Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
entity gc_prio_encoder is
generic (
g_width : integer
);
port (
d_i : in std_logic_vector(g_width-1 downto 0);
therm_o : out std_logic_vector(g_width-1 downto 0)
);
end gc_prio_encoder;
architecture rtl of gc_prio_encoder is
function f_count_stages(width : integer) return integer is
begin
if(width <= 2) then
return 2;
elsif(width <= 4) then
return 3;
elsif(width <= 8) then
return 4;
elsif(width <= 16) then
return 5;
elsif(width <= 32) then
return 6;
elsif(width <= 64) then
return 7;
elsif(width <= 128) then
return 8;
else
return 0;
end if;
end f_count_stages;
constant c_n_stages : integer := f_count_stages(g_width);
type t_stage_array is array(0 to c_n_stages) of std_logic_vector(g_width-1 downto 0);
signal stages : t_stage_array;
begin -- rtl
stages(0) <= d_i;
gen1 : for i in 1 to c_n_stages generate
gen2 : for j in 0 to g_width-1 generate
gen3 : if(j mod (2 ** i) >= (2 ** (i-1))) generate
stages(i)(j) <= stages(i-1)(j) or stages(i-1) (j - (j mod (2**i)) + (2**(i-1)) - 1);
end generate gen3;
gen4 : if not (j mod (2 ** i) >= (2 ** (i-1))) generate
stages(i)(j) <= stages(i-1)(j);
end generate gen4;
end generate gen2;
end generate gen1;
therm_o <= stages(c_n_stages);
end rtl;