Newer
Older
Wesley W. Terpstra
committed
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
Wesley W. Terpstra
committed
-- For properly constrained designs, set clk_out_i = clk_in_i.
clk_out_i : in std_logic;
clk_in_i : in std_logic;
ncs_o : out std_logic;
oe_o : out std_logic_vector(g_port_width-1 downto 0);
Wesley W. Terpstra
committed
asdi_o : out std_logic_vector(g_port_width-1 downto 0);
data_i : in std_logic_vector(g_port_width-1 downto 0);
external_request_i : in std_logic := '0'; -- JTAG wants to use SPI?
Wesley W. Terpstra
committed
external_granted_o : out std_logic);
end component;
-----------------------------------------------------------------------------
-- I2C to Wishbone bridge, following protocol defined with ELMA
-----------------------------------------------------------------------------
component wb_i2c_bridge is
generic
(
-- FSM watchdog timeout, see Appendix A in the component documentation for
-- an example of setting this generic
g_fsm_wdt : positive
);
port
(
-- Clock, reset
clk_i : in std_logic;
rst_n_i : in std_logic;
-- I2C lines
scl_i : in std_logic;
scl_o : out std_logic;
scl_en_o : out std_logic;
sda_i : in std_logic;
sda_o : out std_logic;
sda_en_o : out std_logic;
-- I2C address
i2c_addr_i : in std_logic_vector(6 downto 0);
-- Status outputs
-- TIP : Transfer In Progress
-- '1' when the I2C slave detects a matching I2C address, thus a
-- transfer is in progress
-- '0' when idle
-- ERR : Error
-- '1' when the SysMon attempts to access an invalid WB slave
-- WDTO : Watchdog timeout (single clock cycle pulse)
-- '1' -- timeout of watchdog occured
-- '0' -- when idle
tip_o : out std_logic;
err_p_o : out std_logic;
wdto_p_o : out std_logic;
-- Wishbone master signals
wbm_stb_o : out std_logic;
wbm_cyc_o : out std_logic;
wbm_sel_o : out std_logic_vector(3 downto 0);
wbm_we_o : out std_logic;
wbm_dat_i : in std_logic_vector(31 downto 0);
wbm_dat_o : out std_logic_vector(31 downto 0);
wbm_adr_o : out std_logic_vector(31 downto 0);
wbm_ack_i : in std_logic;
wbm_rty_i : in std_logic;
wbm_err_i : in std_logic
);
end component wb_i2c_bridge;
------------------------------------------------------------------------------
-- MultiBoot component
------------------------------------------------------------------------------
component xwb_xil_multiboot is
port
(
-- Clock and reset input ports
clk_i : in std_logic;
rst_n_i : in std_logic;
-- Wishbone ports
wbs_i : in t_wishbone_slave_in;
wbs_o : out t_wishbone_slave_out;
-- SPI ports
spi_cs_n_o : out std_logic;
spi_sclk_o : out std_logic;
spi_mosi_o : out std_logic;
spi_miso_i : in std_logic
);
end component xwb_xil_multiboot;
constant c_xwb_xil_multiboot_sdb : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"00",
wbd_endian => c_sdb_endian_big,
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
addr_first => x"0000000000000000",
addr_last => x"000000000000001f",
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"11da333d", -- echo "WB-Xilinx-MultiBoot" | md5sum | cut -c1-8
version => x"00000001",
date => x"20140313",
name => "WB-Xilinx-MultiBoot")));
constant cc_dummy_sdb_device : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"01",
wbd_endian => c_sdb_endian_big,
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
addr_first => x"0000000000000000",
addr_last => x"00000000000000ff",
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"ffffffff",
version => x"00000001",
date => x"20150722",
name => "Unused-Device ")));
end wishbone_pkg;
-- f_wb_wr: processes a write reqest to a slave register with select lines. valid modes are "owr", "set" and "clr"
function f_wb_wr(pval : std_logic_vector; ival : std_logic_vector; sel : std_logic_vector; mode : string := "owr") return std_logic_vector is
variable n_sel : std_logic_vector(pval'range);
variable n_val : std_logic_vector(pval'range);
variable result : std_logic_vector(pval'range);
begin
for i in pval'range loop
n_sel(i) := sel((i-pval'low) / 8); -- subtract the low index for when register width > wishbone data width
n_val(i) := ival(i-pval'low);
end loop;
if(mode = "set") then
result := pval or (n_val and n_sel);
elsif (mode = "clr") then
result := pval and not (n_val and n_sel);
else
result := (pval and not n_sel) or (n_val and n_sel);
end if;
return result;
end f_wb_wr;
function f_ceil_log2(x : natural) return natural is
begin
if x <= 1
then return 0;
else return f_ceil_log2((x+1)/2) +1;
end if;
end f_ceil_log2;
Tomasz Wlostowski
committed
function f_sdb_embed_product(product : t_sdb_product)
Tomasz Wlostowski
committed
return std_logic_vector -- (319 downto 8)
variable result : std_logic_vector(319 downto 8);
result(319 downto 256) := product.vendor_id;
result(255 downto 224) := product.device_id;
result(223 downto 192) := product.version;
result(191 downto 160) := product.date;
Tomasz Wlostowski
committed
for i in 0 to 18 loop -- string to ascii
result(159-i*8 downto 152-i*8) :=
std_logic_vector(to_unsigned(character'pos(product.name(i+1)), 8));
end loop;
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_product(sdb_record : std_logic_vector(319 downto 8))
return t_sdb_product
is
variable result : t_sdb_product;
begin
result.vendor_id := sdb_record(319 downto 256);
result.device_id := sdb_record(255 downto 224);
result.version := sdb_record(223 downto 192);
result.date := sdb_record(191 downto 160);
Tomasz Wlostowski
committed
for i in 0 to 18 loop -- ascii to string
result.name(i+1) := character'val(to_integer(unsigned(sdb_record(159-i*8 downto 152-i*8))));
end loop;
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_embed_component(sdb_component : t_sdb_component; address : t_wishbone_address)
Tomasz Wlostowski
committed
return std_logic_vector -- (447 downto 8)
is
variable result : std_logic_vector(447 downto 8);
Tomasz Wlostowski
committed
constant first : unsigned(63 downto 0) := unsigned(sdb_component.addr_first);
constant last : unsigned(63 downto 0) := unsigned(sdb_component.addr_last);
variable base : unsigned(63 downto 0) := (others => '0');
begin
base(address'length-1 downto 0) := unsigned(address);
Tomasz Wlostowski
committed
result(447 downto 384) := std_logic_vector(base);
result(383 downto 320) := std_logic_vector(base + last - first);
Tomasz Wlostowski
committed
result(319 downto 8) := f_sdb_embed_product(sdb_component.product);
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_component(sdb_record : std_logic_vector(447 downto 8))
return t_sdb_component
is
variable result : t_sdb_component;
begin
result.addr_first := sdb_record(447 downto 384);
result.addr_last := sdb_record(383 downto 320);
result.product := f_sdb_extract_product(sdb_record(319 downto 8));
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_embed_device(device : t_sdb_device; address : t_wishbone_address)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 496) := device.abi_class;
result(495 downto 488) := device.abi_ver_major;
result(487 downto 480) := device.abi_ver_minor;
result(479 downto 456) := (others => '0');
result(455) := device.wbd_endian;
result(454 downto 452) := (others => '0');
result(451 downto 448) := device.wbd_width;
Tomasz Wlostowski
committed
result(447 downto 8) := f_sdb_embed_component(device.sdb_component, address);
result(7 downto 0) := x"01"; -- device
Tomasz Wlostowski
committed
function f_sdb_extract_device(sdb_record : t_sdb_record)
return t_sdb_device
variable result : t_sdb_device;
result.abi_class := sdb_record(511 downto 496);
result.abi_ver_major := sdb_record(495 downto 488);
result.abi_ver_minor := sdb_record(487 downto 480);
result.wbd_endian := sdb_record(452);
result.wbd_width := sdb_record(451 downto 448);
result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8));
Tomasz Wlostowski
committed
assert sdb_record(7 downto 0) = x"01"
Tomasz Wlostowski
committed
report "Cannot extract t_sdb_device from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity failure;
return result;
end;
Tomasz Wlostowski
committed
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
function f_sdb_embed_msi(msi : t_sdb_msi; address : t_wishbone_address)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 456) := (others => '0');
result(455) := msi.wbd_endian;
result(454 downto 452) := (others => '0');
result(451 downto 448) := msi.wbd_width;
result(447 downto 8) := f_sdb_embed_component(msi.sdb_component, address);
result(7 downto 0) := x"03"; -- msi
return result;
end;
function f_sdb_extract_msi(sdb_record : t_sdb_record)
return t_sdb_msi
is
variable result : t_sdb_msi;
begin
result.wbd_endian := sdb_record(452);
result.wbd_width := sdb_record(451 downto 448);
result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8));
assert sdb_record(7 downto 0) = x"03"
report "Cannot extract t_sdb_msi from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity failure;
return result;
end;
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
function f_sdb_embed_integration(integr : t_sdb_integration)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 320) := (others => '0');
result(319 downto 8) := f_sdb_embed_product(integr.product);
result(7 downto 0) := x"80"; -- integration record
return result;
end f_sdb_embed_integration;
function f_sdb_extract_integration(sdb_record : t_sdb_record)
return t_sdb_integration
is
variable result : t_sdb_integration;
begin
result.product := f_sdb_extract_product(sdb_record(319 downto 8));
assert sdb_record(7 downto 0) = x"80"
report "Cannot extract t_sdb_integration from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end f_sdb_extract_integration;
function f_sdb_embed_repo_url(url : t_sdb_repo_url)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 8) := f_string2svl(url.repo_url);
result( 7 downto 0) := x"81"; -- repo_url record
return result;
end;
function f_sdb_extract_repo_url(sdb_record : t_sdb_record)
return t_sdb_repo_url
is
variable result : t_sdb_repo_url;
begin
result.repo_url := f_slv2string(sdb_record(511 downto 8));
assert sdb_record(7 downto 0) = x"81"
report "Cannot extract t_sdb_repo_url from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end;
function f_sdb_embed_synthesis(syn : t_sdb_synthesis)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 384) := f_string2svl(syn.syn_module_name);
result(383 downto 256) := f_string2bits(syn.syn_commit_id);
result(255 downto 192) := f_string2svl(syn.syn_tool_name);
result(191 downto 160) := syn.syn_tool_version;
result(159 downto 128) := syn.syn_date;
result(127 downto 8) := f_string2svl(syn.syn_username);
result( 7 downto 0) := x"82"; -- synthesis record
return result;
end;
function f_sdb_extract_synthesis(sdb_record : t_sdb_record)
return t_sdb_synthesis
is
variable result : t_sdb_synthesis;
begin
result.syn_module_name := f_slv2string(sdb_record(511 downto 384));
result.syn_commit_id := f_bits2string(sdb_record(383 downto 256));
result.syn_tool_name := f_slv2string(sdb_record(255 downto 192));
result.syn_tool_version := sdb_record(191 downto 160);
result.syn_date := sdb_record(159 downto 128);
result.syn_username := f_slv2string(sdb_record(127 downto 8));
assert sdb_record(7 downto 0) = x"82"
report "Cannot extract t_sdb_repo_url from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end;
function f_sdb_embed_bridge(bridge : t_sdb_bridge; address : t_wishbone_address)
return t_sdb_record
is
variable result : t_sdb_record;
Tomasz Wlostowski
committed
constant first : unsigned(63 downto 0) := unsigned(bridge.sdb_component.addr_first);
constant child : unsigned(63 downto 0) := unsigned(bridge.sdb_child);
variable base : unsigned(63 downto 0) := (others => '0');
begin
base(address'length-1 downto 0) := unsigned(address);
Tomasz Wlostowski
committed
result(511 downto 448) := std_logic_vector(base + child - first);
Tomasz Wlostowski
committed
result(447 downto 8) := f_sdb_embed_component(bridge.sdb_component, address);
result(7 downto 0) := x"02"; -- bridge
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_bridge(sdb_record : t_sdb_record)
return t_sdb_bridge
is
variable result : t_sdb_bridge;
begin
result.sdb_child := sdb_record(511 downto 448);
result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8));
assert sdb_record(7 downto 0) = x"02"
Tomasz Wlostowski
committed
report "Cannot extract t_sdb_bridge from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity failure;
return result;
function f_sdb_auto_device(device : t_sdb_device; enable : boolean := true)
return t_sdb_record
is
constant c_zero : t_wishbone_address := (others => '0');
variable v_empty : t_sdb_record := (others => '0');
begin
if enable then
return f_sdb_embed_device(device, c_zero);
else
return v_empty;
end if;
end f_sdb_auto_device;
function f_sdb_auto_bridge(bridge : t_sdb_bridge; enable : boolean := true)
return t_sdb_record
is
constant c_zero : t_wishbone_address := (others => '0');
variable v_empty : t_sdb_record := (others => '0');
begin
if enable then
return f_sdb_embed_bridge(bridge, c_zero);
else
return v_empty;
end if;
end f_sdb_auto_bridge;
function f_sdb_auto_msi(msi : t_sdb_msi; enable : boolean := true)
return t_sdb_record
is
constant c_zero : t_wishbone_address := (others => '0');
variable v_empty : t_sdb_record := (others => '0');
begin
if enable then
return f_sdb_embed_msi(msi, c_zero);
else
return v_empty;
end if;
end f_sdb_auto_msi;
subtype t_usdb_address is unsigned(63 downto 0);
type t_usdb_address_array is array(natural range <>) of t_usdb_address;
-- We map devices by placing the smallest ones first.
-- This is guaranteed to pack the maximum number of devices in the smallest space.
-- If a device has an address != 0, we leave it alone and let the crossbar confirm
-- that the address does not cause a conflict.
function f_sdb_auto_layout_helper(records : t_sdb_record_array)
return t_usdb_address_array
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
constant c_zero : t_usdb_address := (others => '0');
constant c_used_entries : natural := c_records'length + 1;
constant c_rom_entries : natural := 2**f_ceil_log2(c_used_entries);
constant c_rom_bytes : natural := c_rom_entries * c_sdb_device_length / 8;
variable v_component : t_sdb_component;
variable v_sizes : t_usdb_address_array(c_records'length downto 0);
variable v_address : t_usdb_address_array(c_records'length downto 0);
variable v_bus_map : std_logic_vector(c_records'length downto 0) := (others => '0');
variable v_bus_cursor: unsigned(63 downto 0) := (others => '0');
variable v_msi_map : std_logic_vector(c_records'length downto 0) := (others => '0');
variable v_msi_cursor: unsigned(63 downto 0) := (others => '0');
variable v_increment : unsigned(63 downto 0) := (others => '0');
variable v_type : std_logic_vector(7 downto 0);
begin
-- First, extract the length of the devices, ignoring those not to be mapped
for i in c_records'range loop
v_component := f_sdb_extract_component(c_records(i)(447 downto 8));
v_sizes(i) := unsigned(v_component.addr_last);
v_address(i) := unsigned(v_component.addr_first);
-- Silently round up to a power of two; the crossbar will give a warning for us
for j in 62 downto 0 loop
v_sizes(i)(j) := v_sizes(i)(j+1) or v_sizes(i)(j);
end loop;
-- Only map devices/bridges at address zero
if v_address(i) = c_zero then
v_type := c_records(i)(7 downto 0);
case v_type is
when x"01" => v_bus_map(i) := '1';
when x"02" => v_bus_map(i) := '1';
when x"03" => v_msi_map(i) := '1';
when others => null;
end case;
end if;
end loop;
-- Assign the SDB record a spot as well
v_address(c_records'length) := (others => '0');
v_sizes(c_records'length) := to_unsigned(c_rom_bytes-1, 64);
v_bus_map(c_records'length) := '1';
-- Start assigning addresses
for j in 0 to 63 loop
v_increment := (others => '0');
v_increment(j) := '1';
for i in 0 to c_records'length loop
if v_bus_map(i) = '1' and v_sizes(i)(j) = '0' then
v_bus_map(i) := '0';
v_address(i) := v_bus_cursor;
v_bus_cursor := v_bus_cursor + v_increment;
end if;
if v_msi_map(i) = '1' and v_sizes(i)(j) = '0' then
v_msi_map(i) := '0';
v_address(i) := v_msi_cursor;
v_msi_cursor := v_msi_cursor + v_increment;
end if;
end loop;
-- Round up to the next required alignment
if v_bus_cursor(j) = '1' then
v_bus_cursor := v_bus_cursor + v_increment;
end if;
if v_msi_cursor(j) = '1' then
v_msi_cursor := v_msi_cursor + v_increment;
end if;
end loop;
return v_address;
end f_sdb_auto_layout_helper;
function f_sdb_auto_layout(records : t_sdb_record_array)
return t_sdb_record_array
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
variable v_typ : std_logic_vector(7 downto 0);
variable v_result : t_sdb_record_array(c_records'range) := c_records;
constant c_address : t_usdb_address_array := f_sdb_auto_layout_helper(c_records);
variable v_address : t_wishbone_address;
begin
-- Put the addresses into the mapping
for i in v_result'range loop
v_typ := c_records(i)(7 downto 0);
v_address := std_logic_vector(c_address(i)(t_wishbone_address'range));
case v_typ is
when x"01" => v_result(i) := f_sdb_embed_device(f_sdb_extract_device(v_result(i)), v_address);
when x"02" => v_result(i) := f_sdb_embed_bridge(f_sdb_extract_bridge(v_result(i)), v_address);
when x"03" => v_result(i) := f_sdb_embed_msi (f_sdb_extract_msi (v_result(i)), v_address);
when others => null;
end case;
end loop;
return v_result;
end f_sdb_auto_layout;
function f_sdb_auto_layout(slaves : t_sdb_record_array; masters : t_sdb_record_array)
return t_sdb_record_array
is begin
return f_sdb_auto_layout(masters & slaves);
end f_sdb_auto_layout;
function f_sdb_auto_sdb(records : t_sdb_record_array)
return t_wishbone_address
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
constant c_address : t_usdb_address_array(c_records'length downto 0) := f_sdb_auto_layout_helper(c_records);
begin
return std_logic_vector(c_address(c_records'length)(t_wishbone_address'range));
end f_sdb_auto_sdb;
function f_sdb_auto_sdb(slaves : t_sdb_record_array; masters : t_sdb_record_array)
return t_wishbone_address
is begin
return f_sdb_auto_sdb(masters & slaves);
end f_sdb_auto_sdb;
--**************************************************************************************************************************--
-- START MAT's NEW FUNCTIONS FROM 18th Oct 2013
------------------------------------------------------------------------------------------------------------------------------
function f_sdb_create_array(g_enum_dev_id : boolean := false;
g_dev_id_offs : natural := 0;
g_enum_dev_name : boolean := false;
g_dev_name_offs : natural := 0;
device : t_sdb_device;
instances : natural := 1)
return t_sdb_record_array is
variable result : t_sdb_record_array(instances-1 downto 0);
variable i,j, pos : natural;
variable dev, newdev : t_sdb_device;
variable serial_no : string(1 to 3);
variable text_possible : boolean := false;
dev := device;
report "### Creating " & integer'image(instances) & " x " & dev.sdb_component.product.name
severity note;
for i in 0 to instances-1 loop
if(g_enum_dev_id) then
dev.sdb_component.product.device_id :=
std_logic_vector( unsigned(dev.sdb_component.product.device_id)
+ to_unsigned(i+g_dev_id_offs, dev.sdb_component.product.device_id'length));
end if;
-- find end of name
for j in dev.sdb_component.product.name'length downto 1 loop
if(dev.sdb_component.product.name(j) /= ' ') then
pos := j;
exit;
end if;
end loop;
-- convert i+g_dev_name_offs to string
serial_no := f_string_fix_len(integer'image(i+g_dev_name_offs), serial_no'length);
report "### Now: " & serial_no & " of " & dev.sdb_component.product.name severity note;
-- check if space is sufficient
assert (serial_no'length+1 <= dev.sdb_component.product.name'length - pos)
report "Not enough space in namestring of sdb_device " & dev.sdb_component.product.name
& " to add serial number " & serial_no & ". Space available " &
integer'image(dev.sdb_component.product.name'length-pos-1) & ", required "
& integer'image(serial_no'length+1)
newdev.sdb_component.product.name(pos+1) := '_';
for j in 1 to serial_no'length loop
newdev.sdb_component.product.name(pos+1+j) := serial_no(j);
end loop;
report "### to: " & newdev.sdb_component.product.name severity note;
result(i) := f_sdb_embed_device(newdev, (others=>'0'));
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
end loop;
return result;
end f_sdb_create_array;
function f_sdb_join_arrays(a : t_sdb_record_array; b : t_sdb_record_array) return t_sdb_record_array is
variable result : t_sdb_record_array(a'length+b'length-1 downto 0);
variable i : natural;
begin
for i in 0 to a'left loop
result(i) := a(i);
end loop;
for i in 0 to b'left loop
result(i+a'length) := b(i);
end loop;
return result;
end f_sdb_join_arrays;
function f_sdb_extract_base_addr(sdb_record : t_sdb_record) return std_logic_vector is
begin
return sdb_record(447 downto 384);
end f_sdb_extract_base_addr;
function f_sdb_extract_end_addr(sdb_record : t_sdb_record) return std_logic_vector is
begin
return sdb_record(383 downto 320);
end f_sdb_extract_end_addr;
function f_align_addr_offset(offs : unsigned; this_rng : unsigned; prev_rng : unsigned)
return unsigned is
variable this_pow, prev_pow : natural;
variable start, env, result : unsigned(63 downto 0) := (others => '0');
begin
start(offs'left downto 0) := offs;
--calculate address envelopes (next power of 2) for previous and this component and choose the larger one
this_pow := f_hot_to_bin(std_logic_vector(this_rng));
prev_pow := f_hot_to_bin(std_logic_vector(prev_rng));
-- no max(). thank you very much, std_numeric :-/
if(this_pow >= prev_pow) then
env(this_pow) := '1';
else
env(prev_pow) := '1';
end if;
--round up to the next multiple of the envelope...
if(prev_rng /= 0) then
result := start + env - (start mod env);
else
result := start; --...except for first element, result is start.
end if;
return result;
end f_align_addr_offset;
-- generates aligned address map for an sdb_record_array, accepts optional start offset
function f_sdb_automap_array(sdb_array : t_sdb_record_array; start_offset : t_wishbone_address := (others => '0'))
return t_sdb_record_array is
Wesley W. Terpstra
committed
constant len : natural := sdb_array'length;
variable this_rng : unsigned(63 downto 0) := (others => '0');
variable prev_rng : unsigned(63 downto 0) := (others => '0');
variable prev_offs : unsigned(63 downto 0) := (others => '0');
variable this_offs : unsigned(63 downto 0) := (others => '0');
variable device : t_sdb_device;
variable bridge : t_sdb_bridge;
variable sdb_type : std_logic_vector(7 downto 0);
variable i : natural;
variable result : t_sdb_record_array(sdb_array'length-1 downto 0); -- last
begin
prev_offs(start_offset'left downto 0) := unsigned(start_offset);
--traverse the array
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
-- find the fitting extraction function by evaling the type byte.
-- could also use the component, but it's safer to use Wes' embed and extract functions.
sdb_type := sdb_array(i)(7 downto 0);
case sdb_type is
--device
when x"01" => device := f_sdb_extract_device(sdb_array(i));
this_rng := unsigned(device.sdb_component.addr_last) - unsigned(device.sdb_component.addr_first);
this_offs := f_align_addr_offset(prev_offs, this_rng, prev_rng);
result(i) := f_sdb_embed_device(device, std_logic_vector(this_offs(31 downto 0)));
--bridge
when x"02" => bridge := f_sdb_extract_bridge(sdb_array(i));
this_rng := unsigned(bridge.sdb_component.addr_last) - unsigned(bridge.sdb_component.addr_first);
this_offs := f_align_addr_offset(prev_offs, this_rng, prev_rng);
result(i) := f_sdb_embed_bridge(bridge, std_logic_vector(this_offs(31 downto 0)) );
--other
when others => result(i) := sdb_array(i);
end case;
-- doesnt hurt because this_* doesnt change if its not a device or bridge
prev_rng := this_rng;
prev_offs := this_offs;
end loop;
report "##* " & integer'image(sdb_array'length) & " Elements, last address: " & f_bits2string(std_logic_vector(this_offs+this_rng)) severity Note;
return result;
end f_sdb_automap_array;
-- find place for sdb rom on crossbar and return address. try to put it in an address gap.
function f_sdb_create_rom_addr(sdb_array : t_sdb_record_array) return t_wishbone_address is
Wesley W. Terpstra
committed
constant len : natural := sdb_array'length;
constant rom_bytes : natural := (2**f_ceil_log2(sdb_array'length + 1)) * (c_sdb_device_length / 8);
variable result : t_wishbone_address := (others => '0');
variable this_base, this_end : unsigned(63 downto 0) := (others => '0');
variable prev_base, prev_end : unsigned(63 downto 0) := (others => '0');
variable rom_base : unsigned(63 downto 0) := (others => '0');
variable sdb_type : std_logic_vector(7 downto 0);
begin
--traverse the array
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
sdb_type := sdb_array(i)(7 downto 0);
if(sdb_type = x"01" or sdb_type = x"02") then
-- get
this_base := unsigned(f_sdb_extract_base_addr(sdb_array(i)));
this_end := unsigned(f_sdb_extract_end_addr(sdb_array(i)));
if(unsigned(result) = 0) then
rom_base := f_align_addr_offset(prev_base, to_unsigned(rom_bytes-1, 64), (prev_end-prev_base));
if(rom_base + to_unsigned(rom_bytes, 64) <= this_base) then
result := std_logic_vector(rom_base(t_wishbone_address'left downto 0));
end if;
end if;
prev_base := this_base;
prev_end := this_end;
end if;
end loop;
-- if there was no gap to fit the sdb rom, place it at the end
if(unsigned(result) = 0) then
result := std_logic_vector(f_align_addr_offset(this_base, to_unsigned(rom_bytes-1, 64),
this_end-this_base)(t_wishbone_address'left downto 0));
end if;
return result;
end f_sdb_create_rom_addr;
------------------------------------------------------------------------------------------------------------------------------
-- END MAT's NEW FUNCTIONS FROM 18th Oct 2013
------------------------------------------------------------------------------------------------------------------------------
function f_sdb_bus_end(
g_wraparound : boolean;
Tomasz Wlostowski
committed
g_layout : t_sdb_record_array;
g_sdb_addr : t_wishbone_address;
msi : boolean) return unsigned
alias c_layout : t_sdb_record_array(g_layout'length-1 downto 0) is g_layout;
-- How much space does the ROM need?
constant c_used_entries : natural := c_layout'length + 1;
Tomasz Wlostowski
committed
constant c_rom_entries : natural := 2**f_ceil_log2(c_used_entries); -- next power of 2
constant c_sdb_bytes : natural := c_sdb_device_length / 8;
constant c_rom_bytes : natural := c_rom_entries * c_sdb_bytes;
variable result : unsigned(63 downto 0) := (others => '0');
variable typ : std_logic_vector(7 downto 0);
variable last : unsigned(63 downto 0);
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
if not msi then
-- The ROM will be an addressed slave as well
result := (others => '0');
result(g_sdb_addr'range) := unsigned(g_sdb_addr);
result := result + to_unsigned(c_rom_bytes, 64) - 1;
end if;
for i in c_layout'range loop
typ := c_layout(i)(7 downto 0);
last := unsigned(f_sdb_extract_component(c_layout(i)(447 downto 8)).addr_last);
case typ is
when x"01" => if not msi and last > result then result := last; end if;
when x"02" => if not msi and last > result then result := last; end if;
when x"03" => if msi and last > result then result := last; end if;
when others => null;
end case;
end loop;
-- round result up to a power of two -1
for i in 62 downto 0 loop
result(i) := result(i) or result(i+1);
end loop;
if not g_wraparound then
result := (others => '0');
for i in 0 to c_wishbone_address_width-1 loop
result(i) := '1';
end loop;
end if;
return result;
end f_sdb_bus_end;
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
function f_xwb_bridge_manual_sdb(
g_size : t_wishbone_address;
g_sdb_addr : t_wishbone_address) return t_sdb_bridge
is
variable result : t_sdb_bridge;
begin
result.sdb_child := (others => '0');
result.sdb_child(c_wishbone_address_width-1 downto 0) := g_sdb_addr;
result.sdb_component.addr_first := (others => '0');
result.sdb_component.addr_last := (others => '0');
result.sdb_component.addr_last(c_wishbone_address_width-1 downto 0) := g_size;
result.sdb_component.product.vendor_id := x"0000000000000651"; -- GSI
result.sdb_component.product.device_id := x"eef0b198";
result.sdb_component.product.version := x"00000001";
result.sdb_component.product.date := x"20120511";
result.sdb_component.product.name := "WB4-Bridge-GSI ";
return result;
end f_xwb_bridge_manual_sdb;
function f_xwb_bridge_layout_sdb( -- determine bus size from layout
g_wraparound : boolean := true;
g_layout : t_sdb_record_array;
g_sdb_addr : t_wishbone_address) return t_sdb_bridge
is
variable address : t_wishbone_address;
begin
address := std_logic_vector(f_sdb_bus_end(g_wraparound, g_layout, g_sdb_addr, false)(address'range));
return f_xwb_bridge_manual_sdb(address, g_sdb_addr);
end f_xwb_bridge_layout_sdb;
Tomasz Wlostowski
committed
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
function f_xwb_msi_manual_sdb(
g_size : t_wishbone_address) return t_sdb_msi
is
variable result : t_sdb_msi;
begin
result.wbd_endian := '0';
result.wbd_width := x"7";
result.sdb_component.addr_first := (others => '0');
result.sdb_component.addr_last := (others => '0');
result.sdb_component.addr_last(c_wishbone_address_width-1 downto 0) := g_size;
result.sdb_component.product.vendor_id := x"0000000000000651"; -- GSI
result.sdb_component.product.device_id := x"aa7bfb3c";
result.sdb_component.product.version := x"00000001";
result.sdb_component.product.date := x"20160422";
result.sdb_component.product.name := "WB4-MSI-Bridge-GSI ";
return result;
end f_xwb_msi_manual_sdb;
function f_xwb_msi_layout_sdb( -- determine MSI size from layout
g_layout : t_sdb_record_array) return t_sdb_msi
is
constant zero : t_wishbone_address := (others => '0');
variable address : t_wishbone_address;
begin
address := std_logic_vector(f_sdb_bus_end(true, g_layout, zero, true)(address'range));
return f_xwb_msi_manual_sdb(address);
end f_xwb_msi_layout_sdb;
function f_xwb_dpram(g_size : natural) return t_sdb_device
variable result : t_sdb_device;
Tomasz Wlostowski
committed
result.abi_class := x"0001"; -- RAM device
result.abi_ver_major := x"01";
result.abi_ver_minor := x"00";
Tomasz Wlostowski
committed
result.wbd_width := x"7"; -- 32/16/8-bit supported
result.wbd_endian := c_sdb_endian_big;
Tomasz Wlostowski
committed
result.sdb_component.addr_first := (others => '0');
result.sdb_component.addr_last := std_logic_vector(to_unsigned(g_size*4-1, 64));
Tomasz Wlostowski
committed
result.sdb_component.product.vendor_id := x"000000000000CE42"; -- CERN
result.sdb_component.product.device_id := x"66cfeb52";
result.sdb_component.product.version := x"00000001";
result.sdb_component.product.date := x"20120305";
result.sdb_component.product.name := "WB4-BlockRAM ";
Tomasz Wlostowski
committed
return result;
end f_xwb_dpram;
Tomasz Wlostowski
committed
function f_bits2string(s : std_logic_vector) return string is
--- extend length to full hex nibble
variable result : string((s'length+7)/4 downto 1);
variable s_norm : std_logic_vector(result'length*4-1 downto 0) := (others=>'0');
variable cut : natural;
variable nibble: std_logic_vector(3 downto 0);
Wesley W. Terpstra
committed
constant len : natural := result'length;
begin
s_norm(s'length-1 downto 0) := s;
Wesley W. Terpstra
committed
for i in len-1 downto 0 loop
nibble := s_norm(i*4+3 downto i*4);
case nibble is
when "0000" => result(i+1) := '0';
when "0001" => result(i+1) := '1';
when "0010" => result(i+1) := '2';
when "0011" => result(i+1) := '3';
when "0100" => result(i+1) := '4';
when "0101" => result(i+1) := '5';
when "0110" => result(i+1) := '6';
when "0111" => result(i+1) := '7';
when "1000" => result(i+1) := '8';
when "1001" => result(i+1) := '9';
when "1010" => result(i+1) := 'a';
when "1011" => result(i+1) := 'b';
when "1100" => result(i+1) := 'c';
when "1101" => result(i+1) := 'd';
when "1110" => result(i+1) := 'e';
when "1111" => result(i+1) := 'f';
when others => result(i+1) := 'X';
end case;
end loop;
Tomasz Wlostowski
committed
-- trim leading 0s
strip : for i in result'length downto 1 loop
cut := i;
exit strip when result(i) /= '0';
end loop;
Tomasz Wlostowski
committed
return "0x" & result(cut downto 1);
end f_bits2string;
-- Converts string (hex number, without leading 0x) to std_logic_vector
function f_string2bits(s : string) return std_logic_vector is
Wesley W. Terpstra
committed
constant len : natural := s'length;
variable slv : std_logic_vector(s'length*4-1 downto 0);
variable nibble : std_logic_vector(3 downto 0);
begin
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
case s(i+1) is
when '0' => nibble := X"0";
when '1' => nibble := X"1";
when '2' => nibble := X"2";
when '3' => nibble := X"3";
when '4' => nibble := X"4";
when '5' => nibble := X"5";
when '6' => nibble := X"6";
when '7' => nibble := X"7";
when '8' => nibble := X"8";
when '9' => nibble := X"9";
when 'a' => nibble := X"A";
when 'A' => nibble := X"A";
when 'b' => nibble := X"B";
when 'B' => nibble := X"B";
when 'c' => nibble := X"C";
when 'C' => nibble := X"C";
when 'd' => nibble := X"D";
when 'D' => nibble := X"D";
when 'e' => nibble := X"E";
when 'E' => nibble := X"E";
when 'f' => nibble := X"F";
when 'F' => nibble := X"F";
when others => nibble := "XXXX";
end case;
slv(((i+1)*4)-1 downto i*4) := nibble;
end loop;
return slv;
end f_string2bits;
-- Converts string to ascii (std_logic_vector)
function f_string2svl (s : string) return std_logic_vector is
Wesley W. Terpstra
committed
constant len : natural := s'length;
variable slv : std_logic_vector((s'length * 8) - 1 downto 0);
begin
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
slv(slv'high-i*8 downto (slv'high-7)-i*8) :=
std_logic_vector(to_unsigned(character'pos(s(i+1)), 8));
end loop;
return slv;
end f_string2svl;
-- Converts ascii (std_logic_vector) to string
function f_slv2string (slv : std_logic_vector) return string is
Wesley W. Terpstra
committed
constant len : natural := slv'length;
variable s : string(1 to slv'length/8);
begin
Wesley W. Terpstra
committed
for i in 0 to (len/8)-1 loop