library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; entity gc_prio_encoder is generic ( g_width : integer ); port ( d_i : in std_logic_vector(g_width-1 downto 0); therm_o : out std_logic_vector(g_width-1 downto 0) ); end gc_prio_encoder; architecture rtl of gc_prio_encoder is function f_count_stages(width : integer) return integer is begin if(width <= 2) then return 2; elsif(width <= 4) then return 3; elsif(width <= 8) then return 4; elsif(width <= 16) then return 5; elsif(width <= 32) then return 6; elsif(width <= 64) then return 7; elsif(width <= 128) then return 8; else return 0; end if; end f_count_stages; constant c_n_stages : integer := f_count_stages(g_width); type t_stage_array is array(0 to c_n_stages) of std_logic_vector(g_width-1 downto 0); signal stages : t_stage_array; begin -- rtl stages(0) <= d_i; gen1 : for i in 1 to c_n_stages generate gen2 : for j in 0 to g_width-1 generate gen3 : if(j mod (2 ** i) >= (2 ** (i-1))) generate stages(i)(j) <= stages(i-1)(j) or stages(i-1) (j - (j mod (2**i)) + (2**(i-1)) - 1); end generate gen3; gen4 : if not (j mod (2 ** i) >= (2 ** (i-1))) generate stages(i)(j) <= stages(i-1)(j); end generate gen4; end generate gen2; end generate gen1; therm_o <= stages(c_n_stages); end rtl;