Newer
Older
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.genram_pkg.all;
package wishbone_pkg is
Tomasz Wlostowski
committed
constant c_wishbone_address_width : integer := 32;
constant c_wishbone_data_width : integer := 32;
subtype t_wishbone_address is
std_logic_vector(c_wishbone_address_width-1 downto 0);
subtype t_wishbone_data is
std_logic_vector(c_wishbone_data_width-1 downto 0);
subtype t_wishbone_byte_select is
std_logic_vector((c_wishbone_address_width/8)-1 downto 0);
subtype t_wishbone_cycle_type is
std_logic_vector(2 downto 0);
subtype t_wishbone_burst_type is
std_logic_vector(1 downto 0);
type t_wishbone_interface_mode is (CLASSIC, PIPELINED);
type t_wishbone_address_granularity is (BYTE, WORD);
Tomasz Wlostowski
committed
Tomasz Wlostowski
committed
type t_wishbone_master_out is record
cyc : std_logic;
stb : std_logic;
adr : t_wishbone_address;
sel : t_wishbone_byte_select;
we : std_logic;
dat : t_wishbone_data;
end record t_wishbone_master_out;
subtype t_wishbone_slave_in is t_wishbone_master_out;
type t_wishbone_slave_out is record
Tomasz Wlostowski
committed
ack : std_logic;
err : std_logic;
rty : std_logic;
stall : std_logic;
int : std_logic;
Tomasz Wlostowski
committed
dat : t_wishbone_data;
end record t_wishbone_slave_out;
subtype t_wishbone_master_in is t_wishbone_slave_out;
subtype t_wishbone_device_descriptor is std_logic_vector(255 downto 0);
Tomasz Wlostowski
committed
type t_wishbone_byte_select_array is array(natural range <>) of t_wishbone_byte_select;
type t_wishbone_data_array is array(natural range <>) of t_wishbone_data;
type t_wishbone_address_array is array(natural range <>) of t_wishbone_address;
type t_wishbone_master_out_array is array (natural range <>) of t_wishbone_master_out;
--type t_wishbone_slave_in_array is array (natural range <>) of t_wishbone_slave_in;
subtype t_wishbone_slave_in_array is t_wishbone_master_out_array;
type t_wishbone_slave_out_array is array (natural range <>) of t_wishbone_slave_out;
--type t_wishbone_master_in_array is array (natural range <>) of t_wishbone_master_in;
subtype t_wishbone_master_in_array is t_wishbone_slave_out_array;
Tomasz Wlostowski
committed
constant cc_dummy_address : std_logic_vector(c_wishbone_address_width-1 downto 0) :=
(others => 'X');
constant cc_dummy_data : std_logic_vector(c_wishbone_data_width-1 downto 0) :=
(others => 'X');
constant cc_dummy_sel : std_logic_vector(c_wishbone_data_width/8-1 downto 0) :=
(others => 'X');
constant cc_dummy_slave_in : t_wishbone_slave_in :=
('0', '0', cc_dummy_address, cc_dummy_sel, 'X', cc_dummy_data);
constant cc_dummy_master_out : t_wishbone_master_out := cc_dummy_slave_in;
Tomasz Wlostowski
committed
constant cc_dummy_slave_out : t_wishbone_slave_out :=
('X', 'X', 'X', 'X', 'X', cc_dummy_data);
constant cc_dummy_master_in : t_wishbone_master_in := cc_dummy_slave_out;
constant cc_dummy_address_array : t_wishbone_address_array(0 downto 0) := (0 => cc_dummy_address);
-- A generally useful function.
Tomasz Wlostowski
committed
function f_ceil_log2(x : natural) return natural;
function f_bits2string(s : std_logic_vector) return string;
Tomasz Wlostowski
committed
function f_string2bits(s : string) return std_logic_vector;
function f_string2svl (s : string) return std_logic_vector;
function f_slv2string (slv : std_logic_vector) return string;
function f_string_fix_len( s : string; ret_len : natural := 10; fill_char : character := '0' ) return string;
function f_hot_to_bin(x : std_logic_vector) return natural;
-- *** Wishbone slave interface functions ***
-- f_wb_wr:
-- processes an incoming write reqest to a register while honoring the select lines
-- valid modes are overwrite "owr", set "set" (bits are or'ed) and clear "clr" (bits are nand'ed)
function f_wb_wr(pval : std_logic_vector; ival : std_logic_vector; sel : std_logic_vector; mode : string := "owr") return std_logic_vector;
------------------------------------------------------------------------------
------------------------------------------------------------------------------
Tomasz Wlostowski
committed
constant c_sdb_device_length : natural := 512; -- bits
subtype t_sdb_record is std_logic_vector(c_sdb_device_length-1 downto 0);
type t_sdb_record_array is array(natural range <>) of t_sdb_record;
type t_sdb_product is record
Tomasz Wlostowski
committed
vendor_id : std_logic_vector(63 downto 0);
device_id : std_logic_vector(31 downto 0);
version : std_logic_vector(31 downto 0);
date : std_logic_vector(31 downto 0);
name : string(1 to 19);
end record t_sdb_product;
Tomasz Wlostowski
committed
type t_sdb_component is record
Tomasz Wlostowski
committed
addr_first : std_logic_vector(63 downto 0);
addr_last : std_logic_vector(63 downto 0);
product : t_sdb_product;
end record t_sdb_component;
Tomasz Wlostowski
committed
constant c_sdb_endian_big : std_logic := '0';
constant c_sdb_endian_little : std_logic := '1';
Tomasz Wlostowski
committed
type t_sdb_device is record
abi_class : std_logic_vector(15 downto 0);
abi_ver_major : std_logic_vector(7 downto 0);
abi_ver_minor : std_logic_vector(7 downto 0);
Tomasz Wlostowski
committed
wbd_endian : std_logic; -- 0 = big, 1 = little
wbd_width : std_logic_vector(3 downto 0); -- 3=64-bit, 2=32-bit, 1=16-bit, 0=8-bit
sdb_component : t_sdb_component;
end record t_sdb_device;
Tomasz Wlostowski
committed
type t_sdb_msi is record
wbd_endian : std_logic; -- 0 = big, 1 = little
wbd_width : std_logic_vector(3 downto 0); -- 3=64-bit, 2=32-bit, 1=16-bit, 0=8-bit
sdb_component : t_sdb_component;
end record t_sdb_msi;
type t_sdb_bridge is record
sdb_child : std_logic_vector(63 downto 0);
sdb_component : t_sdb_component;
end record t_sdb_bridge;
Tomasz Wlostowski
committed
type t_sdb_integration is record
product : t_sdb_product;
end record t_sdb_integration;
type t_sdb_repo_url is record
repo_url : string(1 to 63);
end record t_sdb_repo_url;
type t_sdb_synthesis is record
syn_module_name : string(1 to 16);
syn_commit_id : string(1 to 32);
syn_tool_name : string(1 to 8);
syn_tool_version : std_logic_vector(31 downto 0);
syn_date : std_logic_vector(31 downto 0);
syn_username : string(1 to 15);
end record t_sdb_synthesis;
-- general crossbar building functions
function f_sdb_create_array(g_enum_dev_id : boolean := false;
g_dev_id_offs : natural := 0;
g_enum_dev_name : boolean := false;
g_dev_name_offs : natural := 0;
device : t_sdb_device;
instances : natural := 1) return t_sdb_record_array;
function f_sdb_join_arrays(a : t_sdb_record_array; b : t_sdb_record_array) return t_sdb_record_array;
function f_sdb_extract_base_addr(sdb_record : t_sdb_record) return std_logic_vector;
function f_sdb_extract_end_addr(sdb_record : t_sdb_record) return std_logic_vector;
function f_sdb_automap_array(sdb_array : t_sdb_record_array; start_offset : t_wishbone_address := (others => '0')) return t_sdb_record_array;
function f_align_addr_offset(offs : unsigned; this_rng : unsigned; prev_rng : unsigned) return unsigned;
function f_sdb_create_rom_addr(sdb_array : t_sdb_record_array) return t_wishbone_address;
function f_sdb_embed_device(device : t_sdb_device; address : t_wishbone_address) return t_sdb_record;
function f_sdb_embed_bridge(bridge : t_sdb_bridge; address : t_wishbone_address) return t_sdb_record;
function f_sdb_embed_msi(msi : t_sdb_msi; address : t_wishbone_address) return t_sdb_record;
function f_sdb_embed_integration(integr : t_sdb_integration) return t_sdb_record;
function f_sdb_embed_repo_url(url : t_sdb_repo_url) return t_sdb_record;
function f_sdb_embed_synthesis(syn : t_sdb_synthesis) return t_sdb_record;
Tomasz Wlostowski
committed
function f_sdb_extract_device(sdb_record : t_sdb_record) return t_sdb_device;
function f_sdb_extract_bridge(sdb_record : t_sdb_record) return t_sdb_bridge;
function f_sdb_extract_msi(sdb_record : t_sdb_record) return t_sdb_msi;
function f_sdb_extract_integration(sdb_record : t_sdb_record) return t_sdb_integration;
function f_sdb_extract_repo_url(sdb_record : t_sdb_record) return t_sdb_repo_url;
function f_sdb_extract_synthesis(sdb_record : t_sdb_record) return t_sdb_synthesis;
-- Automatic crossbar mapping functions
function f_sdb_auto_device(device : t_sdb_device; enable : boolean := true) return t_sdb_record;
function f_sdb_auto_bridge(bridge : t_sdb_bridge; enable : boolean := true) return t_sdb_record;
function f_sdb_auto_msi (msi : t_sdb_msi; enable : boolean := true) return t_sdb_record;
function f_sdb_auto_layout(records: t_sdb_record_array) return t_sdb_record_array;
function f_sdb_auto_layout(slaves : t_sdb_record_array; masters : t_sdb_record_array) return t_sdb_record_array;
function f_sdb_auto_sdb (records: t_sdb_record_array) return t_wishbone_address;
function f_sdb_auto_sdb (slaves : t_sdb_record_array; masters : t_sdb_record_array) return t_wishbone_address;
-- For internal use by the crossbar
Tomasz Wlostowski
committed
function f_sdb_embed_product(product : t_sdb_product) return std_logic_vector; -- (319 downto 8)
function f_sdb_embed_component(sdb_component : t_sdb_component; address : t_wishbone_address) return std_logic_vector; -- (447 downto 8)
function f_sdb_extract_product(sdb_record : std_logic_vector(319 downto 8)) return t_sdb_product;
function f_sdb_extract_component(sdb_record : std_logic_vector(447 downto 8)) return t_sdb_component;
------------------------------------------------------------------------------
-- Components declaration
-------------------------------------------------------------------------------
component wb_slave_adapter
Tomasz Wlostowski
committed
generic (
g_master_use_struct : boolean;
g_master_mode : t_wishbone_interface_mode;
g_master_granularity : t_wishbone_address_granularity;
g_slave_use_struct : boolean;
g_slave_mode : t_wishbone_interface_mode;
g_slave_granularity : t_wishbone_address_granularity);
Tomasz Wlostowski
committed
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
sl_adr_i : in std_logic_vector(c_wishbone_address_width-1 downto 0) := cc_dummy_address;
sl_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0) := cc_dummy_data;
sl_sel_i : in std_logic_vector(c_wishbone_data_width/8-1 downto 0) := cc_dummy_sel;
sl_cyc_i : in std_logic := '0';
sl_stb_i : in std_logic := '0';
sl_we_i : in std_logic := '0';
sl_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0);
sl_err_o : out std_logic;
sl_rty_o : out std_logic;
sl_ack_o : out std_logic;
sl_stall_o : out std_logic;
sl_int_o : out std_logic;
slave_i : in t_wishbone_slave_in := cc_dummy_slave_in;
Tomasz Wlostowski
committed
slave_o : out t_wishbone_slave_out;
ma_adr_o : out std_logic_vector(c_wishbone_address_width-1 downto 0);
ma_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0);
ma_sel_o : out std_logic_vector(c_wishbone_data_width/8-1 downto 0);
ma_cyc_o : out std_logic;
ma_stb_o : out std_logic;
ma_we_o : out std_logic;
ma_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0) := cc_dummy_data;
ma_err_i : in std_logic := '0';
ma_rty_i : in std_logic := '0';
ma_ack_i : in std_logic := '0';
ma_stall_i : in std_logic := '0';
ma_int_i : in std_logic := '0';
master_i : in t_wishbone_master_in := cc_dummy_slave_out;
master_o : out t_wishbone_master_out);
Tomasz Wlostowski
committed
end component;
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
component wb_async_bridge
generic (
g_simulation : integer;
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_address_granularity : t_wishbone_address_granularity := WORD;
g_cpu_address_width : integer);
port (
rst_n_i : in std_logic;
clk_sys_i : in std_logic;
cpu_cs_n_i : in std_logic;
cpu_wr_n_i : in std_logic;
cpu_rd_n_i : in std_logic;
cpu_bs_n_i : in std_logic_vector(3 downto 0);
cpu_addr_i : in std_logic_vector(g_cpu_address_width-1 downto 0);
cpu_data_b : inout std_logic_vector(31 downto 0);
cpu_nwait_o : out std_logic;
wb_adr_o : out std_logic_vector(c_wishbone_address_width - 1 downto 0);
wb_dat_o : out std_logic_vector(31 downto 0);
wb_stb_o : out std_logic;
wb_we_o : out std_logic;
wb_sel_o : out std_logic_vector(3 downto 0);
wb_cyc_o : out std_logic;
wb_dat_i : in std_logic_vector (c_wishbone_data_width-1 downto 0);
wb_ack_i : in std_logic;
wb_stall_i : in std_logic := '0');
end component;
component xwb_async_bridge
generic (
g_simulation : integer;
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_address_granularity : t_wishbone_address_granularity := WORD;
g_cpu_address_width : integer);
port (
rst_n_i : in std_logic;
clk_sys_i : in std_logic;
cpu_cs_n_i : in std_logic;
cpu_wr_n_i : in std_logic;
cpu_rd_n_i : in std_logic;
cpu_bs_n_i : in std_logic_vector(3 downto 0);
cpu_addr_i : in std_logic_vector(g_cpu_address_width-1 downto 0);
cpu_data_b : inout std_logic_vector(31 downto 0);
cpu_nwait_o : out std_logic;
master_o : out t_wishbone_master_out;
master_i : in t_wishbone_master_in);
end component;
component xwb_bus_fanout
generic (
g_num_outputs : natural;
g_bits_per_slave : integer;
g_address_granularity : t_wishbone_address_granularity := WORD;
g_slave_interface_mode : t_wishbone_interface_mode := CLASSIC);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
master_i : in t_wishbone_master_in_array(0 to g_num_outputs-1);
master_o : out t_wishbone_master_out_array(0 to g_num_outputs-1));
end component;
component xwb_crossbar
generic (
g_num_masters : integer;
g_num_slaves : integer;
g_registered : boolean;
g_address : t_wishbone_address_array;
g_mask : t_wishbone_address_array);
port (
Tomasz Wlostowski
committed
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in_array(g_num_masters-1 downto 0);
slave_o : out t_wishbone_slave_out_array(g_num_masters-1 downto 0);
master_i : in t_wishbone_master_in_array(g_num_slaves-1 downto 0);
master_o : out t_wishbone_master_out_array(g_num_slaves-1 downto 0);
sdb_sel_o : out std_logic_vector(g_num_masters-1 downto 0)); -- leave open!
end component;
-- Use the f_xwb_bridge_*_sdb to bridge a crossbar to another
Tomasz Wlostowski
committed
function f_xwb_bridge_manual_sdb( -- take a manual bus size
g_size : t_wishbone_address;
g_sdb_addr : t_wishbone_address) return t_sdb_bridge;
function f_xwb_bridge_layout_sdb( -- determine bus size from layout
g_wraparound : boolean := true;
g_layout : t_sdb_record_array;
g_sdb_addr : t_wishbone_address) return t_sdb_bridge;
component xwb_sdb_crossbar
generic (
g_num_masters : integer;
g_num_slaves : integer;
g_registered : boolean := false;
g_wraparound : boolean := true;
g_layout : t_sdb_record_array;
g_sdb_addr : t_wishbone_address);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in_array (g_num_masters-1 downto 0);
slave_o : out t_wishbone_slave_out_array (g_num_masters-1 downto 0);
msi_master_i : in t_wishbone_master_in_array (g_num_masters-1 downto 0) := (others => cc_dummy_master_in);
msi_master_o : out t_wishbone_master_out_array(g_num_masters-1 downto 0);
master_i : in t_wishbone_master_in_array (g_num_slaves -1 downto 0);
master_o : out t_wishbone_master_out_array(g_num_slaves -1 downto 0);
msi_slave_i : in t_wishbone_slave_in_array (g_num_slaves -1 downto 0) := (others => cc_dummy_slave_in);
msi_slave_o : out t_wishbone_slave_out_array (g_num_slaves -1 downto 0));
end component;
component xwb_register_link -- puts a register of delay between crossbars
port(
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
master_i : in t_wishbone_master_in;
master_o : out t_wishbone_master_out);
end component;
generic(
g_layout : t_sdb_record_array;
g_masters : natural;
g_bus_end : unsigned(63 downto 0));
Tomasz Wlostowski
committed
clk_sys_i : in std_logic;
master_i : in std_logic_vector(g_masters-1 downto 0);
Tomasz Wlostowski
committed
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out);
end component;
constant c_xwb_dma_sdb : t_sdb_device := (
Tomasz Wlostowski
committed
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"00",
wbd_endian => c_sdb_endian_big,
Tomasz Wlostowski
committed
wbd_width => x"7", -- 8/16/32-bit port granularity
Tomasz Wlostowski
committed
addr_first => x"0000000000000000",
addr_last => x"000000000000001f",
product => (
vendor_id => x"0000000000000651", -- GSI
device_id => x"cababa56",
version => x"00000001",
date => x"20120518",
name => "WB4-Streaming-DMA_0")));
Wesley W. Terpstra
committed
component xwb_dma is
generic(
-- Value 0 cannot stream
-- Value 1 only slaves with async ACK can stream
-- Value 2 only slaves with combined latency <= 2 can stream
-- Value 3 only slaves with combined latency <= 6 can stream
-- Value 4 only slaves with combined latency <= 14 can stream
-- ....
logRingLen : integer := 4
Tomasz Wlostowski
committed
);
Wesley W. Terpstra
committed
port(
-- Common wishbone signals
clk_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
Wesley W. Terpstra
committed
-- Master reader port
r_master_i : in t_wishbone_master_in;
r_master_o : out t_wishbone_master_out;
Wesley W. Terpstra
committed
-- Master writer port
w_master_i : in t_wishbone_master_in;
w_master_o : out t_wishbone_master_out;
Wesley W. Terpstra
committed
-- Pulsed high completion signal
interrupt_o : out std_logic
Tomasz Wlostowski
committed
);
Wesley W. Terpstra
committed
end component;
Tomasz Wlostowski
committed
-- If you reset one clock domain, you must reset BOTH!
-- Release of the reset lines may be arbitrarily out-of-phase
Wesley W. Terpstra
committed
component xwb_clock_crossing is
generic(
g_size : natural := 16);
Wesley W. Terpstra
committed
port(
-- Slave control port
slave_clk_i : in std_logic;
slave_rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
Wesley W. Terpstra
committed
-- Master reader port
master_clk_i : in std_logic;
master_rst_n_i : in std_logic;
master_i : in t_wishbone_master_in;
master_o : out t_wishbone_master_out;
-- Flow control back-channel for acks
slave_ready_o : out std_logic;
slave_stall_i : in std_logic := '0');
Wesley W. Terpstra
committed
end component;
Tomasz Wlostowski
committed
-- g_size is in words
function f_xwb_dpram(g_size : natural) return t_sdb_device;
component xwb_dpram
generic (
g_size : natural;
g_init_file : string := "";
g_must_have_init_file : boolean := true;
g_slave1_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_slave2_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_slave1_granularity : t_wishbone_address_granularity := WORD;
g_slave2_granularity : t_wishbone_address_granularity := WORD);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave1_i : in t_wishbone_slave_in;
slave1_o : out t_wishbone_slave_out;
slave2_i : in t_wishbone_slave_in;
slave2_o : out t_wishbone_slave_out);
end component;
component xwb_dpram_mixed
generic(
g_size : natural := 16384;
g_init_file : string := "";
g_must_have_init_file : boolean := true;
g_swap_word_endianness : boolean := true;
g_slave1_interface_mode : t_wishbone_interface_mode;
g_slave2_interface_mode : t_wishbone_interface_mode;
g_dpram_port_a_width : integer := 16;
g_dpram_port_b_width : integer := 32;
g_slave1_granularity : t_wishbone_address_granularity;
g_slave2_granularity : t_wishbone_address_granularity);
port(
clk_slave1_i : in std_logic;
clk_slave2_i : in std_logic;
rst_n_i : in std_logic;
slave1_i : in t_wishbone_slave_in;
slave1_o : out t_wishbone_slave_out;
slave2_i : in t_wishbone_slave_in;
slave2_o : out t_wishbone_slave_out);
end component;
-- Just like the DMA controller, but constantly at address 0
component xwb_streamer is
generic(
-- Value 0 cannot stream
-- Value 1 only slaves with async ACK can stream
-- Value 2 only slaves with combined latency = 2 can stream
-- Value 3 only slaves with combined latency = 6 can stream
-- Value 4 only slaves with combined latency = 14 can stream
-- ....
logRingLen : integer := 4
);
port(
-- Common wishbone signals
clk_i : in std_logic;
rst_n_i : in std_logic;
-- Master reader port
r_master_i : in t_wishbone_master_in;
r_master_o : out t_wishbone_master_out;
-- Master writer port
w_master_i : in t_wishbone_master_in;
w_master_o : out t_wishbone_master_out);
end component;
Tomasz Wlostowski
committed
constant c_xwb_gpio_port_sdb : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"01",
wbd_endian => c_sdb_endian_big,
Tomasz Wlostowski
committed
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
Tomasz Wlostowski
committed
addr_first => x"0000000000000000",
addr_last => x"00000000000000ff",
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"441c5143",
version => x"00000001",
date => x"20121129",
name => "WB-GPIO-Port ")));
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
component wb_gpio_port
generic (
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_address_granularity : t_wishbone_address_granularity := WORD;
g_num_pins : natural range 1 to 256;
g_with_builtin_tristates : boolean := false);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
wb_sel_i : in std_logic_vector(c_wishbone_data_width/8-1 downto 0);
wb_cyc_i : in std_logic;
wb_stb_i : in std_logic;
wb_we_i : in std_logic;
wb_adr_i : in std_logic_vector(7 downto 0);
wb_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0);
wb_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0);
wb_ack_o : out std_logic;
wb_stall_o : out std_logic;
gpio_b : inout std_logic_vector(g_num_pins-1 downto 0);
gpio_out_o : out std_logic_vector(g_num_pins-1 downto 0);
gpio_in_i : in std_logic_vector(g_num_pins-1 downto 0);
gpio_oen_o : out std_logic_vector(g_num_pins-1 downto 0));
end component;
component xwb_gpio_port
generic (
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_address_granularity : t_wishbone_address_granularity := WORD;
g_num_pins : natural range 1 to 256;
g_with_builtin_tristates : boolean);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
desc_o : out t_wishbone_device_descriptor;
gpio_b : inout std_logic_vector(g_num_pins-1 downto 0);
gpio_out_o : out std_logic_vector(g_num_pins-1 downto 0);
gpio_in_i : in std_logic_vector(g_num_pins-1 downto 0);
gpio_oen_o : out std_logic_vector(g_num_pins-1 downto 0));
end component;
Tomasz Wlostowski
committed
constant c_xwb_i2c_master_sdb : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"01",
wbd_endian => c_sdb_endian_big,
Tomasz Wlostowski
committed
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
Tomasz Wlostowski
committed
addr_first => x"0000000000000000",
addr_last => x"00000000000000ff",
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"123c5443",
version => x"00000001",
date => x"20121129",
name => "WB-I2C-Master ")));
component wb_i2c_master
generic (
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
Grzegorz Daniluk
committed
g_address_granularity : t_wishbone_address_granularity := WORD;
g_num_interfaces : integer := 1);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
wb_adr_i : in std_logic_vector(4 downto 0);
wb_dat_i : in std_logic_vector(31 downto 0);
wb_dat_o : out std_logic_vector(31 downto 0);
wb_sel_i : in std_logic_vector(3 downto 0);
wb_stb_i : in std_logic;
wb_cyc_i : in std_logic;
wb_we_i : in std_logic;
wb_ack_o : out std_logic;
wb_int_o : out std_logic;
wb_stall_o : out std_logic;
Grzegorz Daniluk
committed
scl_pad_i : in std_logic_vector(g_num_interfaces-1 downto 0);
scl_pad_o : out std_logic_vector(g_num_interfaces-1 downto 0);
scl_padoen_o : out std_logic_vector(g_num_interfaces-1 downto 0);
sda_pad_i : in std_logic_vector(g_num_interfaces-1 downto 0);
sda_pad_o : out std_logic_vector(g_num_interfaces-1 downto 0);
sda_padoen_o : out std_logic_vector(g_num_interfaces-1 downto 0));
end component;
component xwb_i2c_master
generic (
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
Grzegorz Daniluk
committed
g_address_granularity : t_wishbone_address_granularity := WORD;
g_num_interfaces : integer := 1);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
desc_o : out t_wishbone_device_descriptor;
Grzegorz Daniluk
committed
scl_pad_i : in std_logic_vector(g_num_interfaces-1 downto 0);
scl_pad_o : out std_logic_vector(g_num_interfaces-1 downto 0);
scl_padoen_o : out std_logic_vector(g_num_interfaces-1 downto 0);
sda_pad_i : in std_logic_vector(g_num_interfaces-1 downto 0);
sda_pad_o : out std_logic_vector(g_num_interfaces-1 downto 0);
sda_padoen_o : out std_logic_vector(g_num_interfaces-1 downto 0));
end component;
component xwb_lm32
generic (
g_profile : string;
g_reset_vector : std_logic_vector(31 downto 0) := x"00000000";
g_sdb_address : std_logic_vector(31 downto 0) := x"00000000");
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
irq_i : in std_logic_vector(31 downto 0);
dwb_o : out t_wishbone_master_out;
dwb_i : in t_wishbone_master_in;
iwb_o : out t_wishbone_master_out;
iwb_i : in t_wishbone_master_in);
end component;
Tomasz Wlostowski
committed
constant c_xwb_onewire_master_sdb : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"01",
wbd_endian => c_sdb_endian_big,
Tomasz Wlostowski
committed
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
Tomasz Wlostowski
committed
addr_first => x"0000000000000000",
addr_last => x"00000000000000ff",
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"779c5443",
version => x"00000001",
date => x"20121129",
name => "WB-OneWire-Master ")));
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
component wb_onewire_master
generic (
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_address_granularity : t_wishbone_address_granularity := WORD;
g_num_ports : integer;
g_ow_btp_normal : string := "1.0";
g_ow_btp_overdrive : string := "5.0");
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
wb_cyc_i : in std_logic;
wb_sel_i : in std_logic_vector(c_wishbone_data_width/8-1 downto 0);
wb_stb_i : in std_logic;
wb_we_i : in std_logic;
wb_adr_i : in std_logic_vector(2 downto 0);
wb_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0);
wb_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0);
wb_ack_o : out std_logic;
wb_int_o : out std_logic;
wb_stall_o : out std_logic;
owr_pwren_o : out std_logic_vector(g_num_ports -1 downto 0);
owr_en_o : out std_logic_vector(g_num_ports -1 downto 0);
owr_i : in std_logic_vector(g_num_ports -1 downto 0));
end component;
component xwb_onewire_master
generic (
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_address_granularity : t_wishbone_address_granularity := WORD;
g_num_ports : integer;
g_ow_btp_normal : string := "5.0";
g_ow_btp_overdrive : string := "1.0");
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
desc_o : out t_wishbone_device_descriptor;
owr_pwren_o : out std_logic_vector(g_num_ports -1 downto 0);
owr_en_o : out std_logic_vector(g_num_ports -1 downto 0);
owr_i : in std_logic_vector(g_num_ports -1 downto 0));
end component;
constant c_xwb_spi_sdb : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"01",
wbd_endian => c_sdb_endian_big,
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
addr_first => x"0000000000000000",
addr_last => x"000000000000001F",
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"e503947e", -- echo "WB-SPI.Control " | md5sum | cut -c1-8
version => x"00000001",
date => x"20121116",
name => "WB-SPI.Control ")));
component wb_spi
generic (
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
Grzegorz Daniluk
committed
g_address_granularity : t_wishbone_address_granularity := WORD;
g_divider_len : integer := 16;
g_max_char_len : integer := 128;
g_num_slaves : integer := 8);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
wb_adr_i : in std_logic_vector(4 downto 0);
wb_dat_i : in std_logic_vector(31 downto 0);
wb_dat_o : out std_logic_vector(31 downto 0);
wb_sel_i : in std_logic_vector(3 downto 0);
wb_stb_i : in std_logic;
wb_cyc_i : in std_logic;
wb_we_i : in std_logic;
wb_ack_o : out std_logic;
wb_err_o : out std_logic;
wb_int_o : out std_logic;
wb_stall_o : out std_logic;
Grzegorz Daniluk
committed
pad_cs_o : out std_logic_vector(g_num_slaves-1 downto 0);
pad_sclk_o : out std_logic;
pad_mosi_o : out std_logic;
pad_miso_i : in std_logic);
end component;
component xwb_spi
generic (
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
Grzegorz Daniluk
committed
g_address_granularity : t_wishbone_address_granularity := WORD;
g_divider_len : integer := 16;
g_max_char_len : integer := 128;
g_num_slaves : integer := 8);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
desc_o : out t_wishbone_device_descriptor;
Grzegorz Daniluk
committed
pad_cs_o : out std_logic_vector(g_num_slaves-1 downto 0);
pad_sclk_o : out std_logic;
pad_mosi_o : out std_logic;
pad_miso_i : in std_logic);
end component;
component wb_simple_uart
generic (
g_with_virtual_uart : boolean := false;
g_with_physical_uart : boolean := true;
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_address_granularity : t_wishbone_address_granularity := WORD;
g_vuart_fifo_size : integer := 1024);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
wb_adr_i : in std_logic_vector(4 downto 0);
wb_dat_i : in std_logic_vector(31 downto 0);
wb_dat_o : out std_logic_vector(31 downto 0);
wb_cyc_i : in std_logic;
wb_sel_i : in std_logic_vector(3 downto 0);
wb_stb_i : in std_logic;
wb_we_i : in std_logic;
wb_ack_o : out std_logic;
wb_stall_o : out std_logic;
uart_rxd_i : in std_logic := '1';
uart_txd_o : out std_logic);
end component;
component xwb_simple_uart
generic (
g_with_virtual_uart : boolean := false;
g_with_physical_uart : boolean := true;
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_address_granularity : t_wishbone_address_granularity := WORD;
g_vuart_fifo_size : integer := 1024);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
desc_o : out t_wishbone_device_descriptor;
uart_rxd_i : in std_logic := '1';
uart_txd_o : out std_logic);
end component;
Tomasz Wlostowski
committed
component wb_simple_pwm
generic (
g_num_channels : integer range 1 to 8;
Grzegorz Daniluk
committed
g_regs_size : integer range 1 to 16 := 16;
g_default_period : integer range 0 to 255 := 0;
g_default_presc : integer range 0 to 255 := 0;
g_default_val : integer range 0 to 255 := 0;
Tomasz Wlostowski
committed
g_interface_mode : t_wishbone_interface_mode := PIPELINED;
g_address_granularity : t_wishbone_address_granularity := BYTE);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
wb_adr_i : in std_logic_vector(5 downto 0);
wb_dat_i : in std_logic_vector(31 downto 0);
wb_dat_o : out std_logic_vector(31 downto 0);
wb_cyc_i : in std_logic;
wb_sel_i : in std_logic_vector(3 downto 0);
wb_stb_i : in std_logic;
wb_we_i : in std_logic;
wb_ack_o : out std_logic;
wb_stall_o : out std_logic;
pwm_o : out std_logic_vector(g_num_channels-1 downto 0));
end component;
component xwb_simple_pwm
generic (
g_num_channels : integer range 1 to 8;
Grzegorz Daniluk
committed
g_regs_size : integer range 1 to 16 := 16;
g_default_period : integer range 0 to 255 := 0;
g_default_presc : integer range 0 to 255 := 0;
g_default_val : integer range 0 to 255 := 0;
Tomasz Wlostowski
committed
g_interface_mode : t_wishbone_interface_mode := PIPELINED;
g_address_granularity : t_wishbone_address_granularity := BYTE);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
pwm_o : out std_logic_vector(g_num_channels-1 downto 0));
end component;
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
component wb_tics
generic (
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_address_granularity : t_wishbone_address_granularity := WORD;
g_period : integer);
port (
rst_n_i : in std_logic;
clk_sys_i : in std_logic;
wb_adr_i : in std_logic_vector(3 downto 0);
wb_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0);
wb_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0);
wb_cyc_i : in std_logic;
wb_sel_i : in std_logic_vector(c_wishbone_data_width/8-1 downto 0);
wb_stb_i : in std_logic;
wb_we_i : in std_logic;
wb_ack_o : out std_logic;
wb_stall_o : out std_logic);
end component;
component xwb_tics
generic (
g_interface_mode : t_wishbone_interface_mode := CLASSIC;
g_address_granularity : t_wishbone_address_granularity := WORD;
g_period : integer);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
desc_o : out t_wishbone_device_descriptor);
end component;
component wb_vic
generic (
g_interface_mode : t_wishbone_interface_mode;
g_address_granularity : t_wishbone_address_granularity;
g_num_interrupts : natural;
g_init_vectors : t_wishbone_address_array := cc_dummy_address_array
);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
wb_adr_i : in std_logic_vector(c_wishbone_address_width-1 downto 0);
wb_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0);
wb_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0);
wb_cyc_i : in std_logic;
wb_sel_i : in std_logic_vector(c_wishbone_data_width/8-1 downto 0);
wb_stb_i : in std_logic;
wb_we_i : in std_logic;
wb_ack_o : out std_logic;
wb_stall_o : out std_logic;
irqs_i : in std_logic_vector(g_num_interrupts-1 downto 0);
irq_master_o : out std_logic);
end component;
constant c_xwb_vic_sdb : t_sdb_device := (
Tomasz Wlostowski
committed
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"01",
wbd_endian => c_sdb_endian_big,
Tomasz Wlostowski
committed
wbd_width => x"7", -- 8/16/32-bit port granularity
Tomasz Wlostowski
committed
addr_first => x"0000000000000000",
addr_last => x"00000000000000ff",
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"00000013",
version => x"00000002",
Tomasz Wlostowski
committed
date => x"20120113",
name => "WB-VIC-Int.Control ")));
component xwb_vic
generic (
g_interface_mode : t_wishbone_interface_mode;
g_address_granularity : t_wishbone_address_granularity;
g_num_interrupts : natural;
g_init_vectors : t_wishbone_address_array := cc_dummy_address_array);
port (
clk_sys_i : in std_logic;
rst_n_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
irqs_i : in std_logic_vector(g_num_interrupts-1 downto 0);
irq_master_o : out std_logic);
end component;
constant c_wb_serial_lcd_sdb : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"00",
wbd_endian => c_sdb_endian_big,
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
addr_first => x"0000000000000000",
addr_last => x"00000000000000ff",
product => (
vendor_id => x"0000000000000651", -- GSI
device_id => x"b77a5045",
version => x"00000001",
date => x"20130222",
name => "SERIAL-LCD-DISPLAY ")));
component wb_serial_lcd
generic(
g_cols : natural := 40;
g_rows : natural := 24;
g_hold : natural := 15; -- How many times to repeat a line (for sharpness)
g_wait : natural := 1); -- How many cycles per state change (for 20MHz timing)
port(
slave_clk_i : in std_logic;
slave_rstn_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
di_clk_i : in std_logic;
di_scp_o : out std_logic;
di_lp_o : out std_logic;
di_flm_o : out std_logic;
di_dat_o : out std_logic);
end component;
function f_wb_spi_flash_sdb(g_bits : natural) return t_sdb_device;
component wb_spi_flash is
generic(
g_port_width : natural := 1; -- 1 for EPCS, 4 for EPCQ
g_addr_width : natural := 24; -- log of memory (24=16MB)
Wesley W. Terpstra
committed
g_idle_time : natural := 3;
g_dummy_time : natural := 8;
Wesley W. Terpstra
committed
-- leave these at defaults if you have:
-- a) slow clock, b) valid constraints, or c) registered in/outputs
g_input_latch_edge : std_logic := '1'; -- rising
g_output_latch_edge : std_logic := '0'; -- falling
g_input_to_output_cycles : natural := 1); -- between 1 and 8
port(
Wesley W. Terpstra
committed
clk_i : in std_logic;
rstn_i : in std_logic;
slave_i : in t_wishbone_slave_in;
slave_o : out t_wishbone_slave_out;
Wesley W. Terpstra
committed
-- For properly constrained designs, set clk_out_i = clk_in_i.
clk_out_i : in std_logic;
clk_in_i : in std_logic;
ncs_o : out std_logic;
oe_o : out std_logic_vector(g_port_width-1 downto 0);
Wesley W. Terpstra
committed
asdi_o : out std_logic_vector(g_port_width-1 downto 0);
data_i : in std_logic_vector(g_port_width-1 downto 0);
external_request_i : in std_logic := '0'; -- JTAG wants to use SPI?
Wesley W. Terpstra
committed
external_granted_o : out std_logic);
end component;
-----------------------------------------------------------------------------
-- I2C to Wishbone bridge, following protocol defined with ELMA
-----------------------------------------------------------------------------
component wb_i2c_bridge is
generic
(
-- FSM watchdog timeout, see Appendix A in the component documentation for
-- an example of setting this generic
g_fsm_wdt : positive
);
port
(
-- Clock, reset
clk_i : in std_logic;
rst_n_i : in std_logic;
-- I2C lines
scl_i : in std_logic;
scl_o : out std_logic;
scl_en_o : out std_logic;
sda_i : in std_logic;
sda_o : out std_logic;
sda_en_o : out std_logic;
-- I2C address
i2c_addr_i : in std_logic_vector(6 downto 0);
-- Status outputs
-- TIP : Transfer In Progress
-- '1' when the I2C slave detects a matching I2C address, thus a
-- transfer is in progress
-- '0' when idle
-- ERR : Error
-- '1' when the SysMon attempts to access an invalid WB slave
-- WDTO : Watchdog timeout (single clock cycle pulse)
-- '1' -- timeout of watchdog occured
-- '0' -- when idle
tip_o : out std_logic;
err_p_o : out std_logic;
wdto_p_o : out std_logic;
-- Wishbone master signals
wbm_stb_o : out std_logic;
wbm_cyc_o : out std_logic;
wbm_sel_o : out std_logic_vector(3 downto 0);
wbm_we_o : out std_logic;
wbm_dat_i : in std_logic_vector(31 downto 0);
wbm_dat_o : out std_logic_vector(31 downto 0);
wbm_adr_o : out std_logic_vector(31 downto 0);
wbm_ack_i : in std_logic;
wbm_rty_i : in std_logic;
wbm_err_i : in std_logic
);
end component wb_i2c_bridge;
------------------------------------------------------------------------------
-- MultiBoot component
------------------------------------------------------------------------------
component xwb_xil_multiboot is
port
(
-- Clock and reset input ports
clk_i : in std_logic;
rst_n_i : in std_logic;
-- Wishbone ports
wbs_i : in t_wishbone_slave_in;
wbs_o : out t_wishbone_slave_out;
-- SPI ports
spi_cs_n_o : out std_logic;
spi_sclk_o : out std_logic;
spi_mosi_o : out std_logic;
spi_miso_i : in std_logic
);
end component xwb_xil_multiboot;
constant c_xwb_xil_multiboot_sdb : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"00",
wbd_endian => c_sdb_endian_big,
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
addr_first => x"0000000000000000",
addr_last => x"000000000000001f",
product => (
vendor_id => x"000000000000CE42", -- CERN
device_id => x"11da333d", -- echo "WB-Xilinx-MultiBoot" | md5sum | cut -c1-8
version => x"00000001",
date => x"20140313",
name => "WB-Xilinx-MultiBoot")));
end wishbone_pkg;
-- f_wb_wr: processes a write reqest to a slave register with select lines. valid modes are "owr", "set" and "clr"
function f_wb_wr(pval : std_logic_vector; ival : std_logic_vector; sel : std_logic_vector; mode : string := "owr") return std_logic_vector is
variable n_sel : std_logic_vector(pval'range);
variable n_val : std_logic_vector(pval'range);
variable result : std_logic_vector(pval'range);
begin
for i in pval'range loop
n_sel(i) := sel((i-pval'low) / 8); -- subtract the low index for when register width > wishbone data width
n_val(i) := ival(i-pval'low);
end loop;
if(mode = "set") then
result := pval or (n_val and n_sel);
elsif (mode = "clr") then
result := pval and not (n_val and n_sel);
else
result := (pval and not n_sel) or (n_val and n_sel);
end if;
return result;
end f_wb_wr;
function f_ceil_log2(x : natural) return natural is
begin
if x <= 1
then return 0;
else return f_ceil_log2((x+1)/2) +1;
end if;
end f_ceil_log2;
Tomasz Wlostowski
committed
function f_sdb_embed_product(product : t_sdb_product)
Tomasz Wlostowski
committed
return std_logic_vector -- (319 downto 8)
variable result : std_logic_vector(319 downto 8);
result(319 downto 256) := product.vendor_id;
result(255 downto 224) := product.device_id;
result(223 downto 192) := product.version;
result(191 downto 160) := product.date;
Tomasz Wlostowski
committed
for i in 0 to 18 loop -- string to ascii
result(159-i*8 downto 152-i*8) :=
std_logic_vector(to_unsigned(character'pos(product.name(i+1)), 8));
end loop;
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_product(sdb_record : std_logic_vector(319 downto 8))
return t_sdb_product
is
variable result : t_sdb_product;
begin
result.vendor_id := sdb_record(319 downto 256);
result.device_id := sdb_record(255 downto 224);
result.version := sdb_record(223 downto 192);
result.date := sdb_record(191 downto 160);
Tomasz Wlostowski
committed
for i in 0 to 18 loop -- ascii to string
result.name(i+1) := character'val(to_integer(unsigned(sdb_record(159-i*8 downto 152-i*8))));
end loop;
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_embed_component(sdb_component : t_sdb_component; address : t_wishbone_address)
Tomasz Wlostowski
committed
return std_logic_vector -- (447 downto 8)
is
variable result : std_logic_vector(447 downto 8);
Tomasz Wlostowski
committed
constant first : unsigned(63 downto 0) := unsigned(sdb_component.addr_first);
constant last : unsigned(63 downto 0) := unsigned(sdb_component.addr_last);
variable base : unsigned(63 downto 0) := (others => '0');
begin
base(address'length-1 downto 0) := unsigned(address);
Tomasz Wlostowski
committed
result(447 downto 384) := std_logic_vector(base);
result(383 downto 320) := std_logic_vector(base + last - first);
Tomasz Wlostowski
committed
result(319 downto 8) := f_sdb_embed_product(sdb_component.product);
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_component(sdb_record : std_logic_vector(447 downto 8))
return t_sdb_component
is
variable result : t_sdb_component;
begin
result.addr_first := sdb_record(447 downto 384);
result.addr_last := sdb_record(383 downto 320);
result.product := f_sdb_extract_product(sdb_record(319 downto 8));
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_embed_device(device : t_sdb_device; address : t_wishbone_address)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 496) := device.abi_class;
result(495 downto 488) := device.abi_ver_major;
result(487 downto 480) := device.abi_ver_minor;
result(479 downto 456) := (others => '0');
result(455) := device.wbd_endian;
result(454 downto 452) := (others => '0');
result(451 downto 448) := device.wbd_width;
Tomasz Wlostowski
committed
result(447 downto 8) := f_sdb_embed_component(device.sdb_component, address);
result(7 downto 0) := x"01"; -- device
Tomasz Wlostowski
committed
function f_sdb_extract_device(sdb_record : t_sdb_record)
return t_sdb_device
variable result : t_sdb_device;
result.abi_class := sdb_record(511 downto 496);
result.abi_ver_major := sdb_record(495 downto 488);
result.abi_ver_minor := sdb_record(487 downto 480);
result.wbd_endian := sdb_record(452);
result.wbd_width := sdb_record(451 downto 448);
result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8));
Tomasz Wlostowski
committed
assert sdb_record(7 downto 0) = x"01"
Tomasz Wlostowski
committed
report "Cannot extract t_sdb_device from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity failure;
return result;
end;
Tomasz Wlostowski
committed
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
function f_sdb_embed_msi(msi : t_sdb_msi; address : t_wishbone_address)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 456) := (others => '0');
result(455) := msi.wbd_endian;
result(454 downto 452) := (others => '0');
result(451 downto 448) := msi.wbd_width;
result(447 downto 8) := f_sdb_embed_component(msi.sdb_component, address);
result(7 downto 0) := x"03"; -- msi
return result;
end;
function f_sdb_extract_msi(sdb_record : t_sdb_record)
return t_sdb_msi
is
variable result : t_sdb_msi;
begin
result.wbd_endian := sdb_record(452);
result.wbd_width := sdb_record(451 downto 448);
result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8));
assert sdb_record(7 downto 0) = x"03"
report "Cannot extract t_sdb_msi from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity failure;
return result;
end;
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
function f_sdb_embed_integration(integr : t_sdb_integration)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 320) := (others => '0');
result(319 downto 8) := f_sdb_embed_product(integr.product);
result(7 downto 0) := x"80"; -- integration record
return result;
end f_sdb_embed_integration;
function f_sdb_extract_integration(sdb_record : t_sdb_record)
return t_sdb_integration
is
variable result : t_sdb_integration;
begin
result.product := f_sdb_extract_product(sdb_record(319 downto 8));
assert sdb_record(7 downto 0) = x"80"
report "Cannot extract t_sdb_integration from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end f_sdb_extract_integration;
function f_sdb_embed_repo_url(url : t_sdb_repo_url)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 8) := f_string2svl(url.repo_url);
result( 7 downto 0) := x"81"; -- repo_url record
return result;
end;
function f_sdb_extract_repo_url(sdb_record : t_sdb_record)
return t_sdb_repo_url
is
variable result : t_sdb_repo_url;
begin
result.repo_url := f_slv2string(sdb_record(511 downto 8));
assert sdb_record(7 downto 0) = x"81"
report "Cannot extract t_sdb_repo_url from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end;
function f_sdb_embed_synthesis(syn : t_sdb_synthesis)
return t_sdb_record
is
variable result : t_sdb_record;
begin
result(511 downto 384) := f_string2svl(syn.syn_module_name);
result(383 downto 256) := f_string2bits(syn.syn_commit_id);
result(255 downto 192) := f_string2svl(syn.syn_tool_name);
result(191 downto 160) := syn.syn_tool_version;
result(159 downto 128) := syn.syn_date;
result(127 downto 8) := f_string2svl(syn.syn_username);
result( 7 downto 0) := x"82"; -- synthesis record
return result;
end;
function f_sdb_extract_synthesis(sdb_record : t_sdb_record)
return t_sdb_synthesis
is
variable result : t_sdb_synthesis;
begin
result.syn_module_name := f_slv2string(sdb_record(511 downto 384));
result.syn_commit_id := f_bits2string(sdb_record(383 downto 256));
result.syn_tool_name := f_slv2string(sdb_record(255 downto 192));
result.syn_tool_version := sdb_record(191 downto 160);
result.syn_date := sdb_record(159 downto 128);
result.syn_username := f_slv2string(sdb_record(127 downto 8));
assert sdb_record(7 downto 0) = x"82"
report "Cannot extract t_sdb_repo_url from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity Failure;
return result;
end;
function f_sdb_embed_bridge(bridge : t_sdb_bridge; address : t_wishbone_address)
return t_sdb_record
is
variable result : t_sdb_record;
Tomasz Wlostowski
committed
constant first : unsigned(63 downto 0) := unsigned(bridge.sdb_component.addr_first);
constant child : unsigned(63 downto 0) := unsigned(bridge.sdb_child);
variable base : unsigned(63 downto 0) := (others => '0');
begin
base(address'length-1 downto 0) := unsigned(address);
Tomasz Wlostowski
committed
result(511 downto 448) := std_logic_vector(base + child - first);
Tomasz Wlostowski
committed
result(447 downto 8) := f_sdb_embed_component(bridge.sdb_component, address);
result(7 downto 0) := x"02"; -- bridge
return result;
end;
Tomasz Wlostowski
committed
function f_sdb_extract_bridge(sdb_record : t_sdb_record)
return t_sdb_bridge
is
variable result : t_sdb_bridge;
begin
result.sdb_child := sdb_record(511 downto 448);
result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8));
assert sdb_record(7 downto 0) = x"02"
Tomasz Wlostowski
committed
report "Cannot extract t_sdb_bridge from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "."
severity failure;
return result;
function f_sdb_auto_device(device : t_sdb_device; enable : boolean := true)
return t_sdb_record
is
constant c_zero : t_wishbone_address := (others => '0');
variable v_empty : t_sdb_record := (others => '0');
begin
if enable then
return f_sdb_embed_device(device, c_zero);
else
return v_empty;
end if;
end f_sdb_auto_device;
function f_sdb_auto_bridge(bridge : t_sdb_bridge; enable : boolean := true)
return t_sdb_record
is
constant c_zero : t_wishbone_address := (others => '0');
variable v_empty : t_sdb_record := (others => '0');
begin
if enable then
return f_sdb_embed_bridge(bridge, c_zero);
else
return v_empty;
end if;
end f_sdb_auto_bridge;
function f_sdb_auto_msi(msi : t_sdb_msi; enable : boolean := true)
return t_sdb_record
is
constant c_zero : t_wishbone_address := (others => '0');
variable v_empty : t_sdb_record := (others => '0');
begin
if enable then
return f_sdb_embed_msi(msi, c_zero);
else
return v_empty;
end if;
end f_sdb_auto_msi;
subtype t_usdb_address is unsigned(63 downto 0);
type t_usdb_address_array is array(natural range <>) of t_usdb_address;
-- We map devices by placing the smallest ones first.
-- This is guaranteed to pack the maximum number of devices in the smallest space.
-- If a device has an address != 0, we leave it alone and let the crossbar confirm
-- that the address does not cause a conflict.
function f_sdb_auto_layout_helper(records : t_sdb_record_array)
return t_usdb_address_array
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
constant c_zero : t_usdb_address := (others => '0');
constant c_used_entries : natural := c_records'length + 1;
constant c_rom_entries : natural := 2**f_ceil_log2(c_used_entries);
constant c_rom_bytes : natural := c_rom_entries * c_sdb_device_length / 8;
variable v_component : t_sdb_component;
variable v_sizes : t_usdb_address_array(c_records'length downto 0);
variable v_address : t_usdb_address_array(c_records'length downto 0);
variable v_bus_map : std_logic_vector(c_records'length downto 0) := (others => '0');
variable v_bus_cursor: unsigned(63 downto 0) := (others => '0');
variable v_msi_map : std_logic_vector(c_records'length downto 0) := (others => '0');
variable v_msi_cursor: unsigned(63 downto 0) := (others => '0');
variable v_increment : unsigned(63 downto 0) := (others => '0');
variable v_type : std_logic_vector(7 downto 0);
begin
-- First, extract the length of the devices, ignoring those not to be mapped
for i in c_records'range loop
v_component := f_sdb_extract_component(c_records(i)(447 downto 8));
v_sizes(i) := unsigned(v_component.addr_last);
v_address(i) := unsigned(v_component.addr_first);
-- Silently round up to a power of two; the crossbar will give a warning for us
for j in 62 downto 0 loop
v_sizes(i)(j) := v_sizes(i)(j+1) or v_sizes(i)(j);
end loop;
-- Only map devices/bridges at address zero
if v_address(i) = c_zero then
v_type := c_records(i)(7 downto 0);
case v_type is
when x"01" => v_bus_map(i) := '1';
when x"02" => v_bus_map(i) := '1';
when x"03" => v_msi_map(i) := '1';
when others => null;
end case;
end if;
end loop;
-- Assign the SDB record a spot as well
v_address(c_records'length) := (others => '0');
v_sizes(c_records'length) := to_unsigned(c_rom_bytes-1, 64);
v_bus_map(c_records'length) := '1';
-- Start assigning addresses
for j in 0 to 63 loop
v_increment := (others => '0');
v_increment(j) := '1';
for i in 0 to c_records'length loop
if v_bus_map(i) = '1' and v_sizes(i)(j) = '0' then
v_bus_map(i) := '0';
v_address(i) := v_bus_cursor;
v_bus_cursor := v_bus_cursor + v_increment;
end if;
if v_msi_map(i) = '1' and v_sizes(i)(j) = '0' then
v_msi_map(i) := '0';
v_address(i) := v_msi_cursor;
v_msi_cursor := v_msi_cursor + v_increment;
end if;
end loop;
-- Round up to the next required alignment
if v_bus_cursor(j) = '1' then
v_bus_cursor := v_bus_cursor + v_increment;
end if;
if v_msi_cursor(j) = '1' then
v_msi_cursor := v_msi_cursor + v_increment;
end if;
end loop;
return v_address;
end f_sdb_auto_layout_helper;
function f_sdb_auto_layout(records : t_sdb_record_array)
return t_sdb_record_array
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
variable v_typ : std_logic_vector(7 downto 0);
variable v_result : t_sdb_record_array(c_records'range) := c_records;
constant c_address : t_usdb_address_array := f_sdb_auto_layout_helper(c_records);
variable v_address : t_wishbone_address;
begin
-- Put the addresses into the mapping
for i in v_result'range loop
v_typ := c_records(i)(7 downto 0);
v_address := std_logic_vector(c_address(i)(t_wishbone_address'range));
case v_typ is
when x"01" => v_result(i) := f_sdb_embed_device(f_sdb_extract_device(v_result(i)), v_address);
when x"02" => v_result(i) := f_sdb_embed_bridge(f_sdb_extract_bridge(v_result(i)), v_address);
when x"03" => v_result(i) := f_sdb_embed_msi (f_sdb_extract_msi (v_result(i)), v_address);
when others => null;
end case;
end loop;
return v_result;
end f_sdb_auto_layout;
function f_sdb_auto_layout(slaves : t_sdb_record_array; masters : t_sdb_record_array)
return t_sdb_record_array
is begin
return f_sdb_auto_layout(masters & slaves);
end f_sdb_auto_layout;
function f_sdb_auto_sdb(records : t_sdb_record_array)
return t_wishbone_address
is
alias c_records : t_sdb_record_array(records'length-1 downto 0) is records;
constant c_address : t_usdb_address_array(c_records'length downto 0) := f_sdb_auto_layout_helper(c_records);
begin
return std_logic_vector(c_address(c_records'length)(t_wishbone_address'range));
end f_sdb_auto_sdb;
function f_sdb_auto_sdb(slaves : t_sdb_record_array; masters : t_sdb_record_array)
return t_wishbone_address
is begin
return f_sdb_auto_sdb(masters & slaves);
end f_sdb_auto_sdb;
--**************************************************************************************************************************--
-- START MAT's NEW FUNCTIONS FROM 18th Oct 2013
------------------------------------------------------------------------------------------------------------------------------
function f_sdb_create_array(g_enum_dev_id : boolean := false;
g_dev_id_offs : natural := 0;
g_enum_dev_name : boolean := false;
g_dev_name_offs : natural := 0;
device : t_sdb_device;
instances : natural := 1)
return t_sdb_record_array is
variable result : t_sdb_record_array(instances-1 downto 0);
variable i,j, pos : natural;
variable dev, newdev : t_sdb_device;
variable serial_no : string(1 to 3);
variable text_possible : boolean := false;
dev := device;
report "### Creating " & integer'image(instances) & " x " & dev.sdb_component.product.name
severity note;
for i in 0 to instances-1 loop
if(g_enum_dev_id) then
dev.sdb_component.product.device_id :=
std_logic_vector( unsigned(dev.sdb_component.product.device_id)
+ to_unsigned(i+g_dev_id_offs, dev.sdb_component.product.device_id'length));
end if;
-- find end of name
for j in dev.sdb_component.product.name'length downto 1 loop
if(dev.sdb_component.product.name(j) /= ' ') then
pos := j;
exit;
end if;
end loop;
-- convert i+g_dev_name_offs to string
serial_no := f_string_fix_len(integer'image(i+g_dev_name_offs), serial_no'length);
report "### Now: " & serial_no & " of " & dev.sdb_component.product.name severity note;
-- check if space is sufficient
assert (serial_no'length+1 <= dev.sdb_component.product.name'length - pos)
report "Not enough space in namestring of sdb_device " & dev.sdb_component.product.name
& " to add serial number " & serial_no & ". Space available " &
integer'image(dev.sdb_component.product.name'length-pos-1) & ", required "
& integer'image(serial_no'length+1)
newdev.sdb_component.product.name(pos+1) := '_';
for j in 1 to serial_no'length loop
newdev.sdb_component.product.name(pos+1+j) := serial_no(j);
end loop;
report "### to: " & newdev.sdb_component.product.name severity note;
result(i) := f_sdb_embed_device(newdev, (others=>'0'));
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
end loop;
return result;
end f_sdb_create_array;
function f_sdb_join_arrays(a : t_sdb_record_array; b : t_sdb_record_array) return t_sdb_record_array is
variable result : t_sdb_record_array(a'length+b'length-1 downto 0);
variable i : natural;
begin
for i in 0 to a'left loop
result(i) := a(i);
end loop;
for i in 0 to b'left loop
result(i+a'length) := b(i);
end loop;
return result;
end f_sdb_join_arrays;
function f_sdb_extract_base_addr(sdb_record : t_sdb_record) return std_logic_vector is
begin
return sdb_record(447 downto 384);
end f_sdb_extract_base_addr;
function f_sdb_extract_end_addr(sdb_record : t_sdb_record) return std_logic_vector is
begin
return sdb_record(383 downto 320);
end f_sdb_extract_end_addr;
function f_align_addr_offset(offs : unsigned; this_rng : unsigned; prev_rng : unsigned)
return unsigned is
variable this_pow, prev_pow : natural;
variable start, env, result : unsigned(63 downto 0) := (others => '0');
begin
start(offs'left downto 0) := offs;
--calculate address envelopes (next power of 2) for previous and this component and choose the larger one
this_pow := f_hot_to_bin(std_logic_vector(this_rng));
prev_pow := f_hot_to_bin(std_logic_vector(prev_rng));
-- no max(). thank you very much, std_numeric :-/
if(this_pow >= prev_pow) then
env(this_pow) := '1';
else
env(prev_pow) := '1';
end if;
--round up to the next multiple of the envelope...
if(prev_rng /= 0) then
result := start + env - (start mod env);
else
result := start; --...except for first element, result is start.
end if;
return result;
end f_align_addr_offset;
-- generates aligned address map for an sdb_record_array, accepts optional start offset
function f_sdb_automap_array(sdb_array : t_sdb_record_array; start_offset : t_wishbone_address := (others => '0'))
return t_sdb_record_array is
Wesley W. Terpstra
committed
constant len : natural := sdb_array'length;
variable this_rng : unsigned(63 downto 0) := (others => '0');
variable prev_rng : unsigned(63 downto 0) := (others => '0');
variable prev_offs : unsigned(63 downto 0) := (others => '0');
variable this_offs : unsigned(63 downto 0) := (others => '0');
variable device : t_sdb_device;
variable bridge : t_sdb_bridge;
variable sdb_type : std_logic_vector(7 downto 0);
variable i : natural;
variable result : t_sdb_record_array(sdb_array'length-1 downto 0); -- last
begin
prev_offs(start_offset'left downto 0) := unsigned(start_offset);
--traverse the array
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
-- find the fitting extraction function by evaling the type byte.
-- could also use the component, but it's safer to use Wes' embed and extract functions.
sdb_type := sdb_array(i)(7 downto 0);
case sdb_type is
--device
when x"01" => device := f_sdb_extract_device(sdb_array(i));
this_rng := unsigned(device.sdb_component.addr_last) - unsigned(device.sdb_component.addr_first);
this_offs := f_align_addr_offset(prev_offs, this_rng, prev_rng);
result(i) := f_sdb_embed_device(device, std_logic_vector(this_offs(31 downto 0)));
--bridge
when x"02" => bridge := f_sdb_extract_bridge(sdb_array(i));
this_rng := unsigned(bridge.sdb_component.addr_last) - unsigned(bridge.sdb_component.addr_first);
this_offs := f_align_addr_offset(prev_offs, this_rng, prev_rng);
result(i) := f_sdb_embed_bridge(bridge, std_logic_vector(this_offs(31 downto 0)) );
--other
when others => result(i) := sdb_array(i);
end case;
-- doesnt hurt because this_* doesnt change if its not a device or bridge
prev_rng := this_rng;
prev_offs := this_offs;
end loop;
report "##* " & integer'image(sdb_array'length) & " Elements, last address: " & f_bits2string(std_logic_vector(this_offs+this_rng)) severity Note;
return result;
end f_sdb_automap_array;
-- find place for sdb rom on crossbar and return address. try to put it in an address gap.
function f_sdb_create_rom_addr(sdb_array : t_sdb_record_array) return t_wishbone_address is
Wesley W. Terpstra
committed
constant len : natural := sdb_array'length;
constant rom_bytes : natural := (2**f_ceil_log2(sdb_array'length + 1)) * (c_sdb_device_length / 8);
variable result : t_wishbone_address := (others => '0');
variable this_base, this_end : unsigned(63 downto 0) := (others => '0');
variable prev_base, prev_end : unsigned(63 downto 0) := (others => '0');
variable rom_base : unsigned(63 downto 0) := (others => '0');
variable sdb_type : std_logic_vector(7 downto 0);
begin
--traverse the array
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
sdb_type := sdb_array(i)(7 downto 0);
if(sdb_type = x"01" or sdb_type = x"02") then
-- get
this_base := unsigned(f_sdb_extract_base_addr(sdb_array(i)));
this_end := unsigned(f_sdb_extract_end_addr(sdb_array(i)));
if(unsigned(result) = 0) then
rom_base := f_align_addr_offset(prev_base, to_unsigned(rom_bytes-1, 64), (prev_end-prev_base));
if(rom_base + to_unsigned(rom_bytes, 64) <= this_base) then
result := std_logic_vector(rom_base(t_wishbone_address'left downto 0));
end if;
end if;
prev_base := this_base;
prev_end := this_end;
end if;
end loop;
-- if there was no gap to fit the sdb rom, place it at the end
if(unsigned(result) = 0) then
result := std_logic_vector(f_align_addr_offset(this_base, to_unsigned(rom_bytes-1, 64),
this_end-this_base)(t_wishbone_address'left downto 0));
end if;
return result;
end f_sdb_create_rom_addr;
------------------------------------------------------------------------------------------------------------------------------
-- END MAT's NEW FUNCTIONS FROM 18th Oct 2013
------------------------------------------------------------------------------------------------------------------------------
function f_xwb_bridge_manual_sdb(
Tomasz Wlostowski
committed
g_size : t_wishbone_address;
g_sdb_addr : t_wishbone_address) return t_sdb_bridge
is
variable result : t_sdb_bridge;
begin
Tomasz Wlostowski
committed
result.sdb_child := (others => '0');
result.sdb_child(c_wishbone_address_width-1 downto 0) := g_sdb_addr;
Tomasz Wlostowski
committed
result.sdb_component.addr_first := (others => '0');
result.sdb_component.addr_last := (others => '0');
result.sdb_component.addr_last(c_wishbone_address_width-1 downto 0) := g_size;
Tomasz Wlostowski
committed
result.sdb_component.product.vendor_id := x"0000000000000651"; -- GSI
result.sdb_component.product.device_id := x"eef0b198";
result.sdb_component.product.version := x"00000001";
result.sdb_component.product.date := x"20120511";
result.sdb_component.product.name := "WB4-Bridge-GSI ";
Tomasz Wlostowski
committed
return result;
end f_xwb_bridge_manual_sdb;
function f_xwb_bridge_layout_sdb(
Tomasz Wlostowski
committed
g_wraparound : boolean := true;
g_layout : t_sdb_record_array;
g_sdb_addr : t_wishbone_address) return t_sdb_bridge
alias c_layout : t_sdb_record_array(g_layout'length-1 downto 0) is g_layout;
-- How much space does the ROM need?
constant c_used_entries : natural := c_layout'length + 1;
Tomasz Wlostowski
committed
constant c_rom_entries : natural := 2**f_ceil_log2(c_used_entries); -- next power of 2
constant c_sdb_bytes : natural := c_sdb_device_length / 8;
constant c_rom_bytes : natural := c_rom_entries * c_sdb_bytes;
variable result : unsigned(63 downto 0);
variable sdb_component : t_sdb_component;
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
if not g_wraparound then
result := (others => '0');
for i in 0 to c_wishbone_address_width-1 loop
result(i) := '1';
end loop;
else
-- The ROM will be an addressed slave as well
result := (others => '0');
result(c_wishbone_address_width-1 downto 0) := unsigned(g_sdb_addr);
result := result + to_unsigned(c_rom_bytes, 64) - 1;
for i in c_layout'range loop
sdb_component := f_sdb_extract_component(c_layout(i)(447 downto 8));
if unsigned(sdb_component.addr_last) > result then
result := unsigned(sdb_component.addr_last);
end if;
end loop;
-- round result up to a power of two -1
for i in 62 downto 0 loop
result(i) := result(i) or result(i+1);
end loop;
end if;
return f_xwb_bridge_manual_sdb(std_logic_vector(result(c_wishbone_address_width-1 downto 0)), g_sdb_addr);
end f_xwb_bridge_layout_sdb;
Tomasz Wlostowski
committed
function f_xwb_dpram(g_size : natural) return t_sdb_device
variable result : t_sdb_device;
Tomasz Wlostowski
committed
result.abi_class := x"0001"; -- RAM device
result.abi_ver_major := x"01";
result.abi_ver_minor := x"00";
Tomasz Wlostowski
committed
result.wbd_width := x"7"; -- 32/16/8-bit supported
result.wbd_endian := c_sdb_endian_big;
Tomasz Wlostowski
committed
result.sdb_component.addr_first := (others => '0');
result.sdb_component.addr_last := std_logic_vector(to_unsigned(g_size*4-1, 64));
Tomasz Wlostowski
committed
result.sdb_component.product.vendor_id := x"000000000000CE42"; -- CERN
result.sdb_component.product.device_id := x"66cfeb52";
result.sdb_component.product.version := x"00000001";
result.sdb_component.product.date := x"20120305";
result.sdb_component.product.name := "WB4-BlockRAM ";
Tomasz Wlostowski
committed
return result;
end f_xwb_dpram;
Tomasz Wlostowski
committed
function f_bits2string(s : std_logic_vector) return string is
--- extend length to full hex nibble
variable result : string((s'length+7)/4 downto 1);
variable s_norm : std_logic_vector(result'length*4-1 downto 0) := (others=>'0');
variable cut : natural;
variable nibble: std_logic_vector(3 downto 0);
Wesley W. Terpstra
committed
constant len : natural := result'length;
begin
s_norm(s'length-1 downto 0) := s;
Wesley W. Terpstra
committed
for i in len-1 downto 0 loop
nibble := s_norm(i*4+3 downto i*4);
case nibble is
when "0000" => result(i+1) := '0';
when "0001" => result(i+1) := '1';
when "0010" => result(i+1) := '2';
when "0011" => result(i+1) := '3';
when "0100" => result(i+1) := '4';
when "0101" => result(i+1) := '5';
when "0110" => result(i+1) := '6';
when "0111" => result(i+1) := '7';
when "1000" => result(i+1) := '8';
when "1001" => result(i+1) := '9';
when "1010" => result(i+1) := 'a';
when "1011" => result(i+1) := 'b';
when "1100" => result(i+1) := 'c';
when "1101" => result(i+1) := 'd';
when "1110" => result(i+1) := 'e';
when "1111" => result(i+1) := 'f';
when others => result(i+1) := 'X';
end case;
end loop;
Tomasz Wlostowski
committed
-- trim leading 0s
strip : for i in result'length downto 1 loop
cut := i;
exit strip when result(i) /= '0';
end loop;
Tomasz Wlostowski
committed
return "0x" & result(cut downto 1);
end f_bits2string;
-- Converts string (hex number, without leading 0x) to std_logic_vector
function f_string2bits(s : string) return std_logic_vector is
Wesley W. Terpstra
committed
constant len : natural := s'length;
variable slv : std_logic_vector(s'length*4-1 downto 0);
variable nibble : std_logic_vector(3 downto 0);
begin
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
case s(i+1) is
when '0' => nibble := X"0";
when '1' => nibble := X"1";
when '2' => nibble := X"2";
when '3' => nibble := X"3";
when '4' => nibble := X"4";
when '5' => nibble := X"5";
when '6' => nibble := X"6";
when '7' => nibble := X"7";
when '8' => nibble := X"8";
when '9' => nibble := X"9";
when 'a' => nibble := X"A";
when 'A' => nibble := X"A";
when 'b' => nibble := X"B";
when 'B' => nibble := X"B";
when 'c' => nibble := X"C";
when 'C' => nibble := X"C";
when 'd' => nibble := X"D";
when 'D' => nibble := X"D";
when 'e' => nibble := X"E";
when 'E' => nibble := X"E";
when 'f' => nibble := X"F";
when 'F' => nibble := X"F";
when others => nibble := "XXXX";
end case;
slv(((i+1)*4)-1 downto i*4) := nibble;
end loop;
return slv;
end f_string2bits;
-- Converts string to ascii (std_logic_vector)
function f_string2svl (s : string) return std_logic_vector is
Wesley W. Terpstra
committed
constant len : natural := s'length;
variable slv : std_logic_vector((s'length * 8) - 1 downto 0);
begin
Wesley W. Terpstra
committed
for i in 0 to len-1 loop
slv(slv'high-i*8 downto (slv'high-7)-i*8) :=
std_logic_vector(to_unsigned(character'pos(s(i+1)), 8));
end loop;
return slv;
end f_string2svl;
-- Converts ascii (std_logic_vector) to string
function f_slv2string (slv : std_logic_vector) return string is
Wesley W. Terpstra
committed
constant len : natural := slv'length;
variable s : string(1 to slv'length/8);
begin
Wesley W. Terpstra
committed
for i in 0 to (len/8)-1 loop
s(i+1) := character'val(to_integer(unsigned(slv(slv'high-i*8 downto (slv'high-7)-i*8))));
end loop;
return s;
end f_slv2string;
-- pads a string of unknown length to a given length (useful for integer'image)
function f_string_fix_len ( s : string; ret_len : natural := 10; fill_char : character := '0' ) return string is
variable ret_v : string (1 to ret_len);
constant pad_len : integer := ret_len - s'length ;
variable pad_v : string (1 to abs(pad_len));
begin
if pad_len < 1 then
ret_v := s(ret_v'range);
else
pad_v := (others => fill_char);
ret_v := pad_v & s;
end if;
return ret_v;
end f_string_fix_len;
function f_hot_to_bin(x : std_logic_vector) return natural is
variable rv : natural;
begin
rv := 0;
-- if there are few ones set in _x_ then the most significant will be
-- translated to bin
for i in 0 to x'left loop
if x(i) = '1' then
rv := i+1;
end if;
end loop;
return rv;
end function;
function f_wb_spi_flash_sdb(g_bits : natural) return t_sdb_device is
variable result : t_sdb_device := (
abi_class => x"0000", -- undocumented device
abi_ver_major => x"01",
abi_ver_minor => x"02",
wbd_endian => c_sdb_endian_big,
wbd_width => x"7", -- 8/16/32-bit port granularity
sdb_component => (
addr_first => x"0000000000000000",
addr_last => x"0000000000ffffff",
product => (
vendor_id => x"0000000000000651", -- GSI
device_id => x"5cf12a1c",
version => x"00000002",
date => x"20140417",
name => "SPI-FLASH-16M-MMAP ")));
begin
result.sdb_component.addr_last := std_logic_vector(to_unsigned(2**g_bits-1, 64));
return result;
end f_wb_spi_flash_sdb;