Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
/*
* Copyright (C) 2012 CERN (www.cern.ch)
* Author: Alessandro Rubini <rubini@gnudd.com>
*
* Released according to the GNU GPL, version 2 or any later version.
*
* This work is part of the White Rabbit project, a research effort led
* by CERN, the European Institute for Nuclear Research.
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/fmc.h>
#include <linux/sdb.h>
#include <linux/err.h>
#include <linux/fmc-sdb.h>
#include <asm/byteorder.h>
static uint32_t __sdb_rd(struct fmc_device *fmc, unsigned long address,
int convert)
{
uint32_t res = fmc_readl(fmc, address);
if (convert)
return __be32_to_cpu(res);
return res;
}
static struct sdb_array *__fmc_scan_sdb_tree(struct fmc_device *fmc,
unsigned long address, int level)
{
uint32_t onew;
int i, j, n, convert = 0;
struct sdb_array *arr, *sub;
onew = fmc_readl(fmc, address);
if (onew == SDB_MAGIC) {
/* Uh! If we are little-endian, we must convert */
if (SDB_MAGIC != __be32_to_cpu(SDB_MAGIC))
convert = 1;
} else if (onew == __be32_to_cpu(SDB_MAGIC)) {
/* ok, don't convert */
} else {
return ERR_PTR(-ENOENT);
}
/* So, the magic was there: get the count from offset 4*/
onew = __sdb_rd(fmc, address + 4, convert);
n = __be16_to_cpu(*(uint16_t *)&onew);
dev_info(fmc->hwdev, "address %lx, %i items (%08x) - c %i\n", address,
n, onew, convert);
arr = kzalloc(sizeof(*arr), GFP_KERNEL);
if (arr) {
arr->record = kzalloc(sizeof(arr->record[0]) * n, GFP_KERNEL);
arr->subtree = kzalloc(sizeof(arr->subtree[0]) * n, GFP_KERNEL);
}
if (!arr || !arr->record || !arr->subtree) {
kfree(arr->record);
kfree(arr->subtree);
kfree(arr);
return ERR_PTR(-ENOMEM);
}
arr->len = n;
arr->level = level;
arr->fmc = fmc;
for (i = 0; i < n; i++) {
union sdb_record *r;
for (j = 0; j < sizeof(arr->record[0]); j += 4) {
*(uint32_t *)((void *)(arr->record + i) + j) =
__sdb_rd(fmc, address + (i * 64) + j, convert);
}
r = &arr->record[i];
if (r->empty.record_type == sdb_type_bridge) {
uint64_t subaddr = r->bridge.sdb_child;
struct sdb_component *c;
c = &r->bridge.sdb_component;
subaddr = __be64_to_cpu(subaddr);
sub = __fmc_scan_sdb_tree(fmc, subaddr, level + 1);
arr->subtree[i] = sub; /* may be error */
if (IS_ERR(sub))
continue;
sub->parent = arr;
sub->baseaddr = __be64_to_cpu(c->addr_first);
}
}
return arr;
}
int fmc_scan_sdb_tree(struct fmc_device *fmc, unsigned long address)
{
struct sdb_array *ret;
if (fmc->sdb)
return -EBUSY;
ret = __fmc_scan_sdb_tree(fmc, address, 0);
if (IS_ERR(ret))
return PTR_ERR(ret);
fmc->sdb = ret;
return 0;
}
EXPORT_SYMBOL(fmc_scan_sdb_tree);
static void __fmc_sdb_free(struct sdb_array *arr)
{
int i, n;
if (!arr) return;
n = arr->len;
for (i = 0; i < n; i++) {
if (IS_ERR(arr->subtree[i]))
continue;
__fmc_sdb_free(arr->subtree[i]);
}
kfree(arr->record);
kfree(arr->subtree);
kfree(arr);
}
int fmc_free_sdb_tree(struct fmc_device *fmc)
{
__fmc_sdb_free(fmc->sdb);
fmc->sdb = NULL;
return 0;
}
EXPORT_SYMBOL(fmc_free_sdb_tree);
static void __fmc_show_sdb_tree(struct sdb_array *arr)
{
int i, j, n = arr->len, level = arr->level;
struct sdb_array *ap;
unsigned long base;
union sdb_record *r;
struct sdb_product *p;
struct sdb_component *c;
for (j = 0; j < level; j++)
printk(" ");
r = &arr->record[i];
c = &r->dev.sdb_component;
p = &c->product;
base = 0;
for (ap = arr; ap; ap = ap->parent)
base += ap->baseaddr;
switch(r->empty.record_type) {
case sdb_type_interconnect:
printk("%08llx:%08x %.19s\n",
__be64_to_cpu(p->vendor_id),
__be32_to_cpu(p->device_id),
p->name);
break;
case sdb_type_device:
printk("%08llx:%08x %.19s (%08llx-%08llx)\n",
__be64_to_cpu(p->vendor_id),
__be32_to_cpu(p->device_id),
p->name,
__be64_to_cpu(c->addr_first) + base,
__be64_to_cpu(c->addr_last) + base);
printk("%08llx:%08x %.19s (bridge: %08llx)\n",
__be64_to_cpu(p->vendor_id),
__be32_to_cpu(p->device_id),
p->name,
__be64_to_cpu(c->addr_first) + base);
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
if (IS_ERR(arr->subtree[i])) {
printk("(bridge error %li)\n",
PTR_ERR(arr->subtree[i]));
break;
}
__fmc_show_sdb_tree(arr->subtree[i]);
break;
case sdb_type_integration:
printk("integration\n");
break;
case sdb_type_empty:
printk("empty\n");
break;
default:
printk("UNKNOWN TYPE 0x%02x\n", r->empty.record_type);
break;
}
}
}
void fmc_show_sdb_tree(struct fmc_device *fmc)
{
if (!fmc->sdb)
return;
__fmc_show_sdb_tree(fmc->sdb);
}
EXPORT_SYMBOL(fmc_show_sdb_tree);
unsigned long fmc_find_sdb_device(struct sdb_array *tree)
{
return 0;
}