Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Sign in
W
White Rabbit low jitter
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 0
    • Issues 0
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • Wiki
    • Wiki
  • image/svg+xml
    Discourse
    • Discourse
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Issue Boards
  • Projects
  • White Rabbit low jitter
  • Wiki
  • Documents

Documents

Last edited by Projects Feb 12, 2019
Page history

Technical Documentation

White Rabbit Switch performance in Grandmaster mode

The current release of the White Rabbit Switch (WRS) in Grandmaster (GM) mode has suboptimal performance on both jitter (9ps RMS 1-100kHz) and Allan Deviation (1.4E-11 τ=1s), as presented in the last WR Workshop. The following report will briefly introduce the WRS clocking scheme, the origin of the current performance in GM mode and the improvements with some hardware modifications (done on a WRS PCB V3.4 board).

The first hardware modification allows the direct distribution of the external reference clock as Layer 1 (L1) clock without using the “SoftPLL “ (i.e. a digital implementation of the PLL used to align the WR clock - local PTP clock - to the external reference clock when operating in GM mode, or to the L1 Rx clock when operating in Boundary mode). This hardware modification achieved a measured Allan Deviation (ADEV) of 4-5E-13 τ=1s and an RMS jitter of 5.6ps.

The second hardware modification (orthogonal to the first one) keeps the SoftPLL fully working, using an external board to perform a clock synthesis currently done inside the FPGA, reaching an ADEV of 2E-12 τ=1s and an RMS jitter of 2.3ps. Since the clock alignment mechanism is independent from the mode in use (GM or Boundary), any performance limitation found in GM mode will be there also in Boundary mode.

DAC additive phase noise

This document explain the additive phase noise due to quantization noise in a theoretically way. Moreover, it provides phase noise values using the default mounted DAC (AD5662, 16 bits), taking into account also the voltage noise due to the DAC output stage. The result of the calculation is that AD5662 is still fine for cheap, AT-cut, voltage controlled crystal oscillators (VCXOs). In order to optimally control an OCXO with SC-cut crystal, a DAC resolution of 20+ bits is recommended.

DDMTD report

The scope of the following document is to evaluate the phase noise and stability floor of the Digital Dual Mixer Time Difference (DDMTD) phase detector in the WR PLL architecture. The measurement has been done on the WR Switch (Virtex-6) The effect of the DDMTD common clock noise on the phase noise floor is modelled mathematically and verified experimentally.
The experimental results show a phase noise floor of -108 dBc/Hz (10MHz carrier) combined with a flicker noise (1/f noise) of -100dBc/Hz at 1Hz (flicker corner frequency at 5Hz). The flicker noise has been traced to the LVDS input clock buffer of the FPGA.
The DDMTD is able to provide 4 ps single-shot precision (1 σ) with a measurement rate up to 3.8 kHz
The stability of the DDMTD has been characterized with Modified Allan Deviation (MDEV) and Allan Deviation (ADEV). The results are:

  • MDEV 4E-13 at Tau=1s for Equivalent Noise BW of 50Hz,
  • ADEV, is depending on the Equivalent Noise Bandwidth,
  • 4E-13 at Tau=1s for Equivalent Noise BW of 0.5Hz and
  • 1E-12 at Tau=1s for Equivalent Noise BW of 50Hz

Xilinx Virtex-6 transceivers: phase noise and stability

The scope of this document is to investigate the phase noise and stability of the WR Switch transceivers. Along with the Digital DMTD phase detector, they constitute the core of the WR time dissemination performance. Moreover, the report includes an analysis of the stability of the Axcen SFPs (commonly used in WR installations).
The stability analysis of the Axcen SFPs resulted in a Modified Allan Deviation of less than 1E-13 with Tau=1s..10s. The stability is better than H-Maser clock.
The GTX transceivers have a Modified Allan Deviation of 4E-13/s, dominated by flicker noise from Tau=0.1s to 100s. The stability of the GTX transceiver is equal to the stability of the phase detector used by the WR PLL (DDMTD). Hence, the overall stability of the WR Switch configured as a boundary clock is equally dominated by the GTX and by the DDMTD.

Clone repository
  • Daughterboard for the white rabbit switch
  • Ddmtd report
  • Documents
  • Home
  • Phase noise and adev of the wr switch using different tcvcxos
  • Wrs sma clock board
  • Documents
    • Dac additive phase noise
    • Ddmtd report
    • White rabbit switch performance in grandmaster mode
    • Xilinx virtex 6 transceivers: phase noise and stability
More Pages

New Wiki Page

Tip: You can specify the full path for the new file. We will automatically create any missing directories.