Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
H
HEV - High Energy Ventilator
Manage
Activity
Members
Labels
Plan
Issues
5
Issue boards
Milestones
Wiki
Code
Merge requests
1
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Deploy
Releases
Operate
Environments
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Projects
HEV - High Energy Ventilator
Commits
283a8c95
Commit
283a8c95
authored
4 years ago
by
Your Name
Browse files
Options
Downloads
Patches
Plain Diff
flow calculation studies based on the buffer and tube pressure (flowplots.py)
parent
435b886e
Branches
Branches containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
raspberry-dataserver/flow_plots.py
+547
-0
547 additions, 0 deletions
raspberry-dataserver/flow_plots.py
with
547 additions
and
0 deletions
raspberry-dataserver/flow_plots.py
0 → 100755
+
547
−
0
View file @
283a8c95
#!/usr/bin/python3
import
sys
import
re
import
queue
import
time
import
datetime
#import matplotlib
#matplotlib.use('Agg')
import
matplotlib.pyplot
as
plt
import
numpy
as
np
def
integral
(
ar_x
,
ar
,
trigger
=
0.
,
leak_correction
=
0.
):
# array integral
_result
=
0.
_ar_result
=
[]
sum_leak_correction
=
0.
for
i
in
range
(
len
(
ar
)):
if
type
(
trigger
)
!=
type
(
float
(
0.
))
and
trigger
[
i
]:
_result
=
0.
dt
=
0.
if
i
==
0
:
dt
=
0.011
else
:
dt
=
(
ar_x
[
i
]
-
ar_x
[
i
-
1
])
*
0.001
_result
+=
ar
[
i
]
*
dt
-
(
1000.
*
dt
*
leak_correction
)
sum_leak_correction
+=
dt
*
1000.
*
leak_correction
print
(
sum_leak_correction
)
if
type
(
trigger
)
!=
type
(
float
(
0.
))
and
trigger
[
i
]:
_result
=
0.
_ar_result
.
append
(
_result
)
print
(
"
integral:
"
,
len
(
_ar_result
))
return
np
.
array
(
_ar_result
)
def
DP2flow
(
DP
):
#has to be a numpy array input
mp
=
1172.9576458344243
bp
=
22.709191997369555
mm
=
1084.6514479521688
bm
=
-
16.797482131038645
temp_flow
=
[]
for
i
in
range
(
len
(
DP
)):
_temp_flow
=
DP
[
i
]
if
_temp_flow
>
0.
:
temp_flow
.
append
(
mp
*
_temp_flow
+
bp
)
else
:
temp_flow
.
append
(
mm
*
_temp_flow
+
bm
)
print
(
"
length of flow:
"
,
len
(
temp_flow
))
return
np
.
array
(
temp_flow
)
def
buffer_flow_pbuff
(
xtime
,
pbuff
,
pinhale
,
vbuff
=
10.
*
1000.
,
vtube
=
1.6
*
1000.
):
# inputs should be numpy arrays
pinhale
=
pinhale
+
1013.
# absolute pressure in mba
pbuff
=
pbuff
+
1013.
# absolute pressure in mbar
ptube
=
pinhale
+
1013.
# absolute pressure in mbar
dpbuff
=
[]
dptube
=
[]
counter
=
0.
fooflow
=
0.
running_avg
=
[]
running_avg_tube
=
[]
for
i
in
range
(
len
(
pbuff
)):
if
counter
==
0.
:
#or i >= len(pbuff)-2 :
dpbuff
.
append
(
0.
)
dptube
.
append
(
0.
)
else
:
_dpbuff
=
(
pbuff
[
i
]
-
pbuff
[
i
-
1
]
)
#* 100. # mbar to Pa
_dptube
=
(
pinhale
[
i
]
-
pinhale
[
i
-
1
])
#* 100. # mbar to Pa
dt
=
(
xtime
[
i
]
-
xtime
[
i
-
1
])
*
1e-3
# ms to seconds
_dpbuff
/=
dt
_dptube
/=
dt
if
i
>
10
and
i
<
len
(
pbuff
)
-
10
:
(
_dpbuff
,
offbuff
)
=
np
.
polyfit
(
xtime
[
i
-
10
:
i
+
10
]
*
1e-3
,
pbuff
[
i
-
10
:
i
+
10
],
1
)
(
_dptube
,
offtube
)
=
np
.
polyfit
(
xtime
[
i
-
10
:
i
+
10
]
*
1e-3
,
pinhale
[
i
-
10
:
i
+
10
],
1
)
else
:
(
_dpbuff
,
offbuff
)
=
(
0
,
0
)
(
_dptube
,
offtube
)
=
(
0
,
0
)
dpbuff
.
append
(
_dpbuff
)
dptube
.
append
(
_dptube
)
counter
+=
1.
_buffer_flow
=
((
-
1.
/
pinhale
)
*
(
(
np
.
array
(
dptube
)
*
vtube
)
+
(
np
.
array
(
dpbuff
)
*
vbuff
)
)
)
-
(
1.0
*
4
*
(
pinhale
-
1013.
))
#Clear plastique correction from https://link.springer.com/article/10.1007/BF01709728
#+ ( np.array(dptube) * vtube ) )
avg_buffer_flow
=
[]
running_buffer_flow
=
[]
_temp_buffer_flow
=
0.
for
i
in
range
(
len
(
_buffer_flow
)):
#running_buffer_flow.append(_buffer_flow[i])
#if len(running_buffer_flow) > 1: del running_buffer_flow[0]
#avg_buffer_flow.append(sum(running_buffer_flow)/1.)
#_temp_buffer_flow = _temp_buffer_flow*0.6 + _buffer_flow[i]*0.3
_temp_buffer_flow
=
_buffer_flow
[
i
]
avg_buffer_flow
.
append
(
_temp_buffer_flow
)
print
(
len
(
avg_buffer_flow
))
return
np
.
array
(
avg_buffer_flow
)
def
buffer_flow_1225
(
xtime
,
pbuff
,
pinhale
,
vbuff
=
11.0
*
1000.
,
vtube
=
2.
*
1000.
):
# inputs should be numpy arrays
pinhale
=
pinhale
+
1013.
# absolute pressure in mba
pbuff
=
pbuff
+
1013.
# absolute pressure in mbar
ptube
=
pbuff
+
1013.
# absolute pressure in mbar
avg_pinhale
=
[]
avg_pbuff
=
[]
for
i
in
range
(
len
(
pinhale
)):
if
i
==
0
:
avg_pinhale
.
append
(
pinhale
*
0.3
)
avg_pbuffer
.
append
(
pbuffer
*
0.3
)
else
:
avg_pinhale
.
append
(
avg_pinhale
[
-
1
]
*
0.6
+
pinhale
*
0.3
)
avg_pbuffer
.
append
(
avg_pbuffer
[
-
1
]
*
0.6
+
pbuffer
*
0.3
)
dpbuff
=
[]
dptube
=
[]
counter
=
0.
fooflow
=
0.
running_avg
=
[]
running_avg_tube
=
[]
for
i
in
range
(
len
(
pbuff
)):
if
counter
==
0.
:
dpbuff
.
append
(
0.
)
dptube
.
append
(
0.
)
else
:
_dpbuff
=
(
pbuff
[
i
]
-
pbuff
[
i
-
1
]
)
#* 100. # mbar to Pa
_dptube
=
(
pinhale
[
i
]
-
pinhale
[
i
-
1
])
#* 100. # mbar to Pa
dt
=
(
xtime
[
i
]
-
xtime
[
i
-
1
])
*
1e-3
# ms to seconds
_dpbuff
/=
dt
_dptube
/=
dt
if
i
>
10
and
i
<
len
(
pbuff
)
-
10
:
(
_dpbuff
,
offbuff
)
=
np
.
polyfit
(
xtime
,
pbuff
[
i
-
10
:
i
+
10
],
1
)
(
_dptube
,
offtube
)
=
np
.
polyfit
(
xtime
,
pbuff
[
i
-
10
:
i
+
10
],
1
)
else
:
(
_dpbuff
,
offbuff
)
=
(
0
,
0
)
(
_dptube
,
offtube
)
=
(
0
,
0
)
#running_avg_dpbufftube.append(_flow)
#running_avg_dptube.append(_flow)
#if len(running_avg) > 5:
# del running_avg[0]
#fsum = sum(running_avg)
#print(_flow)
#fooflow = fsum/5.#_flow #fooflow + (0.1*_flow)
#print(fooflow)
dpbuff
.
append
(
_dpbuff
)
dptube
.
append
(
_dptube
)
counter
+=
1.
_buffer_flow
=
(
-
1.
/
2000
)
*
(
(
np
.
array
(
dptube
)
*
vtube
)
+
(
np
.
array
(
dpbuff
)
*
vbuff
)
)
# + ( np.array(dptube) * vtube ) )
avg_buffer_flow
=
[]
running_buffer_flow
=
[]
_temp_buffer_flow
=
0.
for
i
in
range
(
len
(
_buffer_flow
)):
running_buffer_flow
.
append
(
_buffer_flow
[
i
])
if
len
(
running_buffer_flow
)
>
1
:
del
running_buffer_flow
[
0
]
avg_buffer_flow
.
append
(
sum
(
running_buffer_flow
)
/
1.
)
#_temp_buffer_flow = _temp_buffer_flow*0.6 + _buffer_flow[i]*0.3
#avg_buffer_flow.append(_temp_buffer_flow)
#R = 8.31446261815324 # gas contact in SI units J.K-1 mol-1
#T = 300 # ~ 25 degrees celsius
#buffer_flow /= (R*T) # number of mols
#buffer_flow *= 22.4 * 1000. * 1000.# conversion for mol to liter and from liter to ml
print
(
len
(
avg_buffer_flow
))
return
np
.
array
(
avg_buffer_flow
)
counter
=
0
history_length
=
5000
xtime
=
queue
.
Queue
(
history_length
)
pressure_buffer
=
queue
.
Queue
(
history_length
)
pressure_inhale
=
queue
.
Queue
(
history_length
)
pressure_patient
=
queue
.
Queue
(
history_length
)
pressure_diff_patient
=
queue
.
Queue
(
history_length
)
PID_P
=
queue
.
Queue
(
history_length
)
PID_I
=
queue
.
Queue
(
history_length
)
PID_D
=
queue
.
Queue
(
history_length
)
def
derivative
(
l
):
result
=
[]
for
i
in
range
(
len
(
l
)):
if
i
!=
0
:
result
.
append
(
l
[
i
]
-
l
[
i
-
1
])
else
:
result
.
append
(
0
)
return
result
def
derivative_exp
(
l
):
_exp_mean
=
0.
result
=
[]
for
i
in
range
(
len
(
l
)):
if
i
!=
0
:
_exp_mean
=
(
0.7
*
_exp_mean
)
+
(
0.3
*
(
l
[
i
]
-
l
[
i
-
1
]))
result
.
append
(
_exp_mean
)
else
:
result
.
append
(
0
)
return
result
def
derivative_withthreshold
(
l
,
lmin
):
result
=
[]
for
i
in
range
(
len
(
l
)):
if
i
!=
0
:
_result
=
(
l
[
i
]
-
l
[
i
-
1
])
if
_result
<
lmin
and
_result
>
-
1
*
lmin
:
_result
=
0.
if
_result
>
lmin
:
_result
-=
lmin
if
_result
<
-
1
*
lmin
:
_result
+=
lmin
result
.
append
(
_result
)
else
:
result
.
append
(
0
)
return
result
for
i
in
range
(
history_length
):
pressure_buffer
.
put
(
-
1
)
pressure_inhale
.
put
(
-
1
)
pressure_patient
.
put
(
-
1
)
pressure_diff_patient
.
put
(
-
50
)
PID_P
.
put
(
-
1
)
PID_I
.
put
(
-
1
)
PID_D
.
put
(
-
1
)
xtime
.
put
(
-
1
)
#plt.ion()
#for i in range(10): pressure_inhale.put(-1)
fig
=
plt
.
figure
()
ax3
=
fig
.
add_subplot
(
221
)
ax4
=
fig
.
add_subplot
(
224
)
h1
,
=
ax3
.
plot
([],[],
"
+-
"
,
label
=
"
buffer
"
)
ax
=
fig
.
add_subplot
(
223
)
h2
,
=
ax
.
plot
([],[],
"
+-
"
,
label
=
"
inhale
"
)
h3
,
=
ax4
.
plot
([],[],
"
+-
"
,
label
=
"
Proportional
"
)
h4
,
=
ax4
.
plot
([],[],
"
+-
"
,
label
=
"
Integral
"
)
h6
,
=
ax
.
plot
([],[],
"
+-
"
,
label
=
"
Patient
"
)
#plt.axes()
#an = []
#ai, = ax.plot(range(10), range(10))
#an.append(ai)
#fig.canvas.draw()
#plt.show(block=False)
x
=
1
#plt.show()
#time.sleep(10)
#airway_pressure = Proportional
#volume = Integral
#flow = Derivative
logfile
=
open
(
sys
.
argv
[
1
])
_data
=
logfile
.
readlines
()
#try:
counter
+=
1.
#data = sys.stdin.readline()
#print("reading file "+sys.argv[1])
if
not
_data
:
sys
.
exit
()
#print(data)
x0
=
-
99999
for
_entry
in
_data
:
data
=
re
.
split
(
"
,
"
,
_entry
)
#print(data)
xtime
.
get
()
_time
=
data
[
0
]
#print(_time)
x
=
time
.
strptime
(
_time
,
'
%Y-%m-%d %H:%M:%S
'
)
#print(x)
#print(time.mktime(x))
#print(float(data[1][:3]))
if
x0
==
-
99999
:
x0
=
time
.
mktime
(
x
)
*
1000
+
float
(
data
[
1
][:
3
])
x
=
time
.
mktime
(
x
)
*
1000
+
float
(
data
[
1
][:
3
])
xtime
.
put
(
x
)
for
entry
in
data
:
if
"
pressure_diff_patient
"
in
entry
and
not
"
mean
"
in
entry
:
_diff_patient_p
=
float
(
entry
.
strip
().
split
(
"
=
"
)[
-
1
]
)
pressure_diff_patient
.
get
()
pressure_diff_patient
.
put
(
_diff_patient_p
)
#print(len(list(pressure_inhale.queue)))
#fig.canvas.draw()
#fig.canvas.flush_events()
#plt.show()
if
"
pressure_patient
"
in
entry
and
not
"
mean
"
in
entry
:
_patient_p
=
float
(
entry
.
strip
().
split
(
"
=
"
)[
-
1
]
)
pressure_patient
.
get
()
pressure_patient
.
put
(
_patient_p
)
#print(len(list(pressure_inhale.queue)))
#fig.canvas.draw()
#fig.canvas.flush_events()
#plt.show()
if
"
pressure_inhale
"
in
entry
and
not
"
mean
"
in
entry
:
_inhale_p
=
float
(
entry
.
strip
().
split
(
"
=
"
)[
-
1
]
)
pressure_inhale
.
get
()
pressure_inhale
.
put
(
_inhale_p
)
#print(len(list(pressure_inhale.queue)))
#fig.canvas.draw()
#fig.canvas.flush_events()
#plt.show()
if
"
pressure_buffer
"
in
entry
and
not
"
mean
"
in
entry
:
_buffer_p
=
float
(
entry
.
strip
().
split
(
"
=
"
)[
-
1
]
)
pressure_buffer
.
get
()
pressure_buffer
.
put
(
_buffer_p
)
#print(len(list(pressure_inhale.queue)))
#fig.canvas.draw()
#fig.canvas.flush_events()
#plt.show()
if
"
airway_pressure
"
in
entry
and
not
"
mean
"
in
entry
:
_PID_P
=
float
(
entry
.
strip
().
split
(
"
=
"
)[
-
1
]
)
PID_P
.
get
()
PID_P
.
put
(
_PID_P
*
100
)
#print(len(list(pressure_inhale.queue)))
#fig.canvas.draw()
#fig.canvas.flush_events()
#plt.show()
if
"
volume
"
in
entry
and
"
)
"
in
entry
:
_PID_I
=
float
(
entry
.
strip
().
split
(
"
=
"
)[
-
1
][:
-
1
]
)
#print(_PID_I)
PID_I
.
get
()
PID_I
.
put
(
_PID_I
*
100
)
#print(len(list(pressure_inhale.queue)))
#fig.canvas.draw()
#fig.canvas.flush_events()
#plt.show()
if
"
flow
"
in
entry
:
_PID_D
=
float
(
entry
.
strip
().
split
(
"
=
"
)[
-
1
]
)
PID_D
.
get
()
PID_D
.
put
(
_PID_D
)
#print(len(list(pressure_inhale.queue)))
#fig.canvas.draw()
#fig.canvas.flush_events()
#plt.show()
#sys.stdout.write(data)
#sys.stdout.flush()
#if counter > 10: fig.savefig('test.png')
#except KeyboardInterrupt:
# print('exiting')
# sys.exit()
ar_xtime
=
np
.
array
(
list
(
xtime
.
queue
))
#ar_xtime = np.flip(ar_xtime)
print
(
ar_xtime
)
ar_xtime
=
ar_xtime
-
ar_xtime
[
0
]
print
(
ar_xtime
)
print
(
ar_xtime
[
-
10
:])
ar_pressure_buffer
=
np
.
array
(
list
(
pressure_buffer
.
queue
))
ar_pressure_inhlale
=
np
.
array
(
list
(
pressure_inhale
.
queue
))
ar_pressure_patient
=
np
.
array
(
list
(
pressure_patient
.
queue
))
ar_pressure_PID_P
=
np
.
array
(
list
(
PID_P
.
queue
))
ar_pressure_PID_I
=
np
.
array
(
list
(
PID_I
.
queue
))
ar_pressure_PID_D
=
np
.
array
(
list
(
PID_D
.
queue
))
ar_flow
=
DP2flow
(
ar_pressure_PID_D
)
h1
.
set_xdata
(
ar_xtime
)
h1
.
set_ydata
(
ar_pressure_buffer
)
#list(pressure_inhale.queue))
plt
.
legend
()
h2
.
set_xdata
(
ar_xtime
)
h2
.
set_ydata
(
ar_pressure_inhlale
)
#list(pressure_buffer.queue))
h3
.
set_xdata
(
ar_xtime
)
h3
.
set_ydata
(
ar_pressure_PID_P
)
#list(pressure_buffer.queue))
#
h4
.
set_xdata
(
ar_xtime
)
h4
.
set_ydata
(
ar_pressure_PID_I
)
#list(pressure_buffer.queue))
plt
.
legend
()
#
h6
.
set_xdata
(
ar_xtime
)
h6
.
set_ydata
(
ar_pressure_patient
)
#list(pressure_buffer.queue))
plt
.
legend
()
ax2
=
fig
.
add_subplot
(
222
)
h12
,
=
ax2
.
plot
([],[],
"
+-
"
,
label
=
"
calc buffer flow
"
)
h13
,
=
ax2
.
plot
([],[],
"
+-
"
,
label
=
"
calc buffer volume
"
)
h14
,
=
ax2
.
plot
([],[],
"
+-
"
,
label
=
"
calc volume measured
"
)
h5
,
=
ax2
.
plot
([],[],
"
+-
"
,
label
=
"
Flow (DP sensor)
"
)
b_flow
=
buffer_flow_pbuff
(
ar_xtime
,
ar_pressure_buffer
,
ar_pressure_inhlale
)
#,
# vbuff = 10.)# inputs should be numpy arrays
h12
.
set_xdata
(
ar_xtime
)
h12
.
set_ydata
(
b_flow
)
h13
.
set_xdata
(
ar_xtime
)
reset_trigger
=
(
ar_flow
<
0.
)
(
fbm
,
fbb
)
=
np
.
polyfit
(
ar_xtime
,
integral
(
ar_xtime
,
b_flow
,
reset_trigger
),
1
)
print
(
"
Estimated leak rate (buff. calc.): %f ml/s
"
%
(
fbm
*
1000.
))
#h13.set_ydata(integral(ar_xtime, b_flow, reset_trigger) - (ar_xtime*fbm) - fbb)
#
h5
.
set_xdata
(
ar_xtime
)
h5
.
set_ydata
(
ar_flow
)
#list(pressure_buffer.queue))
h14
.
set_xdata
(
ar_xtime
)
(
fm
,
fb
)
=
np
.
polyfit
(
ar_xtime
,
integral
(
ar_xtime
,
ar_flow
,
reset_trigger
),
1
)
#h14.set_ydata(integral(ar_xtime, ar_flow, reset_trigger) - (ar_xtime*fm) - fb)
h14
.
set_ydata
(
integral
(
ar_xtime
,
ar_flow
,
reset_trigger
))
print
(
"
Estimated leak rate: %f ml/s
"
%
(
fm
*
1000.
))
h13
.
set_ydata
(
integral
(
ar_xtime
,
b_flow
,
reset_trigger
,
fm
))
plt
.
legend
()
#plt.ylim(-2,20)
ax
.
relim
()
ax2
.
relim
()
ax3
.
relim
()
ax4
.
relim
()
ax
.
autoscale_view
(
True
,
True
,
True
)
ax2
.
autoscale_view
(
True
,
True
,
True
)
ax3
.
autoscale_view
(
True
,
True
,
True
)
ax4
.
autoscale_view
(
True
,
True
,
True
)
#fig.canvas.draw()
#fig.canvas.flush_events()
plt
.
show
()
#time.sleep(0.1)
print
(
np
.
cov
(
ar_pressure_buffer
,
ar_pressure_inhlale
))
#plt.plot(ar_pressure_patient, ar_pressure_inhlale)
#plt.show()
plt
.
plot
(
ar_xtime
,
2.0
*
ar_pressure_inhlale
*
4
)
plt
.
show
()
logfile
.
seek
(
0
)
logfile
.
close
()
This diff is collapsed.
Click to expand it.
Preview
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment