-
Dimitris Lampridis authored758f4a19
genram_pkg.vhd 11.95 KiB
--------------------------------------------------------------------------------
-- CERN BE-CO-HT
-- General Cores Library
-- https://www.ohwr.org/projects/general-cores
--------------------------------------------------------------------------------
--
-- unit name: genram_pkg
--
-- description: Generics RAMs and FIFOs collection
--
--------------------------------------------------------------------------------
-- Copyright CERN 2011-2018
--------------------------------------------------------------------------------
-- Copyright and related rights are licensed under the Solderpad Hardware
-- License, Version 2.0 (the "License"); you may not use this file except
-- in compliance with the License. You may obtain a copy of the License at
-- http://solderpad.org/licenses/SHL-2.0.
-- Unless required by applicable law or agreed to in writing, software,
-- hardware and materials distributed under this License is distributed on an
-- "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
-- or implied. See the License for the specific language governing permissions
-- and limitations under the License.
--------------------------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
package genram_pkg is
function f_log2_size (A : natural) return natural;
function f_gen_dummy_vec (val : std_logic; size : natural) return std_logic_vector;
function f_zeros (size : integer) return std_logic_vector;
function f_check_bounds(x : integer; minx : integer; maxx : integer) return integer;
type t_generic_ram_init is array (integer range <>, integer range <>) of std_logic;
type t_ram8_type is array (integer range <>) of std_logic_vector(7 downto 0);
type t_ram16_type is array (integer range <>) of std_logic_vector(15 downto 0);
type t_ram32_type is array (integer range <>) of std_logic_vector(31 downto 0);
-- Single-port synchronous RAM
component generic_spram
generic (
g_data_width : natural;
g_size : natural;
g_with_byte_enable : boolean := false;
g_init_file : string := "none";
g_addr_conflict_resolution : string := "dont_care") ;
port (
rst_n_i : in std_logic;
clk_i : in std_logic;
bwe_i : in std_logic_vector((g_data_width+7)/8-1 downto 0):= f_gen_dummy_vec('1', (g_data_width+7)/8);
we_i : in std_logic;
a_i : in std_logic_vector(f_log2_size(g_size)-1 downto 0);
d_i : in std_logic_vector(g_data_width-1 downto 0) := f_gen_dummy_vec('0', g_data_width);
q_o : out std_logic_vector(g_data_width-1 downto 0));
end component;
component generic_simple_dpram
generic (
g_data_width : natural;
g_size : natural;
g_with_byte_enable : boolean := false;
g_addr_conflict_resolution : string := "dont_care";
g_init_file : string := "none";
g_dual_clock : boolean := true);
port (
rst_n_i : in std_logic := '1';
clka_i : in std_logic;
bwea_i : in std_logic_vector((g_data_width+7)/8 -1 downto 0) := f_gen_dummy_vec('1', (g_data_width+7)/8);
wea_i : in std_logic;
aa_i : in std_logic_vector(f_log2_size(g_size)-1 downto 0);
da_i : in std_logic_vector(g_data_width -1 downto 0);
clkb_i : in std_logic;
ab_i : in std_logic_vector(f_log2_size(g_size)-1 downto 0);
qb_o : out std_logic_vector(g_data_width -1 downto 0));
end component;
component generic_dpram
generic (
g_data_width : natural;
g_size : natural;
g_with_byte_enable : boolean := false;
g_addr_conflict_resolution : string := "dont_care";
g_init_file : string := "none";
g_fail_if_file_not_found : boolean := true;
g_dual_clock : boolean := true);
port (
rst_n_i : in std_logic := '1';
clka_i : in std_logic;
bwea_i : in std_logic_vector((g_data_width+7)/8-1 downto 0) := f_gen_dummy_vec('1', (g_data_width+7)/8);
wea_i : in std_logic := '0';
aa_i : in std_logic_vector(f_log2_size(g_size)-1 downto 0);
da_i : in std_logic_vector(g_data_width-1 downto 0) := f_gen_dummy_vec('0', g_data_width);
qa_o : out std_logic_vector(g_data_width-1 downto 0);
clkb_i : in std_logic;
bweb_i : in std_logic_vector((g_data_width+7)/8-1 downto 0) := f_gen_dummy_vec('1', (g_data_width+7)/8);
web_i : in std_logic := '0';
ab_i : in std_logic_vector(f_log2_size(g_size)-1 downto 0);
db_i : in std_logic_vector(g_data_width-1 downto 0) := f_gen_dummy_vec('0', g_data_width);
qb_o : out std_logic_vector(g_data_width-1 downto 0));
end component;
component generic_dpram_mixed
generic (
g_data_a_width : natural;
g_data_b_width : natural;
g_size : natural;
g_addr_conflict_resolution : string := "dont_care";
g_init_file : string := "none";
g_dual_clock : boolean := true);
port (
rst_n_i : in std_logic := '1';
clka_i : in std_logic;
bwea_i : in std_logic_vector((g_data_a_width+7)/8-1 downto 0) := f_gen_dummy_vec('1', (g_data_a_width+7)/8);
wea_i : in std_logic := '0';
aa_i : in std_logic_vector(f_log2_size(g_size)-1 downto 0);
da_i : in std_logic_vector(g_data_a_width-1 downto 0) := f_gen_dummy_vec('0', g_data_a_width);
qa_o : out std_logic_vector(g_data_a_width-1 downto 0);
clkb_i : in std_logic;
bweb_i : in std_logic_vector((g_data_b_width+7)/8-1 downto 0) := f_gen_dummy_vec('1', (g_data_b_width+7)/8);
web_i : in std_logic := '0';
ab_i : in std_logic_vector(f_log2_size(g_data_a_width*g_size/g_data_b_width)-1 downto 0);
db_i : in std_logic_vector(g_data_b_width-1 downto 0) := f_gen_dummy_vec('0', g_data_b_width);
qb_o : out std_logic_vector(g_data_b_width-1 downto 0));
end component;
component generic_async_fifo_dual_rst is
generic (
g_data_width : natural;
g_size : natural;
g_show_ahead : boolean := false;
g_with_rd_empty : boolean := true;
g_with_rd_full : boolean := false;
g_with_rd_almost_empty : boolean := false;
g_with_rd_almost_full : boolean := false;
g_with_rd_count : boolean := false;
g_with_wr_empty : boolean := false;
g_with_wr_full : boolean := true;
g_with_wr_almost_empty : boolean := false;
g_with_wr_almost_full : boolean := false;
g_with_wr_count : boolean := false;
g_almost_empty_threshold : integer := 0;
g_almost_full_threshold : integer := 0);
port (
rst_wr_n_i : in std_logic := '1';
clk_wr_i : in std_logic;
d_i : in std_logic_vector(g_data_width-1 downto 0);
we_i : in std_logic;
wr_empty_o : out std_logic;
wr_full_o : out std_logic;
wr_almost_empty_o : out std_logic;
wr_almost_full_o : out std_logic;
wr_count_o : out std_logic_vector(f_log2_size(g_size)-1 downto 0);
rst_rd_n_i : in std_logic := '1';
clk_rd_i : in std_logic;
q_o : out std_logic_vector(g_data_width-1 downto 0);
rd_i : in std_logic;
rd_empty_o : out std_logic;
rd_full_o : out std_logic;
rd_almost_empty_o : out std_logic;
rd_almost_full_o : out std_logic;
rd_count_o : out std_logic_vector(f_log2_size(g_size)-1 downto 0));
end component generic_async_fifo_dual_rst;
component generic_async_fifo
generic (
g_data_width : natural;
g_size : natural;
g_show_ahead : boolean := false;
g_with_rd_empty : boolean := true;
g_with_rd_full : boolean := false;
g_with_rd_almost_empty : boolean := false;
g_with_rd_almost_full : boolean := false;
g_with_rd_count : boolean := false;
g_with_wr_empty : boolean := false;
g_with_wr_full : boolean := true;
g_with_wr_almost_empty : boolean := false;
g_with_wr_almost_full : boolean := false;
g_with_wr_count : boolean := false;
g_almost_empty_threshold : integer := 0;
g_almost_full_threshold : integer := 0);
port (
rst_n_i : in std_logic := '1';
clk_wr_i : in std_logic;
d_i : in std_logic_vector(g_data_width-1 downto 0);
we_i : in std_logic;
wr_empty_o : out std_logic;
wr_full_o : out std_logic;
wr_almost_empty_o : out std_logic;
wr_almost_full_o : out std_logic;
wr_count_o : out std_logic_vector(f_log2_size(g_size)-1 downto 0);
clk_rd_i : in std_logic;
q_o : out std_logic_vector(g_data_width-1 downto 0);
rd_i : in std_logic;
rd_empty_o : out std_logic;
rd_full_o : out std_logic;
rd_almost_empty_o : out std_logic;
rd_almost_full_o : out std_logic;
rd_count_o : out std_logic_vector(f_log2_size(g_size)-1 downto 0));
end component;
component generic_sync_fifo
generic (
g_data_width : natural;
g_size : natural;
g_show_ahead : boolean := false;
g_with_empty : boolean := true;
g_with_full : boolean := true;
g_with_almost_empty : boolean := false;
g_with_almost_full : boolean := false;
g_with_count : boolean := false;
g_almost_empty_threshold : integer := 0;
g_almost_full_threshold : integer := 0);
port (
rst_n_i : in std_logic := '1';
clk_i : in std_logic;
d_i : in std_logic_vector(g_data_width-1 downto 0);
we_i : in std_logic;
q_o : out std_logic_vector(g_data_width-1 downto 0);
rd_i : in std_logic;
empty_o : out std_logic;
full_o : out std_logic;
almost_empty_o : out std_logic;
almost_full_o : out std_logic;
count_o : out std_logic_vector(f_log2_size(g_size)-1 downto 0));
end component;
component generic_shiftreg_fifo
generic (
g_data_width : integer;
g_size : integer);
port (
rst_n_i : in std_logic := '1';
clk_i : in std_logic;
d_i : in std_logic_vector(g_data_width-1 downto 0);
we_i : in std_logic;
q_o : out std_logic_vector(g_data_width-1 downto 0);
rd_i : in std_logic;
full_o : out std_logic;
almost_full_o : out std_logic;
q_valid_o : out std_logic
);
end component;
end genram_pkg;
package body genram_pkg is
function f_log2_size (A : natural) return natural is
begin
for I in 1 to 64 loop -- Works for up to 64 bits
if (2**I >= A) then
return(I);
end if;
end loop;
return(63);
end function f_log2_size;
function f_gen_dummy_vec (val : std_logic; size : natural) return std_logic_vector is
variable tmp : std_logic_vector(size-1 downto 0);
begin
for i in 0 to size-1 loop
tmp(i) := val;
end loop; -- i
return tmp;
end f_gen_dummy_vec;
function f_zeros(size : integer)
return std_logic_vector is
begin
return std_logic_vector(to_unsigned(0, size));
end f_zeros;
function f_check_bounds(x : integer; minx : integer; maxx : integer) return integer is
begin
if(x < minx) then
return minx;
elsif(x > maxx) then
return maxx;
else
return x;
end if;
end f_check_bounds;
end genram_pkg;