Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
library ieee;
use ieee.std_logic_1164.all;
library std;
use std.textio.all;
PACKAGE mem_model is
-- 2d array to store data for each row
type row_matrix is array (NATURAL RANGE <>, NATURAL RANGE <>) of UX01;
type rowptr_type is access row_matrix;
-- record for for storing refresh and memory ptr for each row
type row_data_type is
record
last_refresh : time; -- last time row was refreshed
rowptr : rowptr_type; -- ptr to 2d matrix with data
all_xs : BOOLEAN; -- true if row is filled with Xs
end record;
-- array of refresh times and memory ptrs for the rows
type row_data is array (NATURAL RANGE <>) of row_data_type;
type row_data_ptr_type is access row_data;
type strptr is access string;
type default_ptr_type is access std_logic_vector;
type mem_type is (DRAM, SRAM, ROM); -- memory types
-- record defining memory and holding general information
type mem_id_rtype is
record
memory_type : mem_type; -- memory type
refresh_period : time; -- refresh period
last_init : time; -- last time a refresh was performed
counter : NATURAL; -- refresh counter
name : strptr; -- pointer to memory name
rows : POSITIVE; -- # of rows
columns : POSITIVE; -- # of columns
width : POSITIVE; -- # word length
length : POSITIVE; -- # of memory locations
row_data_ptr : row_data_ptr_type; -- ptr to memory ptrs.
default_val : default_ptr_type; -- ptr to default memory word value
end record;
type mem_id_type is access mem_id_rtype;
--********************************************************************************
-- Function Name : SRAM_Initialize
--
-- Purpose : To create the data structure used to store a
-- static RAM and to initialize it
--
-- Parameters : name - string used to represent the memory
-- length - the number of "words" in the memory
-- width - the length of a "word" of memory
-- default_word - value to which each word of memory
-- should be initialized
--
-- RETURNED VALUE : mem_id_type - ptr to memory record
--
-- NOTE : initially the data structure is empty with no
-- space being allocated for the memory
--
-- Use : sram_l1 := SRAM_Initialize ("lsb_of_RAM",1048576,1,"0");
--********************************************************************************
impure Function SRAM_Initialize ( Constant name : IN string;
Constant length : IN POSITIVE;
Constant width : IN POSITIVE;
Constant default_word : IN std_logic_vector
) return mem_id_type;
impure Function SRAM_Initialize_u ( Constant name : IN string;
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
Constant length : IN POSITIVE;
Constant width : IN POSITIVE;
Constant default_word : IN std_ulogic_vector
) return mem_id_type;
--********************************************************************************
-- Procedure Name : Mem_Read
--
-- Purpose : To read a "word" from memory
--
-- Parameters : mem_id - ptr to memory data structure
-- address - address to read from
-- data - contents of memory location
--
--
-- NOTE : a read refreshes row of a DRAM
--
-- Use : Mem_Read (ROM1, "100100111", data_bus);
--********************************************************************************
Procedure Mem_Read ( Variable mem_id : INOUT mem_id_type;
Constant address : IN std_ulogic_vector;
Variable data : OUT std_ulogic_vector
);
--********************************************************************************
-- Procedure Name : Mem_Write
--
-- Purpose : To write a "word" to memory
--
-- Parameters : mem_id - ptr to memory data structure
-- address - address to read from
-- data - "word" to be written to memory
--
-- NOTE : a write refreshes row of a DRAM
--
-- Use : Mem_Write (ROM1, "100100111", "10X1");
--********************************************************************************
Procedure Mem_Write ( Variable mem_id : INOUT mem_id_type;
Constant address : IN std_ulogic_vector;
Constant data : IN std_ulogic_vector
);
END mem_model;
PACKAGE BODY mem_model is
Type D1_b_ulogic_type is array(bit) of std_ulogic;
type hex_ray is array(1 to 16) of character;
type IDENTIFIER is (HEX_NUM1, COMMENT1, WIDTH1, DEFAULT1, COLON1, DOTDOT1, BLANK1, SYN_ERROR1);
type digit_to_hex_type is array(0 to 15) of character;
-- mentor doesn't like the subtype UX01 - "resolved sybyte cannot be used as a discrete range"
type UX01_1DRAY is array(std_ulogic range 'U' to '1') of bit;
-------------------------------------------------------------------------------------------
-- THE FOLLOWING CONSTANTS MAY BE CHANGED BY THE USER TO CUSTOMIZE STD_MEMPAK
-------------------------------------------------------------------------------------------
-- defines the number of bits used to represent an integer on the machine used to run the vhdl simulator
CONSTANT IntegerBitLength : INTEGER := 32;
-- defines the maximum length of strings in this package
CONSTANT MAX_STR_LEN : NATURAL := 256;
-- constants used to map X's and U's in an address to valid values
CONSTANT ADDRESS_X_MAP : BIT := '1';
CONSTANT ADDRESS_U_MAP : BIT := '1';
CONSTANT ADDRESS_MAP : UX01_1DRAY :=
(ADDRESS_U_MAP, ADDRESS_X_MAP, '0', '1');
-- constants used to map X's and U's in memory locations to a bit value
-- when a bit or a bit_vector is returned by the memory read operation
CONSTANT DATA_X_MAP : BIT := '1';
CONSTANT DATA_U_MAP : BIT := '1';
CONSTANT DATA_MAP : UX01_1DRAY :=
(DATA_U_MAP, DATA_X_MAP, '0', '1');
-- constants setting collumn size of SRAM's and ROM's so that entire
-- memory does not have to be allocated if it is not used.
CONSTANT SRAM_COL_SIZE : NATURAL := 1024;
CONSTANT ROM_COL_SIZE : NATURAL := 1024;
-- constant used to enable/disable certain warning assertions
CONSTANT MEM_WARNINGS_ON : BOOLEAN := TRUE;
-- constant used to determine how many words per line to output when doing a memory dump
CONSTANT WORDS_PER_LINE : POSITIVE := 16;
----------------------------------------------------------------------------------------------------------
-- CONSTANTS THAT SHOULD NOT BE MODIFIED
-- These are used by the package to perform various conversions, comparisions, etc.
----------------------------------------------------------------------------------------------------------
CONSTANT DIGIT_TO_HEX : digit_to_hex_type := ('0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F');
CONSTANT hex : hex_ray := ('0', '1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F');
CONSTANT bit_to_std_ulogic : D1_b_ulogic_type := ('0', '1');
CONSTANT SPACESTR : STRING(1 to 20) := " ";
CONSTANT SPACE : CHARACTER := ' ';
CONSTANT TAB : CHARACTER := HT;
function StrLen1 ( Constant l_str : IN string ) return NATURAL is
Variable alias_l_str : string(1 to l_str'length) := l_str;
Variable i : integer := 1;
begin
while ( (i <= l_str'length) and (alias_l_str(i) /= NUL) ) loop
i := i + 1;
end loop;
i := i - 1;
return i;
end;
function to_str (Constant dd : IN std_logic) return Character is
begin
case dd is
when '1' => return '1';
when '0' => return '0';
when 'U' => return 'U';
when 'X' => return 'X';
when 'L' => return 'L';
when 'H' => return 'H';
when '-' => return '-';
when 'Z' => return 'Z';
when 'W' => return 'W';
end case;
end;
function to_str (Constant dd : IN bit) return character is
begin
if dd = '0' then
return '0';
else
return '1';
end if;
end;
function i_to_str (Constant int : IN integer) return string is
Constant length : integer := 33;
Variable i, len, pos : integer;
Variable str : string (1 to length);
Variable tint : integer := int;
Variable temp : Character;
Variable negative : BOOLEAN := FALSE;
begin
for i in 1 to length loop
str(i) := ' ';
end loop;
if (tint < 0 ) then
tint := -tint;
negative := TRUE;
end if;
i := length;
while ( (i >= 1 ) and (tint /= 0)) loop
str(i) := CHARACTER'Val(48 + (tint mod 10));
tint := tint/10;
i := i - 1;
end loop;
if (NEGATIVE) then
str(i) := '-';
i := i - 1;
end if;
len := length - i;
pos := i + 1;
for i in 1 to len loop
str(i) := str(pos);
pos := pos + 1;
end loop;
if (len = 0) then
len := 1;
str(1) := '0';
end if;
return (str(1 to len));
end;
function v_to_str (Constant vect : IN bit_vector) return string is
Variable str : string( 1 to vect'length);
Variable alias_vect : bit_vector(1 to vect'length) := vect;
Variable i : integer;
begin
for i in 1 to vect'length loop
case alias_vect(i) is
when '1' => str(i) := '1';
when '0' => str(i) := '0';
end case;
end loop;
return(str);
end;
function v_to_str (Constant vect : IN std_logic_vector) return string is
Variable str : string( 1 to vect'length);
Variable alias_vect : std_logic_vector(1 to vect'length) := vect;
Variable i : integer;
begin
for i in 1 to vect'length loop
case alias_vect(i) is
when '1' => str(i) := '1';
when '0' => str(i) := '0';
when 'U' => str(i) := 'U';
when 'X' => str(i) := 'X';
when 'L' => str(i) := 'L';
when 'H' => str(i) := 'H';
when '-' => str(i) := '-';
when 'Z' => str(i) := 'Z';
when 'W' => str(i) := 'W';
end case;
end loop;
return(str);
end;
-- used to return a printable string for the memory name
function pstr ( Constant name : in string ) return string is
variable j : integer;
begin
j := 1;
while ( (j < name'length) and (name(j) /= nul) ) loop
j := j + 1;
end loop;
if (name(j) = nul) then
j := j - 1;
end if;
return name(1 to j);
end;
---------------------------------------------------------------------------
-- Function Name : minimum
--
-- PURPOSE : to determine the smaller of two integers
--
-- Parameters : int1 - first integer
-- : int2 - second integer
--
-- Returned Value : integer - the smaller of int1 and int2
--
---------------------------------------------------------------------------
Function minimum ( Constant int1 : IN integer;
Constant int2 : IN integer
) return integer is
begin
if (int1 < int2) then
return int1;
else
return int2;
end if;
end;
--+-----------------------------------------------------------------------------
--| Procedure Name : StrCpy1
--| 1.2.3
--| Overloading : None
--|
--| Purpose : Copy r_string to l_string.
--|
--| Parameters :
--| l_str - output, STRING, target string
--| r_str - input, STRING, source string
--|
--| Result :
--|
--| NOTE : If the length of target string is greater than
--| the source string, then target string is padded
--| with space characters on the right side and when
--| the length of target string is shorter than the
--| length of source string only left most characters
--| of the source string will be be copied to the target.
--|
--|
--| USE :
--| Variable s1: string(1 TO 8);
--|
--| StrCpy1(s1, "123456789A");
--| s1 will hold "12345678"
--|-----------------------------------------------------------------------------
PROCEDURE StrCpy1 ( VARIABLE l_str : OUT STRING;
CONSTANT r_str : IN STRING) IS
VARIABLE l_len : integer := l_str'LENGTH;
VARIABLE r_len : integer := r_str'LENGTH;
VARIABLE r : STRING ( 1 to r_len) := r_str;
VARIABLE result : STRING (1 to l_len);
VARIABLE indx : integer := 1;
BEGIN
assert (l_len > 0)
report "StrCpy: target string is of zero length "
severity ERROR;
while ( (indx <= r_len) and (indx <= l_len) and (r(indx) /= NUL) ) loop
result(indx) := r(indx);
indx := indx + 1;
end loop;
if (indx <= l_len) then
result(indx) := NUL;
end if;
l_str := result;
return;
END StrCpy1;
--+---------------------------------------------------------------------------
--| Procedure Name : fgetline1
--|
--| Overloading : None
--|
--| Purpose : To read a line from the input TEXT file and
--| save into a string.
--|
--| Parameters :
--| l_str -- output, STRING,
--| stream -- input, TEXT, input file
--|
--| result : string.
--|
--| Note: : The TEXT is defined in the package TEXTIO to be
--| a file of string.
--| USE: :
--| VARIABLE line_buf : string(1 TO 256);
--| FILE in_file : TEXT IS IN "file_text_in.dat";
--|
--| fgetline1(line_buf, in_file);
--|
--| Will read a line from the file
--| file_text_in.dat and place into line_buf.
--|
--|-----------------------------------------------------------------------------
PROCEDURE fgetline1 ( VARIABLE l_str : OUT STRING;
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
VARIABLE line_ptr : INOUT LINE
) IS
VARIABLE str_copy : STRING(1 TO MAX_STR_LEN + 1);
VARIABLE ch : character;
VARIABLE indx : NATURAL := 0;
BEGIN
If ( (line_ptr /= NULL) and (line_ptr'LENGTH > 0) ) then
NULL;
elsif ( not ENDFILE(stream) ) then
READLINE(stream, line_ptr);
else
assert NOT MEM_WARNINGS_ON
report " fgetline1 --- end of file text, no text read "
severity WARNING;
l_str(l_str'left) := NUL;
return;
end if;
while ( (line_ptr /= NULL) and (line_ptr'length /= 0) ) loop
READ(line_ptr,ch);
indx := indx + 1;
str_copy(indx) := ch;
end loop;
str_copy(indx + 1) := NUL;
strcpy1(l_str, str_copy);
return;
END;
--+-----------------------------------------------------------------------------
--| Function Name : Is_White1
--| hidden.
--| Overloading : None
--|
--| Purpose : Test whether a character is a blank, a tab or
--| a newline character.
--|
--| Parameters :
--| c - input Character.
--|
--| Result :Booelan -- True if the argument c is a blank or a tab(HT),
--| or a line feed (LF), or carriage return (CR). false otherwise.
--|
--|
--| See Also : Is_Space
--|-----------------------------------------------------------------------------
FUNCTION Is_White1 ( CONSTANT c : IN CHARACTER
) RETURN BOOLEAN IS
VARIABLE result : BOOLEAN;
BEGIN
IF ( (c = ' ') OR (c = HT) OR (c = CR) OR (c=LF) ) THEN
result := TRUE;
ELSE
result := FALSE;
END IF;
RETURN result;
END;
--+-----------------------------------------------------------------------------
--| Function Name : Find_NonBlank1
--| hidden
--| Overloading : None
--|
--| Purpose : Find first non_blank character in a string.
--|
--| Parameters :
--| str_in - input ,
--|
--| Result : Natural, index of non_blank character. If string
--| has all the white character then str_in'LENGTH is
--| returned;
--|
--| NOTE :
--|
--| Use :
--| VARIABLE s_flag : String(1 TO 10) := " TRUE";
--| VARIABLE idx: Natural
--|
--| idx := Find_NonBlank1 (s_flag);
--|
--|-----------------------------------------------------------------------------
FUNCTION Find_NonBlank1 ( CONSTANT str_in : IN STRING
) RETURN NATURAL IS
VARIABLE str_copy : STRING (1 TO str_in'LENGTH) := str_in;
VARIABLE index : Natural := 1;
VARIABLE ch : character;
BEGIN
loop
EXIT WHEN (index > str_in'LENGTH);
if Is_White1(str_copy(index)) then
index := index + 1;
else
EXIT;
end if;
end loop;
return index;
--
-- old code
--
-- ch := str_copy(index);
-- while ( ( index < str_in'LENGTH) AND (Is_White1(ch) ) ) LOOP
-- index := index + 1;
-- ch := str_copy(index);
-- end LOOP;
-- return index;
END;
--+-----------------------------------------------------------------------------
--| Function Name : To_Upper1
--| 1.
--| Overloading : None
--|
--| Purpose :Convert a string to upper case.
--|
--| Parameters :
--| val - input, string to be converted
--|
--| Result : string .
--|
--|
--| See Also : To_Lower, Is_Upper, Is_Lower
--|-----------------------------------------------------------------------------
FUNCTION To_Upper1 ( CONSTANT val : IN String
) RETURN STRING IS
VARIABLE result : string (1 TO val'LENGTH) := val;
VARIABLE ch : character;
BEGIN
FOR i IN 1 TO val'LENGTH LOOP
ch := result(i);
EXIT WHEN ((ch = NUL) OR (ch = nul));
IF ( ch >= 'a' and ch <= 'z') THEN
result(i) := CHARACTER'VAL( CHARACTER'POS(ch)
- CHARACTER'POS('a')
+ CHARACTER'POS('A') );
END IF;
END LOOP;
RETURN result;
END To_Upper1;
--+-----------------------------------------------------------------------------
--| Function Name : From_HexString1
--|
--| Overloading : None
--|
--| Purpose : Convert from a Hex String to a bit_vector.
--|
--| Parameters :
--| str - input , Hex string to be converted,
--|
--| Result : bit_vector
--|
--| NOTE :
--|
--| Use :
--| VARIABLE b_vect : bit_vector( 15 DOWNTO 4) ;
--|
--| b_vect := From_HexString1 (" 3DD 1010");
--| This statement will set b_vect equal to "001111011101".
--|
--|-----------------------------------------------------------------------------
FUNCTION From_HexString1 ( CONSTANT str : IN STRING
) RETURN bit_vector IS
CONSTANT len : Integer := 4 * str'LENGTH;
CONSTANT hex_dig_len : Integer := 4;
VARIABLE str_copy : STRING (1 TO str'LENGTH) := To_Upper1(str);
VARIABLE index : Natural;
VARIABLE ch : character;
VARIABLE i, idx : Integer;
VARIABLE invalid : boolean := false;
VARIABLE r : bit_vector(1 TO len) ;
VARIABLE result : bit_vector(len - 1 DOWNTO 0) ;
CONSTANT BIT_ZERO : bit_vector(1 to 4) := "0000";
CONSTANT BIT_ONE : bit_vector(1 to 4) := "0001";
CONSTANT BIT_TWO : bit_vector(1 to 4) := "0010";
CONSTANT BIT_THREE : bit_vector(1 to 4) := "0011";
CONSTANT BIT_FOUR : bit_vector(1 to 4) := "0100";
CONSTANT BIT_FIVE : bit_vector(1 to 4) := "0101";
CONSTANT BIT_SIX : bit_vector(1 to 4) := "0110";
CONSTANT BIT_SEVEN : bit_vector(1 to 4) := "0111";
CONSTANT BIT_EIGHT : bit_vector(1 to 4) := "1000";
CONSTANT BIT_NINE : bit_vector(1 to 4) := "1001";
CONSTANT BIT_TEN : bit_vector(1 to 4) := "1010";
CONSTANT BIT_ELEVEN : bit_vector(1 to 4) := "1011";
CONSTANT BIT_TWELVE : bit_vector(1 to 4) := "1100";
CONSTANT BIT_THIRTEEN: bit_vector(1 to 4) := "1101";
CONSTANT BIT_FOURTEEN: bit_vector(1 to 4) := "1110";
CONSTANT BIT_FIFTEEN : bit_vector(1 to 4) := "1111";
BEGIN
-- Check for null input
IF (str'LENGTH = 0) THEN
assert false
report " From_HexString1 --- input string has zero length ";
RETURN "";
ELSIF (str(str'LEFT) = NUL) THEN
assert false
report " From_HexString1 --- input string has nul character"
& " at the LEFT position "
severity ERROR;
RETURN ""; -- null bit_vector
END IF;
-- find the position of the first non_white character
index := Find_NonBlank1(str_copy);
IF (index > str'length) THEN
assert false
report " From_HexString1 --- input string is empty ";
RETURN "";
ELSIF (str_copy(index)=NUL) THEN
assert false report " From_HexString1 -- first non_white character is a NUL ";
RETURN "";
END IF;
i := 0;
FOR idx IN index TO str'length LOOP
ch := str_copy(idx);
EXIT WHEN ((Is_White1(ch)) OR (ch = NUL));
CASE ch IS
WHEN '0' => r(i+1 TO i+ hex_dig_len) := BIT_ZERO;
WHEN '1' => r(i+1 TO i+ hex_dig_len) := BIT_ONE;
WHEN '2' => r(i+1 TO i+ hex_dig_len) := BIT_TWO;
WHEN '3' => r(i+1 TO i+ hex_dig_len) := BIT_THREE;
WHEN '4' => r(i+1 TO i+ hex_dig_len) := BIT_FOUR;
WHEN '5' => r(i+1 TO i+ hex_dig_len) := BIT_FIVE;
WHEN '6' => r(i+1 TO i+ hex_dig_len) := BIT_SIX;
WHEN '7' => r(i+1 TO i+ hex_dig_len) := BIT_SEVEN;
WHEN '8' => r(i+1 TO i+ hex_dig_len) := BIT_EIGHT;
WHEN '9' => r(i+1 TO i+ hex_dig_len) := BIT_NINE;
WHEN 'A' | 'a' => r(i+1 TO i+ hex_dig_len) := BIT_TEN;
WHEN 'B' | 'b' => r(i+1 TO i+ hex_dig_len) := BIT_ELEVEN;
WHEN 'C' | 'c' => r(i+1 TO i+ hex_dig_len) := BIT_TWELVE;
WHEN 'D' | 'd' => r(i+1 TO i+ hex_dig_len) := BIT_THIRTEEN;
WHEN 'E' | 'e' => r(i+1 TO i+ hex_dig_len) := BIT_FOURTEEN;
WHEN 'F' | 'f' => r(i+1 TO i+ hex_dig_len) := BIT_FIFTEEN;
WHEN NUL => exit;
WHEN OTHERS => -- a non binary value was passed
invalid := TRUE;
ASSERT FALSE
REPORT "From_HexString1(str(" & i_to_str(idx) & ") => "
& ch & ") is an invalid character"
SEVERITY ERROR;
END CASE;
i := i + hex_dig_len;
END LOOP;
-- check for invalid character in the string
if ( invalid ) THEN
r(1 TO i) := (OTHERS => '0');
end if;
result(i - 1 DOWNTO 0) := r(1 TO i);
return result(i - 1 DOWNTO 0); -- return slice of result
END;
-------------------------------------------------------------------------------
-- Function Name : RegFill1
-- 1.7.4
-- Overloading : None
--
-- Purpose : Fill an std_logic_vector with a given value
--
-- Parameters :
-- SrcReg - input std_logic_vector, the logic vector to be read.
-- DstLength - input NATURAL, length of the return logic vector.
-- FillVal - input std_ulogic, default is '0'
--
-- Result : std_logic_vector of length DstLength
--
-- NOTE : The length of the return logic vector is specified by the
-- parameter 'DstLength'. The input logic vector will
-- be filled with the FillVal
--
-- Use :
-- VARIABLE vect : std_logic_vector ( 15 DOWNTO 0 );
-- vect := RegFill1 ( "00000101", 16, 'U');
--
-- See Also : SignExtend
-------------------------------------------------------------------------------
FUNCTION RegFill1 ( CONSTANT SrcReg : IN std_logic_vector;
CONSTANT DstLength : IN NATURAL;
CONSTANT FillVal : IN std_ulogic := '0'
) RETURN std_logic_vector IS
CONSTANT reslen : INTEGER := DstLength;
VARIABLE result : std_logic_vector (reslen - 1 DOWNTO 0) := (OTHERS => '0');
VARIABLE reg : std_logic_vector (SrcReg'LENGTH - 1 DOWNTO 0) := SrcReg;
BEGIN
-- null range check
IF (SrcReg'LENGTH = 0) THEN
IF (DstLength = 0) THEN
ASSERT FALSE
REPORT " RegFill1 --- input has null range and" &
" Destination also has null range. "
SEVERITY ERROR;
RETURN result ;
ELSE
ASSERT FALSE
REPORT " RegFill1 --- input has null range"
SEVERITY ERROR;
result := (OTHERS => FillVal);
RETURN result ;
END IF;
ELSIF (DstLength = 0) THEN
ASSERT false
REPORT "RegFill1 --- Destination has null range "
SEVERITY ERROR;
RETURN result;
ELSIF (DstLength <= SrcReg'LENGTH) THEN
-- no need to sign extend
ASSERT (DstLength = SrcReg'LENGTH)
REPORT " RegFill1 --- Destination length is less than source"
SEVERITY ERROR;
RETURN reg; -- return the input data without any change
ELSE
result(SrcReg'LENGTH - 1 DOWNTO 0) := reg;
-- Fill the MSB's of result with the given fill value.
For i IN reslen - 1 DOWNTO SrcReg'LENGTH Loop
result(i) := FillVal;
END LOOP;
END IF;
-- convert to X01
result := To_X01(result);
-- That's all
RETURN result;
END;
--+-----------------------------------------------------------------------------
--| Function Name : bv_To_StdLogicVector
--|
--| Overloading :
--|
--| Purpose : Translate a BIt_VECTOR into an std_logic_vector.
--|
--| Parameters : SrcVect - input bit_vector , the value to be
--| translated.
--| width - input NATURAL, length of the return vector.
--| Default is IntegerBitLength (Machine integer length).
--|
--| Result : Std_logic_vector.
--|
--| NOTE : ****** this function not visible to the user **********
--|-----------------------------------------------------------------------------
-- **** function modified so as not to produce an assertion for a zero length vector
FUNCTION bv_To_StdLogicVector ( CONSTANT SrcVect : IN Bit_Vector;
CONSTANT width : IN Natural := 0
) RETURN Std_Logic_Vector IS
VARIABLE len : INTEGER := SrcVect'LENGTH;
VARIABLE result : Std_Logic_Vector(width - 1 DOWNTO 0) := (OTHERS=>'0');
VARIABLE loc_res : Std_Logic_Vector(len - 1 DOWNTO 0) := (OTHERS =>'0');
VARIABLE vect_copy : Bit_Vector(len - 1 DOWNTO 0) := SrcVect;
BEGIN
IF (SrcVect'LENGTH = 0) THEN
return loc_res;
ELSE
FOR i IN 0 TO len - 1 LOOP
CASE vect_copy(i) IS
WHEN '0' =>
loc_res(i) := '0';
WHEN '1' =>
loc_res(i) := '1';
END CASE;
END LOOP;
IF (width = 0) THEN
return loc_res;
ELSIF (width <= SrcVect'LENGTH) THEN
result := loc_res(width - 1 DOWNTO 0);
ELSIF (width > SrcVect'LENGTH) THEN
result := RegFill1(loc_res, width, '0');
END IF;
RETURN result;
END IF;
END;
FUNCTION bv_to_hexstr ( CONSTANT val : IN BIT_VECTOR
) RETURN STRING IS
CONSTANT hex_len : integer := (val'LENGTH + 3) / 4;
VARIABLE bin_str : STRING(1 to val'LENGTH);
VARIABLE hex_str : STRING(1 to hex_len);
VARIABLE hex_char : STRING(1 to 4);
VARIABLE bit_index : integer;
VARIABLE extended_bin_str : STRING(1 to hex_len * 4) := (others => '0');
BEGIN
bin_str := v_to_str (val);
if ( (val'LENGTH mod 4) /= 0 ) then
extended_bin_str ( 5 - (val'LENGTH mod 4) to hex_len * 4 ) := bin_str;
else
extended_bin_str := bin_str;
end if;
FOR i IN 1 TO hex_len LOOP
bit_index := ((i - 1) * 4) + 1;
hex_char := extended_bin_str(bit_index To bit_index + 3);
CASE hex_char IS
WHEN "0000" => hex_str(i) := '0';
WHEN "0001" => hex_str(i) := '1';
WHEN "0010" => hex_str(i) := '2';
WHEN "0011" => hex_str(i) := '3';
WHEN "0100" => hex_str(i) := '4';
WHEN "0101" => hex_str(i) := '5';
WHEN "0110" => hex_str(i) := '6';
WHEN "0111" => hex_str(i) := '7';
WHEN "1000" => hex_str(i) := '8';
WHEN "1001" => hex_str(i) := '9';
WHEN "1010" => hex_str(i) := 'A';
WHEN "1011" => hex_str(i) := 'B';
WHEN "1100" => hex_str(i) := 'C';
WHEN "1101" => hex_str(i) := 'D';
WHEN "1110" => hex_str(i) := 'E';
WHEN "1111" => hex_str(i) := 'F';
WHEN OTHERS => null;
END CASE;
END LOOP;
return (hex_str);
END;
---------------------------------------------------------------------------
-- Function Name : vector_size
--
-- PURPOSE : to determine the maximum number of bits needed to
-- represent an integer
--
-- Parameters : int - integer whose bit width is determined
--
-- Returned Value : NATURAL - # of bits needed
--
---------------------------------------------------------------------------
function vector_size ( Constant int : IN integer ) return natural is
variable i : integer := int;
variable size : integer := 0;
begin
while i > 0 loop
i := i / 2;
size := size + 1;
end loop;
return size;
end;
---------------------------------------------------------------------------
-- Function Name : address_trans
--
-- Purpose : to translate an address in vector form to a
-- NATURAL
--
-- Parameters : addr - address to be translated
--
-- Returned Value : NATURAL - address as a natural number
--
-- NOTE : ***** this procedure is NOT user visible *******
--
-- Use : address_trans(addr)
---------------------------------------------------------------------------
Function address_trans ( Constant mem_length : IN POSITIVE;
Constant addr : IN std_logic_vector
) return NATURAL is
Variable nad, power : NATURAL;
Variable uonce : BOOLEAN := TRUE;
Variable xonce : BOOLEAN := TRUE;
Variable vect_size : integer := vector_size(mem_length - 1);
Variable talias_addr : std_logic_vector(addr'length - 1 downto 0) := To_UX01(addr);
Variable alias_addr : std_logic_vector(vect_size - 1 downto 0) := (others => To_StdULogic(ADDRESS_X_MAP));
Variable temp_vect : bit_vector(vect_size - 1 downto 0);
begin
nad := 0;
power := 1;
alias_addr( minimum(vect_size, addr'length) - 1 downto 0) :=
talias_addr( minimum(vect_size,addr'length) - 1 downto 0 );
assert ( (vect_size >= addr'length) or NOT MEM_WARNINGS_ON )
report "Bit width of address vector greater than that needed to access the entire memory."
& LF & SPACESTR & "passed address bit width: " & i_to_str(addr'length)
& LF & SPACESTR & "required address bit width: " & i_to_str(vect_size)
severity WARNING;
assert ( (vect_size <= addr'length) or NOT MEM_WARNINGS_ON )
report "Bit width of address vector less than that needed to access the entire memory."
& LF & SPACESTR & "Resulting X's being mapped to: " & to_str(ADDRESS_X_MAP)
& LF & SPACESTR & "passed address bit width: " & i_to_str(addr'length)
& LF & SPACESTR & "required address bit width: " & i_to_str(vect_size)
severity WARNING;
for i IN 0 to vect_size - 1 loop
if ((alias_addr(i) = 'U') and MEM_WARNINGS_ON and uonce) then
uonce := FALSE;
assert FALSE
report "Address contains a U - it is being mapped to: " & to_str(ADDRESS_U_MAP)
severity WARNING;
end if;
if ((alias_addr(i) = 'X') and MEM_WARNINGS_ON and xonce) then
xonce := FALSE;
assert false
report "Address contains an X - it is being mapped to: " & to_str(ADDRESS_X_MAP)
severity WARNING;
end if;
temp_vect(i) := ADDRESS_MAP(alias_addr(i));
nad := nad + (power * bit'pos(temp_vect(i)));
power := power * 2;
end loop;
return nad;
end;
Function address_trans_u ( Constant mem_length : IN POSITIVE;
Constant addr : IN std_ulogic_vector
) return NATURAL is
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
Variable nad, power : NATURAL;
Variable uonce : BOOLEAN := TRUE;
Variable xonce : BOOLEAN := TRUE;
Variable talias_addr : std_ulogic_vector(addr'length - 1 downto 0) := To_UX01(addr);
Variable vect_size : integer := vector_size(mem_length - 1);
Variable alias_addr : std_ulogic_vector(vect_size - 1 downto 0) := (others => To_StdULogic(ADDRESS_X_MAP));
Variable temp_vect : bit_vector(vect_size - 1 downto 0);
begin
nad := 0;
power := 1;
alias_addr( minimum(vect_size, addr'length) - 1 downto 0) :=
talias_addr( minimum(vect_size,addr'length) - 1 downto 0);
assert ( (vect_size >= addr'length) or NOT MEM_WARNINGS_ON )
report "Bit width of address vector greater than that needed to access the entire memory."
& LF & SPACESTR & "passed address bit width: " & i_to_str(addr'length)
& LF & SPACESTR & "required address bit width: " & i_to_str(vect_size)
severity WARNING;
assert ( (vect_size <= addr'length) or NOT MEM_WARNINGS_ON )
report "Bit width of address vector less than that needed to access the entire memory."
& LF & SPACESTR & "Resulting X's being mapped to: " & to_str(ADDRESS_X_MAP)
& LF & SPACESTR & "passed address bit width: " & i_to_str(addr'length)
& LF & SPACESTR & "required address bit width: " & i_to_str(vect_size)
severity WARNING;
for i IN 0 to vect_size - 1 loop
if ((alias_addr(i) = 'U') and MEM_WARNINGS_ON and uonce) then
uonce := FALSE;
assert false
report "Address contains a U - it is being mapped to: " & to_str(ADDRESS_U_MAP)
severity WARNING;
end if;
if ((alias_addr(i) = 'X') and MEM_WARNINGS_ON and xonce) then
xonce := FALSE;
assert false
report "Address contains an X - it is being mapped to: " & to_str(ADDRESS_X_MAP)
severity WARNING;
end if;
temp_vect(i) := ADDRESS_MAP(alias_addr(i));
nad := nad + (power * bit'pos(temp_vect(i)));
power := power * 2;
end loop;