Newer
Older
-------------------------------------------------------------------------------
-- Title : Parametrizable dual-port synchronous RAM (Altera version)
-- Project : Generics RAMs and FIFOs collection
-------------------------------------------------------------------------------
-- File : generic_dpram.vhd
-- Author : Tomasz Wlostowski
-- Company : CERN BE-CO-HT
-- Created : 2011-01-25
Tomasz Wlostowski
committed
-- Last update: 2011-10-05
-- Platform :
-- Standard : VHDL'93
-------------------------------------------------------------------------------
-- Description: True dual-port synchronous RAM for Altera FPGAs with:
-- - configurable address and data bus width
-- - byte-addressing mode (data bus width restricted to multiple of 8 bits)
-- Todo:
-- - loading initial contents from file
-------------------------------------------------------------------------------
-- Copyright (c) 2011 CERN
-------------------------------------------------------------------------------
-- Revisions :
-- Date Version Author Description
-- 2011-01-25 1.0 twlostow Created
-------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
library work;
use work.genram_pkg.all;
use work.memory_loader_pkg.all;
entity generic_dpram is
generic (
-- standard parameters
g_data_width : natural;
g_size : natural;
g_with_byte_enable : boolean := false;
g_addr_conflict_resolution : string := "read_first";
g_init_file : string := "";
g_dual_clock : boolean := true;
g_fail_if_file_not_found : boolean := true
);
port (
rst_n_i : in std_logic := '1'; -- synchronous reset, active LO
-- Port A
clka_i : in std_logic;
Tomasz Wlostowski
committed
bwea_i : in std_logic_vector((g_data_width+7)/8-1 downto 0);
wea_i : in std_logic;
aa_i : in std_logic_vector(f_log2_size(g_size)-1 downto 0);
da_i : in std_logic_vector(g_data_width-1 downto 0);
qa_o : out std_logic_vector(g_data_width-1 downto 0);
-- Port B
clkb_i : in std_logic;
Tomasz Wlostowski
committed
bweb_i : in std_logic_vector((g_data_width+7)/8-1 downto 0);
web_i : in std_logic;
ab_i : in std_logic_vector(f_log2_size(g_size)-1 downto 0);
db_i : in std_logic_vector(g_data_width-1 downto 0);
qb_o : out std_logic_vector(g_data_width-1 downto 0)
);
end generic_dpram;
architecture syn of generic_dpram is
constant c_num_bytes : integer := g_data_width/8;
type t_ram_type is array(0 to g_size-1) of std_logic_vector(g_data_width-1 downto 0);
type t_ram_word_bs is array (0 to 7) of std_logic_vector(7 downto 0);
type t_ram_type_bs is array (0 to g_size - 1) of t_ram_word_bs;
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
function f_memarray_to_ramtype(arr : t_meminit_array) return t_ram_type is
variable tmp : t_ram_type;
variable n, pos : integer;
begin
pos := 0;
while(pos < g_size)loop
n := 0;
-- avoid ISE loop iteration limit
while (pos < g_size and n < 4096) loop
for i in 0 to g_data_width-1 loop
tmp(pos)(i) := arr(pos, i);
end loop; -- i
n := n+1;
pos := pos + 1;
end loop;
pos := pos + 1;
end loop;
return tmp;
end f_memarray_to_ramtype;
function f_memarray_to_ramtype_bs(arr : t_meminit_array) return t_ram_type_bs is
variable tmp : t_ram_type_bs;
variable n, pos : integer;
begin
pos := 0;
while(pos < g_size)loop
n := 0;
-- avoid ISE loop iteration limit
while (pos < g_size and n < 4096) loop
for i in 0 to g_data_width-1 loop
tmp(pos)(i/8)(i mod 8) := arr(pos, i);
end loop; -- i
n := n+1;
pos := pos + 1;
end loop;
pos := pos + 1;
end loop;
return tmp;
end f_memarray_to_ramtype_bs;
shared variable ram : t_ram_type := f_memarray_to_ramtype(
f_load_mem_from_file(g_init_file, g_size, g_data_width, g_fail_if_file_not_found));
shared variable ram_bs : t_ram_type_bs:=f_memarray_to_ramtype_bs(
f_load_mem_from_file(g_init_file, g_size, g_data_width, g_fail_if_file_not_found));
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
signal q_local_a : t_ram_word_bs;
signal q_local_b : t_ram_word_bs;
signal bwe_int_a : std_logic_vector(7 downto 0);
signal bwe_int_b : std_logic_vector(7 downto 0);
signal clka_int : std_logic;
signal clkb_int : std_logic;
begin
assert (g_addr_conflict_resolution = "read_first")
report "generic_dpram: Altera template supports only read-first mode." severity failure;
assert (((g_data_width / 8) * 8) = g_data_width) or (g_with_byte_enable = false)
report "generic_dpram: in byte-enabled mode the data width must be a multiple of 8" severity failure;
assert(g_data_width <= 64 or g_with_byte_enable = false)
report "generic_dpram: byte-selectable memories can be have 64-bit data width due to synthesis tool limitation" severity failure;
--gen_single_clock : if(g_dual_clock = false) generate
-- clka_int <= clka_i after 1ns;
-- clkb_int <= clka_i after 1ns;
--end generate gen_single_clock;
--gen_dual_clock : if(g_dual_clock = true) generate
-- clka_int <= clka_i after 1ns;
-- clkb_int <= clkb_i after 1ns;
--end generate gen_dual_clock;
gen_with_byte_enable : if(g_with_byte_enable = true) generate
bwe_int_a <= std_logic_vector(to_unsigned(0, 8-bwea_i'length)) & bwea_i;
bwe_int_b <= std_logic_vector(to_unsigned(0, 8-bweb_i'length)) & bweb_i;
unpack : for i in 0 to c_num_bytes - 1 generate
qa_o(8*(i+1) - 1 downto 8*i) <= q_local_a(i);
qb_o(8*(i+1) - 1 downto 8*i) <= q_local_b(i);
end generate unpack;
process(clka_i)
begin
if(rising_edge(clka_i)) then
if(wea_i = '1') then
-- I know the code below is stupid, but it's the only way to make Quartus
-- recongnize it as a memory block
if(bwe_int_a(0) = '1' and g_data_width >= 8) then
ram_bs(to_integer(unsigned(aa_i)))(0) := da_i(7 downto 0);
end if;
if(bwe_int_a(1) = '1' and g_data_width >= 16) then
ram_bs(to_integer(unsigned(aa_i)))(1) := da_i(15 downto 8);
end if;
if(bwe_int_a(2) = '1' and g_data_width >= 24) then
ram_bs(to_integer(unsigned(aa_i)))(2) := da_i(23 downto 16);
end if;
if(bwe_int_a(3) = '1' and g_data_width >= 32) then
ram_bs(to_integer(unsigned(aa_i)))(3) := da_i(31 downto 24);
end if;
if(bwe_int_a(4) = '1' and g_data_width >= 40) then
ram_bs(to_integer(unsigned(aa_i)))(4) := da_i(39 downto 32);
end if;
if(bwe_int_a(5) = '1' and g_data_width >= 48) then
ram_bs(to_integer(unsigned(aa_i)))(5) := da_i(47 downto 40);
end if;
if(bwe_int_a(6) = '1' and g_data_width >= 56) then
ram_bs(to_integer(unsigned(aa_i)))(6) := da_i(55 downto 48);
end if;
if(bwe_int_a(7) = '1' and g_data_width = 64) then
ram_bs(to_integer(unsigned(aa_i)))(7) := da_i(64 downto 57);
end if;
end if;
q_local_a <= ram_bs(to_integer(unsigned(aa_i)));
end if;
end process;
process(clkb_i)
begin
if(rising_edge(clkb_i)) then
if(web_i = '1') then
-- I know the code below is stupid, but it's the only way to make Quartus
-- recongnize it as a memory block
if(bwe_int_b(0) = '1' and g_data_width >= 8) then
ram_bs(to_integer(unsigned(ab_i)))(0) := db_i(7 downto 0);
end if;
if(bwe_int_b(1) = '1' and g_data_width >= 16) then
ram_bs(to_integer(unsigned(ab_i)))(1) := db_i(15 downto 8);
end if;
if(bwe_int_b(2) = '1' and g_data_width >= 24) then
ram_bs(to_integer(unsigned(ab_i)))(2) := db_i(23 downto 16);
end if;
if(bwe_int_b(3) = '1' and g_data_width >= 32) then
ram_bs(to_integer(unsigned(ab_i)))(3) := db_i(31 downto 24);
end if;
if(bwe_int_b(4) = '1' and g_data_width >= 40) then
ram_bs(to_integer(unsigned(ab_i)))(4) := db_i(39 downto 32);
end if;
if(bwe_int_b(5) = '1' and g_data_width >= 48) then
ram_bs(to_integer(unsigned(ab_i)))(5) := db_i(47 downto 40);
end if;
if(bwe_int_b(6) = '1' and g_data_width >= 56) then
ram_bs(to_integer(unsigned(ab_i)))(6) := db_i(55 downto 48);
end if;
if(bwe_int_b(7) = '1' and g_data_width = 64) then
ram_bs(to_integer(unsigned(ab_i)))(7) := db_i(64 downto 57);
end if;
end if;
q_local_b <= ram_bs(to_integer(unsigned(ab_i)));
end if;
end process;
end generate gen_with_byte_enable;
gen_without_byte_enable_readfirst : if(g_with_byte_enable = false) generate
process(clka_i)
begin
if rising_edge(clka_i) then
if(wea_i = '1') then
ram(to_integer(unsigned(aa_i))) := da_i;
end if;
qa_o <= ram(to_integer(unsigned(aa_i)));
end if;
end process;
process(clkb_i)
begin
if rising_edge(clkb_i) then
if(web_i = '1') then
ram(to_integer(unsigned(ab_i))) := db_i;
end if;
qb_o <= ram(to_integer(unsigned(ab_i)));
end if;
end process;
end generate gen_without_byte_enable_readfirst;
end syn;