Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
T
tdc-core
Manage
Activity
Members
Code
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Deploy
Releases
Analyze
Contributor analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
This is an archived project. Repository and other project resources are read-only.
hdl-core-lib
tdc-core
Commits
cd898888
Commit
cd898888
authored
13 years ago
by
Sebastien Bourdeauducq
Browse files
Options
Downloads
Patches
Plain Diff
Calibration formulas
parent
3fb9966d
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
doc/Makefile
+1
-0
1 addition, 0 deletions
doc/Makefile
doc/tdc.tex
+26
-1
26 additions, 1 deletion
doc/tdc.tex
with
27 additions
and
1 deletion
doc/Makefile
+
1
−
0
View file @
cd898888
TEX
=
tdc.tex
PDF
=
$(
TEX:.tex
=
.pdf
)
AUX
=
$(
TEX:.tex
=
.aux
)
LOG
=
$(
TEX:.tex
=
.log
)
...
...
This diff is collapsed.
Click to expand it.
doc/tdc.tex
+
26
−
1
View file @
cd898888
...
...
@@ -18,6 +18,31 @@
\setlength
{
\parskip
}{
5pt
}
\maketitle
{}
\section
{
Specifications
}
TODO
\section
{
Calibration mechanism
}
In the formulas below:
\begin{itemize}
\item
$
T
_{
sys
}$
is the system clock period.
\item
$
H
(
n
)
$
is the number of hits in the histogram for bin
$
n
$
.
\item
$
W
(
n
)
$
is the width of bin
$
n
$
.
\item
$
C
=
\displaystyle\sum\limits
_{
n
}
H
(
n
)
$
is the total number of hits in the histogram.
\item
$
R
(
n
)
$
is the time stamp of an event whose signal propagated up to bin
$
n
$
. The LUT contains the function
$
R
$
.
\item
$
f
$
(respectively
$
f
_{
0
}$
) is the current (respectively reference) frequency of the online calibration ring oscillator.
\end{itemize}
\subsection
{
Offline calibration
}
\begin{equation}
W
_{
0
}
(n) =
\frac
{
H(n)
}{
C
}
\cdot
T
_{
sys
}
\end{equation}
\begin{equation}
R
_{
0
}
(n) =
\displaystyle\sum\limits
_{
i=0
}^{
n
}{
W
_{
0
}
(i)
}
=
\frac
{
T
_{
sys
}}{
C
}
\cdot
\displaystyle\sum\limits
_{
i=0
}^{
n
}{
H(i)
}
\end{equation}
\subsection
{
Online calibration
}
\begin{equation}
R(n) =
\frac
{
f
_{
0
}}{
f
}
\cdot
R
_{
0
}
(n)
\end{equation}
\end{document}
This diff is collapsed.
Click to expand it.
Preview
0%
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment