; -- synthesis record
return result;
end;
function f_sdb_extract_synthesis(sdb_record : t_sdb_record)
return t_sdb_synthesis
is
variable result : t_sdb_synthesis;
begin
result.syn_module_name := f_slv2string(sdb_record(511 downto 384));
result.syn_commit_id := f_bits2string(sdb_record(383 downto 256));
result.syn_tool_name := f_slv2string(sdb_record(255 downto 192));
result.syn_tool_version := sdb_record(191 downto 160);
result.syn_date := sdb_record(159 downto 128);
result.syn_username := f_slv2string(sdb_record(127 downto 8));
assert sdb_record(7 downto 0) = x"82"
report "Cannot extract t_sdb_repo_url from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end;
function f_sdb_embed_bridge(bridge : t_sdb_bridge; address : t_wishbone_address)
return t_sdb_record
is
variable result : t_sdb_record;
Tomasz Wlostowski
committed
constant first : unsigned(63 downto 0) := unsigned(bridge.sdb_component.addr_first);
constant child : unsigned(63 downto 0) := unsigned(bridge.sdb_child);
variable base : unsigned(63 downto 0) := (others => '0');
begin
base(address'length-1 downto 0) := unsigned(address);
Tomasz Wlostowski
committed
result(511 downto 448) := std_logic_vector(base + child - first);
Tomasz Wlostowski
committed
result(447 downto 8) := f_sdb_embed_component(bridge.sdb_component, address);
result(7 downto 0) := x"02"; -- bridge
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_bridge(sdb_record : t_sdb_record)
return t_sdb_bridge
is
variable result : t_sdb_bridge;
begin
result.sdb_child := sdb_record(511 downto 448);
result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8));
assert sdb_record(7 downto 0) = x"02"
Tomasz Wlostowski
committed
report "Cannot extract t_sdb_bridge from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity failure;
return result;
function f_sdb_auto_device(device : t_sdb_device; enable : boolean := true)
return t_sdb_record
is
constant c_zero : t_wishbone_address := (others => '0');
variable v_empty : t_sdb_record := (others => '0');
begin
v_empty(7 downto 0) := (others => '1');
if enable then
return f_sdb_embed_device(device, c_zero);
else
return v_empty;
end if;
end f_sdb_auto_device;
function f_sdb_auto_bridge(bridge : t_sdb_bridge; enable : boolean := true)
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
return t_sdb_record
is
constant c_zero : t_wishbone_address := (others => '0');
variable v_empty : t_sdb_record := (others => '0');
begin
v_empty(7 downto 0) := (others => '1');
if enable then
return f_sdb_embed_bridge(bridge, c_zero);
else
return v_empty;
end if;
end f_sdb_auto_bridge;
subtype t_usdb_address is unsigned(63 downto 0);
type t_usdb_address_array is array(natural range <>) of t_usdb_address;
-- We map devices by placing the smallest ones first.
-- This is guaranteed to pack the maximum number of devices in the smallest space.
-- If a device has an address != 0, we leave it alone and let the crossbar confirm
-- that the address does not cause a conflict.
function f_sdb_auto_layout_helper(records : t_sdb_record_array)
return t_usdb_address_array
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
constant c_zero : t_usdb_address := (others => '0');
constant c_used_entries : natural := c_records'length + 1;
constant c_rom_entries : natural := 2**f_ceil_log2(c_used_entries);
constant c_rom_bytes : natural := c_rom_entries * c_sdb_device_length / 8;
variable v_component : t_sdb_component;
variable v_sizes : t_usdb_address_array(c_records'length downto 0);
variable v_address : t_usdb_address_array(c_records'length downto 0);
variable v_map : std_logic_vector(c_records'length downto 0) := (others => '0');
variable v_cursor : unsigned(63 downto 0) := (others => '0');
variable v_increment : unsigned(63 downto 0) := (others => '0');
begin
-- First, extract the length of the devices, ignoring those not to be mapped
for i in c_records'range loop
v_component := f_sdb_extract_component(c_records(i)(447 downto 8));
v_sizes(i) := unsigned(v_component.addr_last);
v_address(i) := unsigned(v_component.addr_first);
-- Silently round up to a power of two; the crossbar will give a warning for us
for j in 62 downto 0 loop
v_sizes(i)(j) := v_sizes(i)(j+1) or v_sizes(i)(j);
end loop;
-- Only map devices/bridges at address zero
if v_address(i) = c_zero then
case c_records(i)(7 downto 0) is
when x"01" => v_map(i) := '1';
when x"02" => v_map(i) := '1';
when others => null;
end case;
end if;
end loop;
-- Assign the SDB record a spot as well
v_address(c_records'length) := (others => '0');
v_sizes(c_records'length) := to_unsigned(c_rom_bytes-1, 64);
v_map(c_records'length) := '1';
-- Start assigning addresses
for j in 0 to 63 loop
v_increment := (others => '0');
v_increment(j) := '1';
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
for i in 0 to c_records'length loop
if v_map(i) = '1' and v_sizes(i)(j) = '0' then
v_map(i) := '0';
v_address(i) := v_cursor;
v_cursor := v_cursor + v_increment;
end if;
end loop;
-- Round up to the next required alignment
if v_cursor(j) = '1' then
v_cursor := v_cursor + v_increment;
end if;
end loop;
return v_address;
end f_sdb_auto_layout_helper;
function f_sdb_auto_layout(records : t_sdb_record_array)
return t_sdb_record_array
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
variable v_result : t_sdb_record_array(c_records'range) := c_records;
constant c_address : t_usdb_address_array := f_sdb_auto_layout_helper(c_records);
variable v_address : t_wishbone_address;
begin
-- Put the addresses into the mapping
for i in v_result'range loop
v_address := std_logic_vector(c_address(i)(t_wishbone_address'range));
if c_records(i)(7 downto 0) = x"01" then
v_result(i) := f_sdb_embed_device(f_sdb_extract_device(v_result(i)), v_address);
end if;
if c_records(i)(7 downto 0) = x"02" then
v_result(i) := f_sdb_embed_bridge(f_sdb_extract_bridge(v_result(i)), v_address);
end if;
end loop;
return v_result;
end f_sdb_auto_layout;
function f_sdb_auto_sdb(records : t_sdb_record_array)
return t_wishbone_address
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
constant c_address : t_usdb_address_array(c_records'length downto 0) := f_sdb_auto_layout_helper(c_records);
begin
return std_logic_vector(c_address(c_records'length)(t_wishbone_address'range));
end f_sdb_auto_sdb;
--**************************************************************************************************************************--
-- START MAT's NEW FUNCTIONS FROM 18th Oct 2013
------------------------------------------------------------------------------------------------------------------------------
function f_sdb_create_array(g_enum_dev_id : boolean := false;
g_dev_id_offs : natural := 0;
g_enum_dev_name : boolean := false;
g_dev_name_offs : natural := 0;
device : t_sdb_device;
instances : natural := 1)
return t_sdb_record_array is
variable result : t_sdb_record_array(instances-1 downto 0);
variable i,j, pos : natural;
variable dev, newdev : t_sdb_device;
variable serial_no : string(1 to 3);
variable text_possible : boolean := false;
dev := device;
report "### Creating " & integer'image(instances) & " x " & dev.sdb_component.product.name
severity note;
for i in 0 to instances-1 loop
if(g_enum_dev_id) then
dev.sdb_component.product.device_id :=
std_logic_vector( unsigned(dev.sdb_component.product.device_id)
+ to_unsigned(i+g_dev_id_offs, dev.sdb_component.product.device_id'length));
end if;
-- find end of name
for j in dev.sdb_component.product.name'length downto 1 loop
if(dev.sdb_component.product.name(j) /= ' ') then
pos := j;
exit;
end if;
end loop;
-- convert i+g_dev_name_offs to string
serial_no := f_string_fix_len(integer'image(i+g_dev_name_offs), serial_no'length);
report "### Now: " & serial_no & " of " & dev.sdb_component.product.name severity note;
-- check if space is sufficient
assert (serial_no'length+1 <= dev.sdb_component.product.name'length - pos)
report "Not enough space in namestring of sdb_device " & dev.sdb_component.product.name
& " to add serial number " & serial_no & ". Space available " &
integer'image(dev.sdb_component.product.name'length-pos-1) & ", required "
& integer'image(serial_no'length+1)
newdev.sdb_component.product.name(pos+1) := '_';
for j in 1 to serial_no'length loop
newdev.sdb_component.product.name(pos+1+j) := serial_no(j);
end loop;
report "### to: " & newdev.sdb_component.product.name severity note;
result(i) := f_sdb_embed_device(newdev, (others=>'0'));
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
end loop;
return result;
end f_sdb_create_array;
function f_sdb_join_arrays(a : t_sdb_record_array; b : t_sdb_record_array) return t_sdb_record_array is
variable result : t_sdb_record_array(a'length+b'length-1 downto 0);
variable i : natural;
begin
for i in 0 to a'left loop
result(i) := a(i);
end loop;
for i in 0 to b'left loop
result(i+a'length) := b(i);
end loop;
return result;
end f_sdb_join_arrays;
function f_sdb_extract_base_addr(sdb_record : t_sdb_record) return std_logic_vector is
begin
return sdb_record(447 downto 384);
end f_sdb_extract_base_addr;
function f_sdb_extract_end_addr(sdb_record : t_sdb_record) return std_logic_vector is
begin
return sdb_record(383 downto 320);
end f_sdb_extract_end_addr;
function f_align_addr_offset(offs : unsigned; this_rng : unsigned; prev_rng : unsigned)
return unsigned is
variable this_pow, prev_pow : natural;
variable start, env, result : unsigned(63 downto 0) := (others => '0');
begin
start(offs'left downto 0) := offs;
--calculate address envelopes (next power of 2) for previous and this component and choose the larger one
this_pow := f_hot_to_bin(std_logic_vector(this_rng));
prev_pow := f_hot_to_bin(std_logic_vector(prev_rng));
-- no max(). thank you very much, std_numeric :-/
if(this_pow >= prev_pow) then
env(this_pow) := '1';
else
env(prev_pow) := '1';
end if;
--round up to the next multiple of the envelope...
if(prev_rng /= 0) then
result := start + env - (start mod env);
else
result := start; --...except for first element, result is start.
end if;
return result;
end f_align_addr_offset;
-- generates aligned address map for an sdb_record_array, accepts optional start offset
function f_sdb_automap_array(sdb_array : t_sdb_record_array; start_offset : t_wishbone_address := (others => '0'))
return t_sdb_record_array is
Wesley W. Terpstra
committed
constant len : natural := sdb_array'length;
variable this_rng : unsigned(63 downto 0) := (others => '0');
variable prev_rng : unsigned(63 downto 0) := (others => '0');
variable prev_offs : unsigned(63 downto 0) := (others => '0');
variable this_offs : unsigned(63 downto 0) := (others => '0');
variable device : t_sdb_device;
variable bridge : t_sdb_bridge;
variable sdb_type : std_logic_vector(7 downto 0);
variable i : natural;
variable result : t_sdb_record_array(sdb_array'length-1 downto 0); -- last
begin
prev_offs(start_offset'left downto 0) := unsigned(start_offset);
--traverse the array
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
-- find the fitting extraction function by evaling the type byte.
-- could also use the component, but it's safer to use Wes' embed and extract functions.
sdb_type := sdb_array(i)(7 downto 0);
case sdb_type is
--device
when x"01" => device := f_sdb_extract_device(sdb_array(i));
this_rng := unsigned(device.sdb_component.addr_last) - unsigned(device.sdb_component.addr_first);
this_offs := f_align_addr_offset(prev_offs, this_rng, prev_rng);
result(i) := f_sdb_embed_device(device, std_logic_vector(this_offs(31 downto 0)));
--bridge
when x"02" => bridge := f_sdb_extract_bridge(sdb_array(i));
this_rng := unsigned(bridge.sdb_component.addr_last) - unsigned(bridge.sdb_component.addr_first);
this_offs := f_align_addr_offset(prev_offs, this_rng, prev_rng);
result(i) := f_sdb_embed_bridge(bridge, std_logic_vector(this_offs(31 downto 0)) );
--other
when others => result(i) := sdb_array(i);
end case;
-- doesnt hurt because this_* doesnt change if its not a device or bridge
prev_rng := this_rng;
prev_offs := this_offs;
end loop;
report "##* " & integer'image(sdb_array'length) & " Elements, last address: " & f_bits2string(std_logic_vector(this_offs+this_rng)) severity Note;
return result;
end f_sdb_automap_array;
-- find place for sdb rom on crossbar and return address. try to put it in an address gap.
function f_sdb_create_rom_addr(sdb_array : t_sdb_record_array) return t_wishbone_address is
Wesley W. Terpstra
committed
constant len : natural := sdb_array'length;
constant rom_bytes : natural := (2**f_ceil_log2(sdb_array'length + 1)) * (c_sdb_device_length / 8);
variable result : t_wishbone_address := (others => '0');
variable this_base, this_end : unsigned(63 downto 0) := (others => '0');
variable prev_base, prev_end : unsigned(63 downto 0) := (others => '0');
variable rom_base : unsigned(63 downto 0) := (others => '0');
variable sdb_type : std_logic_vector(7 downto 0);
begin
--traverse the array
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
sdb_type := sdb_array(i)(7 downto 0);
if(sdb_type = x"01" or sdb_type = x"02") then
-- get
this_base := unsigned(f_sdb_extract_base_addr(sdb_array(i)));
this_end := unsigned(f_sdb_extract_end_addr(sdb_array(i)));
if(unsigned(result) = 0) then
rom_base := f_align_addr_offset(prev_base, to_unsigned(rom_bytes-1, 64), (prev_end-prev_base));
if(rom_base + to_unsigned(rom_bytes, 64) <= this_base) then
result := std_logic_vector(rom_base(t_wishbone_address'left downto 0));
end if;
end if;
prev_base := this_base;
prev_end := this_end;
end if;
end loop;
-- if there was no gap to fit the sdb rom, place it at the end
if(unsigned(result) = 0) then
result := std_logic_vector(f_align_addr_offset(this_base, to_unsigned(rom_bytes-1, 64),
this_end-this_base)(t_wishbone_address'left downto 0));
end if;
return result;
end f_sdb_create_rom_addr;
------------------------------------------------------------------------------------------------------------------------------
-- END MAT's NEW FUNCTIONS FROM 18th Oct 2013
------------------------------------------------------------------------------------------------------------------------------
function f_xwb_bridge_manual_sdb(
Tomasz Wlostowski
committed
g_size : t_wishbone_address;
g_sdb_addr : t_wishbone_address) return t_sdb_bridge
is
variable result : t_sdb_bridge;
begin
Tomasz Wlostowski
committed
result.sdb_child := (others => '0');
result.sdb_child(c_wishbone_address_width-1 downto 0) := g_sdb_addr;
Tomasz Wlostowski
committed
result.sdb_component.addr_first := (others => '0');
result.sdb_component.addr_last := (others => '0');
result.sdb_component.addr_last(c_wishbone_address_width-1 downto 0) := g_size;
Tomasz Wlostowski
committed
result.sdb_component.product.vendor_id := x"0000000000000651"; -- GSI
result.sdb_component.product.device_id := x"eef0b198";
result.sdb_component.product.version := x"00000001";
result.sdb_component.product.date := x"20120511";
result.sdb_component.product.name := "WB4-Bridge-GSI ";
Tomasz Wlostowski
committed
return result;
end f_xwb_bridge_manual_sdb;
function f_xwb_bridge_layout_sdb(
Tomasz Wlostowski
committed
g_wraparound : boolean := true;
g_layout : t_sdb_record_array;
g_sdb_addr : t_wishbone_address) return t_sdb_bridge
alias c_layout : t_sdb_record_array(g_layout'length-1 downto 0) is g_layout;
-- How much space does the ROM need?
constant c_used_entries : natural := c_layout'length + 1;
Tomasz Wlostowski
committed
constant c_rom_entries : natural := 2**f_ceil_log2(c_used_entries); -- next power of 2
constant c_sdb_bytes : natural := c_sdb_device_length / 8;
constant c_rom_bytes : natural := c_rom_entries * c_sdb_bytes;
variable result : unsigned(63 downto 0);
variable sdb_component : t_sdb_component;
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
if not g_wraparound then
result := (others => '0');
for i in 0 to c_wishbone_address_width-1 loop
result(i) := '1';
end loop;
else
-- The ROM will be an addressed slave as well
result := (others => '0');
result(c_wishbone_address_width-1 downto 0) := unsigned(g_sdb_addr);
result := result + to_unsigned(c_rom_bytes, 64) - 1;
for i in c_layout'range loop
sdb_component := f_sdb_extract_component(c_layout(i)(447 downto 8));
if unsigned(sdb_component.addr_last) > result then
result := unsigned(sdb_component.addr_last);
end if;
end loop;
-- round result up to a power of two -1
for i in 62 downto 0 loop
result(i) := result(i) or result(i+1);
end loop;
end if;
return f_xwb_bridge_manual_sdb(std_logic_vector(result(c_wishbone_address_width-1 downto 0)), g_sdb_addr);
end f_xwb_bridge_layout_sdb;
Tomasz Wlostowski
committed
function f_xwb_dpram(g_size : natural) return t_sdb_device
variable result : t_sdb_device;
Tomasz Wlostowski
committed
result.abi_class := x"0001"; -- RAM device
result.abi_ver_major := x"01";
result.abi_ver_minor := x"00";
Tomasz Wlostowski
committed
result.wbd_width := x"7"; -- 32/16/8-bit supported
result.wbd_endian := c_sdb_endian_big;
Tomasz Wlostowski
committed
result.sdb_component.addr_first := (others => '0');
result.sdb_component.addr_last := std_logic_vector(to_unsigned(g_size*4-1, 64));
Tomasz Wlostowski
committed
result.sdb_component.product.vendor_id := x"000000000000CE42"; -- CERN
result.sdb_component.product.device_id := x"66cfeb52";
result.sdb_component.product.version := x"00000001";
result.sdb_component.product.date := x"20120305";
result.sdb_component.product.name := "WB4-BlockRAM ";
Tomasz Wlostowski
committed
return result;
end f_xwb_dpram;
Tomasz Wlostowski
committed
function f_bits2string(s : std_logic_vector) return string is
--- extend length to full hex nibble
variable result : string((s'length+7)/4 downto 1);
variable s_norm : std_logic_vector(result'length*4-1 downto 0) := (others=>'0');
variable cut : natural;
variable nibble: std_logic_vector(3 downto 0);
Wesley W. Terpstra
committed
constant len : natural := result'length;
begin
s_norm(s'length-1 downto 0) := s;
Wesley W. Terpstra
committed
for i in len-1 downto 0 loop
nibble := s_norm(i*4+3 downto i*4);
case nibble is
when "0000" => result(i+1) := '0';
when "0001" => result(i+1) := '1';
when "0010" => result(i+1) := '2';
when "0011" => result(i+1) := '3';
when "0100" => result(i+1) := '4';
when "0101" => result(i+1) := '5';
when "0110" => result(i+1) := '6';
when "0111" => result(i+1) := '7';
when "1000" => result(i+1) := '8';
when "1001" => result(i+1) := '9';
when "1010" => result(i+1) := 'a';
when "1011" => result(i+1) := 'b';
when "1100" => result(i+1) := 'c';
when "1101" => result(i+1) := 'd';
when "1110" => result(i+1) := 'e';
when "1111" => result(i+1) := 'f';
when others => result(i+1) := 'X';
end case;
end loop;
Tomasz Wlostowski
committed
-- trim leading 0s
strip : for i in result'length downto 1 loop
cut := i;
exit strip when result(i) /= '0';
end loop;
Tomasz Wlostowski
committed
return "0x" & result(cut downto 1);
end f_bits2string;
-- Converts string (hex number, without leading 0x) to std_logic_vector
function f_string2bits(s : string) return std_logic_vector is
Wesley W. Terpstra
committed
constant len : natural := s'length;
variable slv : std_logic_vector(s'length*4-1 downto 0);
variable nibble : std_logic_vector(3 downto 0);
begin
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
case s(i+1) is
when '0' => nibble := X"0";
when '1' => nibble := X"1";
when '2' => nibble := X"2";
when '3' => nibble := X"3";
when '4' => nibble := X"4";
when '5' => nibble := X"5";
when '6' => nibble := X"6";
when '7' => nibble := X"7";
when '8' => nibble := X"8";
when '9' => nibble := X"9";
when 'a' => nibble := X"A";
when 'A' => nibble := X"A";
when 'b' => nibble := X"B";
when 'B' => nibble := X"B";
when 'c' => nibble := X"C";
when 'C' => nibble := X"C";
when 'd' => nibble := X"D";
when 'D' => nibble := X"D";
when 'e' => nibble := X"E";
when 'E' => nibble := X"E";
when 'f' => nibble := X"F";
when 'F' => nibble := X"F";
when others => nibble := "XXXX";
end case;
slv(((i+1)*4)-1 downto i*4) := nibble;
end loop;
return slv;
end f_string2bits;
-- Converts string to ascii (std_logic_vector)
function f_string2svl (s : string) return std_logic_vector is
Wesley W. Terpstra
committed
constant len : natural := s'length;
variable slv : std_logic_vector((s'length * 8) - 1 downto 0);
begin
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
slv(slv'high-i*8 downto (slv'high-7)-i*8) :=
std_logic_vector(to_unsigned(character'pos(s(i+1)), 8));
end loop;
return slv;
end f_string2svl;
-- Converts ascii (std_logic_vector) to string
function f_slv2string (slv : std_logic_vector) return string is
Wesley W. Terpstra
committed
constant len : natural := slv'length;
variable s : string(1 to slv'length/8);
begin
Wesley W. Terpstra
committed
for i in 0 to (len/8)-1 loop
s(i+1) := character'val(to_integer(unsigned(slv(slv'high-i*8 downto (slv'high-7)-i*8))));
end loop;
return s;
end f_slv2string;
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
-- pads a string of unknown length to a given length (useful for integer'image)
function f_string_fix_len ( s : string; ret_len : natural := 10; fill_char : character := '0' ) return string is
variable ret_v : string (1 to ret_len);
constant pad_len : integer := ret_len - s'length ;
variable pad_v : string (1 to abs(pad_len));
begin
if pad_len < 1 then
ret_v := s(ret_v'range);
else
pad_v := (others => fill_char);
ret_v := pad_v & s;
end if;
return ret_v;
end f_string_fix_len;
function f_hot_to_bin(x : std_logic_vector) return natural is
variable rv : natural;
begin
rv := 0;
-- if there are few ones set in _x_ then the most significant will be
-- translated to bin
for i in 0 to x'left loop
if x(i) = '1' then
rv := i+1;
end if;
end loop;
return rv;
end function;
function f_wb_spi_flash_sdb(g_bits : natural) return t_sdb_device is
variable result : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"02",
wbd_endian => c_sdb_endian_big,
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
addr_first => x"0000000000000000",
addr_last => x"0000000000ffffff",
product => (
vendor_id => x"0000000000000651", -- GSI
device_id => x"5cf12a1c",
version => x"00000002",
date => x"20140417",
name => "SPI-FLASH-16M-MMAP ")));
begin
result.sdb_component.addr_last := std_logic_vector(to_unsigned(2**g_bits-1, 64));
return result;
end f_wb_spi_flash_sdb;