Newer
Older
/*
* This work is part of the White Rabbit project
*
* Copyright (C) 2011,2012 CERN (www.cern.ch)
* Author: Aurelio Colosimo <aurelio@aureliocolosimo.it>
*
* Released according to the GNU GPL, version 2 or any later version.
*/
#include <inttypes.h>
#include <wr-api.h>
#include <minic.h>
#include <softpll_ng.h>
#include <syscon.h>
#include <pps_gen.h>
#include <onewire.h>
#include <util.h>
#include "wrc_ptp.h"
#include "hal_exports.h"
struct ptpdexp_sync_state_t;
extern ptpdexp_sync_state_t cur_servo_state;
extern int wrc_man_phase;
extern struct pp_servo servo;
extern struct pp_instance ppi_static;
struct pp_instance *ppi = &ppi_static;
static void wrc_mon_std_servo(void);
#define PRINT64_FACTOR 1000000000LL
char* print64(uint64_t x)
{
uint32_t h_half, l_half;
static char buf[2*10+1]; //2x 32-bit value + \0
if (x < PRINT64_FACTOR)
sprintf(buf, "%u", (uint32_t)x);
else{
l_half = __div64_32(&x, PRINT64_FACTOR);
h_half = (uint32_t) x;
sprintf(buf, "%u%u", h_half, l_half);
}
return buf;
}
int wrc_mon_status()
{
struct pp_state_table_item *ip = NULL;
for (ip = pp_state_table; ip->state != PPS_END_OF_TABLE; ip++) {
if (ip->state == ppi->state)
break;
}
cprintf(C_BLUE, "\n\nPTP status: ");
cprintf(C_WHITE, "%s", ip ? ip->name : "unknown");
if ((!cur_servo_state.valid) || (ppi->state != PPS_SLAVE)) {
cprintf(C_RED,
"\n\nSync info not valid\n\n");
return 0;
}
/* show_servo */
cprintf(C_BLUE, "\n\nSynchronization status:\n\n");
return 1;
}
static uint32_t last;
int tx, rx;
int aux_stat;
uint64_t sec;
uint32_t nsec;
#ifdef CONFIG_ETHERBONE
uint8_t ip[4];
#endif
struct wr_servo_state_t *s =
&((struct wr_data_t *)ppi->ext_data)->servo_state;
int64_t crtt;
int64_t total_asymmetry;
if (!last)
last = timer_get_tics();
if (time_before(timer_get_tics(), last + wrc_ui_refperiod))
return;
last = timer_get_tics();
term_clear();
pcprintf(1, 1, C_BLUE, "WR PTP Core Sync Monitor v 1.0");
pcprintf(2, 1, C_GREY, "Esc = exit");
shw_pps_gen_get_time(&sec, &nsec);
cprintf(C_BLUE, "\n\nTAI Time: ");
cprintf(C_WHITE, "%s", format_time(sec));
pcprintf(4, 1, C_BLUE, "\n\nLink status:");
pcprintf(6, 1, C_WHITE, "%s: ", "wru1");
cprintf(C_GREEN, "Link up ");
cprintf(C_RED, "Link down ");
minic_get_stats(&tx, &rx);
cprintf(C_GREY, "(RX: %d, TX: %d), mode: ", rx, tx);
if (!WR_DSPOR(ppi)->wrModeOn) {
wrc_mon_std_servo();
return;
}
switch (ptp_mode) {
case WRC_MODE_GM:
case WRC_MODE_MASTER:
cprintf(C_WHITE, "WR Master ");
case WRC_MODE_SLAVE:
cprintf(C_WHITE, "WR Slave ");
default:
cprintf(C_RED, "WR Unknown ");
cprintf(C_GREEN, "Locked ");
cprintf(C_RED, "NoLock ");
if (state.calib.rx_calibrated && state.calib.tx_calibrated)
cprintf(C_GREEN, "Calibrated ");
cprintf(C_RED, "Uncalibrated ");
#ifdef CONFIG_ETHERBONE
cprintf(C_WHITE, "\nIPv4: ");
getIP(ip);
if (needIP)
cprintf(C_RED, "BOOTP running");
else
cprintf(C_GREEN, "%d.%d.%d.%d", ip[0], ip[1], ip[2], ip[3]);
if (wrc_mon_status() == 0)
cprintf(C_GREY, "Servo state: ");
cprintf(C_WHITE, "%s\n", cur_servo_state.slave_servo_state);
cprintf(C_GREY, "Servo state: ");
cprintf(C_WHITE, "%s\n", s->servo_state_name);
cprintf(C_GREY, "Phase tracking: ");
if (cur_servo_state.tracking_enabled)
cprintf(C_GREEN, "ON\n");
cprintf(C_RED, "OFF\n");
cprintf(C_GREY, "Phase tracking: ");
if (s->tracking_enabled)
cprintf(C_GREEN, "ON\n");
else
cprintf(C_RED, "OFF\n");
cprintf(C_GREY, "Synchronization source: ");
cprintf(C_WHITE, "%s\n", cur_servo_state.sync_source);
cprintf(C_GREY, "Aux clock status: ");
aux_stat = spll_get_aux_status(0);
if (aux_stat & SPLL_AUX_ENABLED)
cprintf(C_GREEN, "enabled");
if (aux_stat & SPLL_AUX_LOCKED)
cprintf(C_GREEN, ", locked");
mprintf("\n");
cprintf(C_BLUE, "\nTiming parameters:\n\n");
cprintf(C_GREY, "Round-trip time (mu): ");
cprintf(C_WHITE, "%s ps\n", print64(cur_servo_state.mu));
cprintf(C_GREY, "Round-trip time (mu): ");
cprintf(C_WHITE, "%s ps\n", print64(s->picos_mu));
cprintf(C_GREY, "Master-slave delay: ");
cprintf(C_WHITE, "%s ps\n", print64(cur_servo_state.delay_ms));
cprintf(C_GREY, "Master-slave delay: ");
cprintf(C_WHITE, "%s ps\n", print64(s->delta_ms));
cprintf(C_GREY, "Master PHY delays: ");
cprintf(C_WHITE, "TX: %d ps, RX: %d ps\n",
(int32_t) cur_servo_state.delta_tx_m,
(int32_t) cur_servo_state.delta_rx_m);
cprintf(C_GREY, "Master PHY delays: ");
cprintf(C_WHITE, "TX: %d ps, RX: %d ps\n",
(int32_t) s->delta_tx_m,
(int32_t) s->delta_rx_m);
cprintf(C_GREY, "Slave PHY delays: ");
cprintf(C_WHITE, "TX: %d ps, RX: %d ps\n",
(int32_t) cur_servo_state.delta_tx_s,
(int32_t) cur_servo_state.delta_rx_s);
cprintf(C_GREY, "Slave PHY delays: ");
cprintf(C_WHITE, "TX: %d ps, RX: %d ps\n",
(int32_t) s->delta_tx_s,
(int32_t) s->delta_rx_s);
cprintf(C_GREY, "Total link asymmetry: ");
cprintf(C_WHITE, "%9d ps\n",
(int32_t) (cur_servo_state.total_asymmetry));
total_asymmetry = s->picos_mu - 2LL * s->delta_ms;
cprintf(C_GREY, "Total link asymmetry: ");
cprintf(C_WHITE, "%9d ps\n",
(int32_t) (total_asymmetry));
cprintf(C_GREY, "Cable rtt delay: ");
cprintf(C_WHITE, "%s ps\n", print64(cur_servo_state.mu -
cur_servo_state.delta_tx_m -
cur_servo_state.delta_rx_m -
cur_servo_state.delta_tx_s -
cur_servo_state.delta_rx_s));
crtt = s->picos_mu - s->delta_tx_m - s->delta_rx_m
- s->delta_tx_s - s->delta_rx_s;
cprintf(C_GREY, "Cable rtt delay: ");
cprintf(C_WHITE, "%s ps\n", print64(crtt));
cprintf(C_GREY, "Clock offset: ");
cprintf(C_WHITE, "%9d ps\n",
(int32_t) (cur_servo_state.cur_offset));
cprintf(C_GREY, "Clock offset: ");
cprintf(C_WHITE, "%9d ps\n",
(int32_t) (s->offset));
cprintf(C_GREY, "Phase setpoint: ");
cprintf(C_WHITE, "%9d ps\n",
(int32_t) (cur_servo_state.cur_setpoint));
cprintf(C_GREY, "Phase setpoint: ");
cprintf(C_WHITE, "%9d ps\n",
(s->cur_setpoint));
cprintf(C_GREY, "Skew: ");
cprintf(C_WHITE, "%9d ps\n",
(int32_t) (cur_servo_state.cur_skew));
cprintf(C_GREY, "Skew: ");
cprintf(C_WHITE, "%9d ps\n",
(int32_t) (s->skew));
cprintf(C_GREY, "Manual phase adjustment: ");
cprintf(C_WHITE, "%9d ps\n", (int32_t) (wrc_man_phase));
cprintf(C_GREY, "Update counter: ");
(int32_t) (cur_servo_state.update_count));
cprintf(C_GREY, "Update counter: ");
cprintf(C_WHITE, "%9d\n",
(int32_t) (s->update_count));
}
pp_printf("--");
return;
static inline void cprintf_ti(int color, struct TimeInternal *ti)
{
if ((ti->seconds > 0) ||
((ti->seconds == 0) && (ti->nanoseconds >= 0)))
cprintf(color, "%2i.%09i s", ti->seconds, ti->nanoseconds);
else {
if (ti->seconds == 0)
cprintf(color, "-%i.%09i s", ti->seconds, -ti->nanoseconds);
else
cprintf(color, "%2i.%09i s", ti->seconds, -ti->nanoseconds);
}
}
static void wrc_mon_std_servo(void)
{
cprintf(C_RED, "WR Off");
if (wrc_mon_status() == 0)
return;
cprintf(C_GREY, "Clock offset: ");
if (DSCUR(ppi)->offsetFromMaster.seconds)
cprintf_ti(C_WHITE, &DSCUR(ppi)->offsetFromMaster);
else {
cprintf(C_WHITE, "%9i ns", DSCUR(ppi)->offsetFromMaster.nanoseconds);
cprintf(C_GREY, "\nOne-way delay averaged: ");
cprintf(C_WHITE, "%9i ns", DSCUR(ppi)->meanPathDelay.nanoseconds);
cprintf(C_GREY, "\nObserved drift: ");
cprintf(C_WHITE, "%9i ns", SRV(ppi)->obs_drift);
}
}
int wrc_log_stats(uint8_t onetime)
{
static uint32_t last;
int tx, rx;
int aux_stat;
uint64_t sec;
uint32_t nsec;
if (!last)
last = timer_get_tics();
if (!onetime && time_before(timer_get_tics(), wrc_ui_refperiod + last))
struct wr_servo_state_t *s =
&((struct wr_data_t *)ppi->ext_data)->servo_state;
last = timer_get_tics();
shw_pps_gen_get_time(&sec, &nsec);
minic_get_stats(&tx, &rx);
pp_printf("lnk:%d rx:%d tx:%d ", state.state, rx, tx);
pp_printf("lock:%d ", state.locked ? 1 : 0);
pp_printf("sv:%d ", cur_servo_state.valid ? 1 : 0);
pp_printf("ss:'%s' ", cur_servo_state.slave_servo_state);
aux_stat = spll_get_aux_status(0);
pp_printf("aux:%x ", aux_stat);
pp_printf("sec:%d nsec:%d ", (uint32_t) sec, nsec); /* fixme: clock is not always 125 MHz */
pp_printf("mu:%s ", print64(cur_servo_state.mu));
pp_printf("dms:%s ", print64(cur_servo_state.delay_ms));
pp_printf("dtxm:%d drxm:%d ", (int32_t) cur_servo_state.delta_tx_m,
(int32_t) cur_servo_state.delta_rx_m);
pp_printf("dtxs:%d drxs:%d ", (int32_t) cur_servo_state.delta_tx_s,
(int32_t) cur_servo_state.delta_rx_s);
pp_printf("asym:%d ", (int32_t) (cur_servo_state.total_asymmetry));
pp_printf("crtt:%s ", print64(cur_servo_state.mu -
cur_servo_state.delta_tx_m -
cur_servo_state.delta_rx_m -
cur_servo_state.delta_tx_s -
cur_servo_state.delta_rx_s));
pp_printf("cko:%d ", (int32_t) (cur_servo_state.cur_offset));
pp_printf("setp:%d ", (int32_t) (cur_servo_state.cur_setpoint));
pp_printf("hd:%d md:%d ad:%d ", spll_get_dac(-1), spll_get_dac(0),
spll_get_dac(1));
pp_printf("ucnt:%d ", (int32_t) cur_servo_state.update_count);
//first read the value from previous measurement,
//first one will be random, I know
temp = w1_read_temp_bus(&wrpc_w1_bus, W1_FLAG_COLLECT);
//then initiate new conversion for next loop cycle
w1_read_temp_bus(&wrpc_w1_bus, W1_FLAG_NOWAIT);
pp_printf("temp: %d.%04d C", temp >> 16,
(int)((temp & 0xffff) * 10 * 1000 >> 16));
}
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
pp_printf("\n");
pp_printf("lnk:%d rx:%d tx:%d ", state.state, rx, tx);
pp_printf("lock:%d ", state.locked ? 1 : 0);
pp_printf("sv:%d ", s->valid ? 1 : 0);
pp_printf("ss:'%s' ", s->servo_state_name);
aux_stat = spll_get_aux_status(0);
pp_printf("aux:%x ", aux_stat);
/* fixme: clock is not always 125 MHz */
pp_printf("sec:%d nsec:%d ", (uint32_t) sec, nsec);
pp_printf("mu:%s ", print64(s->picos_mu));
pp_printf("dms:%s ", print64(s->delta_ms));
pp_printf("dtxm:%d drxm:%d ", (int32_t) s->delta_tx_m,
(int32_t) s->delta_rx_m);
pp_printf("dtxs:%d drxs:%d ", (int32_t) s->delta_tx_s,
(int32_t) s->delta_rx_s);
int64_t total_asymmetry = s->picos_mu -
2LL * s->delta_ms;
pp_printf("asym:%d ", (int32_t) (total_asymmetry));
pp_printf("crtt:%s ", print64(s->picos_mu -
s->delta_tx_m -
s->delta_rx_m -
s->delta_tx_s -
s->delta_rx_s));
pp_printf("cko:%d ", (int32_t) (s->offset));
pp_printf("setp:%d ", (int32_t) (s->cur_setpoint));
pp_printf("hd:%d md:%d ad:%d ", spll_get_dac(-1), spll_get_dac(0),
spll_get_dac(1));
pp_printf("ucnt:%d ", (int32_t) s->update_count);