Commit e6657132 authored by Alessandro Rubini's avatar Alessandro Rubini

softpll/ copied back from ptp-noposix

After several back and forth, we agreed that softpll should live in
wrpc-sw, even if it is also used on the wr switch.  I don't pick up
the history, because the tool got renamed and moved several times.

This comes from commit 1e2c71d1f0e1094adc6c2eb46e30d4164262f85c, the
current master of ptp-noposix (the one that is currently a subproject)
Signed-off-by: Alessandro Rubini's avatarAlessandro Rubini <rubini@gnudd.com>
parent 0a078a33
/*
Register definitions for slave core: WR Switch PPS generator and RTC
* File : pps_gen_regs.h
* Author : auto-generated by wbgen2 from wrsw_pps_gen.wb
* Created : Thu Oct 27 21:29:19 2011
* Standard : ANSI C
THIS FILE WAS GENERATED BY wbgen2 FROM SOURCE FILE wrsw_pps_gen.wb
DO NOT HAND-EDIT UNLESS IT'S ABSOLUTELY NECESSARY!
*/
#ifndef __WBGEN2_REGDEFS_WRSW_PPS_GEN_WB
#define __WBGEN2_REGDEFS_WRSW_PPS_GEN_WB
#if defined( __GNUC__)
#define PACKED __attribute__ ((packed))
#else
#error "Unsupported compiler?"
#endif
#ifndef __WBGEN2_MACROS_DEFINED__
#define __WBGEN2_MACROS_DEFINED__
#define WBGEN2_GEN_MASK(offset, size) (((1<<(size))-1) << (offset))
#define WBGEN2_GEN_WRITE(value, offset, size) (((value) & ((1<<(size))-1)) << (offset))
#define WBGEN2_GEN_READ(reg, offset, size) (((reg) >> (offset)) & ((1<<(size))-1))
#define WBGEN2_SIGN_EXTEND(value, bits) (((value) & (1<<bits) ? ~((1<<(bits))-1): 0 ) | (value))
#endif
/* definitions for register: Control Register */
/* definitions for field: Reset counter in reg: Control Register */
#define PPSG_CR_CNT_RST WBGEN2_GEN_MASK(0, 1)
/* definitions for field: Enable counter in reg: Control Register */
#define PPSG_CR_CNT_EN WBGEN2_GEN_MASK(1, 1)
/* definitions for field: Adjust offset in reg: Control Register */
#define PPSG_CR_CNT_ADJ WBGEN2_GEN_MASK(2, 1)
/* definitions for field: Set time in reg: Control Register */
#define PPSG_CR_CNT_SET WBGEN2_GEN_MASK(3, 1)
/* definitions for field: PPS Pulse width in reg: Control Register */
#define PPSG_CR_PWIDTH_MASK WBGEN2_GEN_MASK(4, 28)
#define PPSG_CR_PWIDTH_SHIFT 4
#define PPSG_CR_PWIDTH_W(value) WBGEN2_GEN_WRITE(value, 4, 28)
#define PPSG_CR_PWIDTH_R(reg) WBGEN2_GEN_READ(reg, 4, 28)
/* definitions for register: Nanosecond counter register */
/* definitions for register: UTC Counter register (least-significant part) */
/* definitions for register: UTC Counter register (most-significant part) */
/* definitions for register: Nanosecond adjustment register */
/* definitions for register: UTC Adjustment register (least-significant part) */
/* definitions for register: UTC Adjustment register (most-significant part) */
/* definitions for register: External sync control register */
/* definitions for field: Sync to external PPS input in reg: External sync control register */
#define PPSG_ESCR_SYNC WBGEN2_GEN_MASK(0, 1)
/* definitions for field: PPS output valid in reg: External sync control register */
#define PPSG_ESCR_PPS_VALID WBGEN2_GEN_MASK(1, 1)
/* definitions for field: Timecode output(UTC+cycles) valid in reg: External sync control register */
#define PPSG_ESCR_TM_VALID WBGEN2_GEN_MASK(2, 1)
PACKED struct PPSG_WB {
/* [0x0]: REG Control Register */
uint32_t CR;
/* [0x4]: REG Nanosecond counter register */
uint32_t CNTR_NSEC;
/* [0x8]: REG UTC Counter register (least-significant part) */
uint32_t CNTR_UTCLO;
/* [0xc]: REG UTC Counter register (most-significant part) */
uint32_t CNTR_UTCHI;
/* [0x10]: REG Nanosecond adjustment register */
uint32_t ADJ_NSEC;
/* [0x14]: REG UTC Adjustment register (least-significant part) */
uint32_t ADJ_UTCLO;
/* [0x18]: REG UTC Adjustment register (most-significant part) */
uint32_t ADJ_UTCHI;
/* [0x1c]: REG External sync control register */
uint32_t ESCR;
};
#endif
/*
Register definitions for slave core: WR Softcore PLL
* File : softpll_regs.h
* Author : auto-generated by wbgen2 from spll_wb_slave.wb
* Created : Mon Jul 23 15:02:57 2012
* Standard : ANSI C
THIS FILE WAS GENERATED BY wbgen2 FROM SOURCE FILE spll_wb_slave.wb
DO NOT HAND-EDIT UNLESS IT'S ABSOLUTELY NECESSARY!
*/
#ifndef __WBGEN2_REGDEFS_SPLL_WB_SLAVE_WB
#define __WBGEN2_REGDEFS_SPLL_WB_SLAVE_WB
#include <stdint.h>
#if defined( __GNUC__)
#define PACKED __attribute__ ((packed))
#else
#error "Unsupported compiler?"
#endif
#ifndef __WBGEN2_MACROS_DEFINED__
#define __WBGEN2_MACROS_DEFINED__
#define WBGEN2_GEN_MASK(offset, size) (((1<<(size))-1) << (offset))
#define WBGEN2_GEN_WRITE(value, offset, size) (((value) & ((1<<(size))-1)) << (offset))
#define WBGEN2_GEN_READ(reg, offset, size) (((reg) >> (offset)) & ((1<<(size))-1))
#define WBGEN2_SIGN_EXTEND(value, bits) (((value) & (1<<bits) ? ~((1<<(bits))-1): 0 ) | (value))
#endif
/* definitions for register: SPLL Control/Status Register */
/* definitions for field: Period detector reference select in reg: SPLL Control/Status Register */
#define SPLL_CSR_PER_SEL_MASK WBGEN2_GEN_MASK(0, 6)
#define SPLL_CSR_PER_SEL_SHIFT 0
#define SPLL_CSR_PER_SEL_W(value) WBGEN2_GEN_WRITE(value, 0, 6)
#define SPLL_CSR_PER_SEL_R(reg) WBGEN2_GEN_READ(reg, 0, 6)
/* definitions for field: Number of reference channels (max: 32) in reg: SPLL Control/Status Register */
#define SPLL_CSR_N_REF_MASK WBGEN2_GEN_MASK(8, 6)
#define SPLL_CSR_N_REF_SHIFT 8
#define SPLL_CSR_N_REF_W(value) WBGEN2_GEN_WRITE(value, 8, 6)
#define SPLL_CSR_N_REF_R(reg) WBGEN2_GEN_READ(reg, 8, 6)
/* definitions for field: Number of output channels (max: 8) in reg: SPLL Control/Status Register */
#define SPLL_CSR_N_OUT_MASK WBGEN2_GEN_MASK(16, 3)
#define SPLL_CSR_N_OUT_SHIFT 16
#define SPLL_CSR_N_OUT_W(value) WBGEN2_GEN_WRITE(value, 16, 3)
#define SPLL_CSR_N_OUT_R(reg) WBGEN2_GEN_READ(reg, 16, 3)
/* definitions for field: Enable Period Measurement in reg: SPLL Control/Status Register */
#define SPLL_CSR_PER_EN WBGEN2_GEN_MASK(19, 1)
/* definitions for register: External Clock Control Register */
/* definitions for field: Enable External Clock BB Detector in reg: External Clock Control Register */
#define SPLL_ECCR_EXT_EN WBGEN2_GEN_MASK(0, 1)
/* definitions for field: External Clock Input Available in reg: External Clock Control Register */
#define SPLL_ECCR_EXT_SUPPORTED WBGEN2_GEN_MASK(1, 1)
/* definitions for field: Enable PPS/phase alignment in reg: External Clock Control Register */
#define SPLL_ECCR_ALIGN_EN WBGEN2_GEN_MASK(2, 1)
/* definitions for field: PPS/phase alignment done in reg: External Clock Control Register */
#define SPLL_ECCR_ALIGN_DONE WBGEN2_GEN_MASK(3, 1)
/* definitions for field: External Clock Reference Present in reg: External Clock Control Register */
#define SPLL_ECCR_EXT_REF_PRESENT WBGEN2_GEN_MASK(4, 1)
/* definitions for register: DMTD Clock Control Register */
/* definitions for field: DMTD Clock Undersampling Divider in reg: DMTD Clock Control Register */
#define SPLL_DCCR_GATE_DIV_MASK WBGEN2_GEN_MASK(0, 6)
#define SPLL_DCCR_GATE_DIV_SHIFT 0
#define SPLL_DCCR_GATE_DIV_W(value) WBGEN2_GEN_WRITE(value, 0, 6)
#define SPLL_DCCR_GATE_DIV_R(reg) WBGEN2_GEN_READ(reg, 0, 6)
/* definitions for register: Reference Channel Undersampling Enable Register */
/* definitions for field: Reference Channel Undersampling Enable in reg: Reference Channel Undersampling Enable Register */
#define SPLL_RCGER_GATE_SEL_MASK WBGEN2_GEN_MASK(0, 32)
#define SPLL_RCGER_GATE_SEL_SHIFT 0
#define SPLL_RCGER_GATE_SEL_W(value) WBGEN2_GEN_WRITE(value, 0, 32)
#define SPLL_RCGER_GATE_SEL_R(reg) WBGEN2_GEN_READ(reg, 0, 32)
/* definitions for register: Output Channel Control Register */
/* definitions for field: Output Channel HW enable flag in reg: Output Channel Control Register */
#define SPLL_OCCR_OUT_EN_MASK WBGEN2_GEN_MASK(0, 8)
#define SPLL_OCCR_OUT_EN_SHIFT 0
#define SPLL_OCCR_OUT_EN_W(value) WBGEN2_GEN_WRITE(value, 0, 8)
#define SPLL_OCCR_OUT_EN_R(reg) WBGEN2_GEN_READ(reg, 0, 8)
/* definitions for field: Output Channel locked flag in reg: Output Channel Control Register */
#define SPLL_OCCR_OUT_LOCK_MASK WBGEN2_GEN_MASK(8, 8)
#define SPLL_OCCR_OUT_LOCK_SHIFT 8
#define SPLL_OCCR_OUT_LOCK_W(value) WBGEN2_GEN_WRITE(value, 8, 8)
#define SPLL_OCCR_OUT_LOCK_R(reg) WBGEN2_GEN_READ(reg, 8, 8)
/* definitions for register: Reference Channel Enable Register */
/* definitions for register: Output Channel Enable Register */
/* definitions for register: HPLL Period Error */
/* definitions for field: Period error value in reg: HPLL Period Error */
#define SPLL_PER_HPLL_ERROR_MASK WBGEN2_GEN_MASK(0, 16)
#define SPLL_PER_HPLL_ERROR_SHIFT 0
#define SPLL_PER_HPLL_ERROR_W(value) WBGEN2_GEN_WRITE(value, 0, 16)
#define SPLL_PER_HPLL_ERROR_R(reg) WBGEN2_GEN_READ(reg, 0, 16)
/* definitions for field: Period Error Valid in reg: HPLL Period Error */
#define SPLL_PER_HPLL_VALID WBGEN2_GEN_MASK(16, 1)
/* definitions for register: Helper DAC Output */
/* definitions for register: Main DAC Output */
/* definitions for field: DAC value in reg: Main DAC Output */
#define SPLL_DAC_MAIN_VALUE_MASK WBGEN2_GEN_MASK(0, 16)
#define SPLL_DAC_MAIN_VALUE_SHIFT 0
#define SPLL_DAC_MAIN_VALUE_W(value) WBGEN2_GEN_WRITE(value, 0, 16)
#define SPLL_DAC_MAIN_VALUE_R(reg) WBGEN2_GEN_READ(reg, 0, 16)
/* definitions for field: DAC select in reg: Main DAC Output */
#define SPLL_DAC_MAIN_DAC_SEL_MASK WBGEN2_GEN_MASK(16, 4)
#define SPLL_DAC_MAIN_DAC_SEL_SHIFT 16
#define SPLL_DAC_MAIN_DAC_SEL_W(value) WBGEN2_GEN_WRITE(value, 16, 4)
#define SPLL_DAC_MAIN_DAC_SEL_R(reg) WBGEN2_GEN_READ(reg, 16, 4)
/* definitions for register: Deglitcher threshold */
/* definitions for register: Debug FIFO Register - SPLL side */
/* definitions for field: Debug Value in reg: Debug FIFO Register - SPLL side */
#define SPLL_DFR_SPLL_VALUE_MASK WBGEN2_GEN_MASK(0, 31)
#define SPLL_DFR_SPLL_VALUE_SHIFT 0
#define SPLL_DFR_SPLL_VALUE_W(value) WBGEN2_GEN_WRITE(value, 0, 31)
#define SPLL_DFR_SPLL_VALUE_R(reg) WBGEN2_GEN_READ(reg, 0, 31)
/* definitions for field: End-of-Sample in reg: Debug FIFO Register - SPLL side */
#define SPLL_DFR_SPLL_EOS_MASK WBGEN2_GEN_MASK(31, 1)
#define SPLL_DFR_SPLL_EOS_SHIFT 31
#define SPLL_DFR_SPLL_EOS_W(value) WBGEN2_GEN_WRITE(value, 31, 1)
#define SPLL_DFR_SPLL_EOS_R(reg) WBGEN2_GEN_READ(reg, 31, 1)
/* definitions for register: Counter Resync Register - input channels */
/* definitions for register: Counter Resync Register - output channels */
/* definitions for register: Interrupt disable register */
/* definitions for field: Got a tag in reg: Interrupt disable register */
#define SPLL_EIC_IDR_TAG WBGEN2_GEN_MASK(0, 1)
/* definitions for register: Interrupt enable register */
/* definitions for field: Got a tag in reg: Interrupt enable register */
#define SPLL_EIC_IER_TAG WBGEN2_GEN_MASK(0, 1)
/* definitions for register: Interrupt mask register */
/* definitions for field: Got a tag in reg: Interrupt mask register */
#define SPLL_EIC_IMR_TAG WBGEN2_GEN_MASK(0, 1)
/* definitions for register: Interrupt status register */
/* definitions for field: Got a tag in reg: Interrupt status register */
#define SPLL_EIC_ISR_TAG WBGEN2_GEN_MASK(0, 1)
/* definitions for register: FIFO 'Debug FIFO Register - Host side' data output register 0 */
/* definitions for field: Value in reg: FIFO 'Debug FIFO Register - Host side' data output register 0 */
#define SPLL_DFR_HOST_R0_VALUE_MASK WBGEN2_GEN_MASK(0, 32)
#define SPLL_DFR_HOST_R0_VALUE_SHIFT 0
#define SPLL_DFR_HOST_R0_VALUE_W(value) WBGEN2_GEN_WRITE(value, 0, 32)
#define SPLL_DFR_HOST_R0_VALUE_R(reg) WBGEN2_GEN_READ(reg, 0, 32)
/* definitions for register: FIFO 'Debug FIFO Register - Host side' data output register 1 */
/* definitions for field: Seq ID in reg: FIFO 'Debug FIFO Register - Host side' data output register 1 */
#define SPLL_DFR_HOST_R1_SEQ_ID_MASK WBGEN2_GEN_MASK(0, 16)
#define SPLL_DFR_HOST_R1_SEQ_ID_SHIFT 0
#define SPLL_DFR_HOST_R1_SEQ_ID_W(value) WBGEN2_GEN_WRITE(value, 0, 16)
#define SPLL_DFR_HOST_R1_SEQ_ID_R(reg) WBGEN2_GEN_READ(reg, 0, 16)
/* definitions for register: FIFO 'Debug FIFO Register - Host side' control/status register */
/* definitions for field: FIFO full flag in reg: FIFO 'Debug FIFO Register - Host side' control/status register */
#define SPLL_DFR_HOST_CSR_FULL WBGEN2_GEN_MASK(16, 1)
/* definitions for field: FIFO empty flag in reg: FIFO 'Debug FIFO Register - Host side' control/status register */
#define SPLL_DFR_HOST_CSR_EMPTY WBGEN2_GEN_MASK(17, 1)
/* definitions for field: FIFO counter in reg: FIFO 'Debug FIFO Register - Host side' control/status register */
#define SPLL_DFR_HOST_CSR_USEDW_MASK WBGEN2_GEN_MASK(0, 13)
#define SPLL_DFR_HOST_CSR_USEDW_SHIFT 0
#define SPLL_DFR_HOST_CSR_USEDW_W(value) WBGEN2_GEN_WRITE(value, 0, 13)
#define SPLL_DFR_HOST_CSR_USEDW_R(reg) WBGEN2_GEN_READ(reg, 0, 13)
/* definitions for register: FIFO 'Tag Readout Register' data output register 0 */
/* definitions for field: Tag value in reg: FIFO 'Tag Readout Register' data output register 0 */
#define SPLL_TRR_R0_VALUE_MASK WBGEN2_GEN_MASK(0, 24)
#define SPLL_TRR_R0_VALUE_SHIFT 0
#define SPLL_TRR_R0_VALUE_W(value) WBGEN2_GEN_WRITE(value, 0, 24)
#define SPLL_TRR_R0_VALUE_R(reg) WBGEN2_GEN_READ(reg, 0, 24)
/* definitions for field: Channel ID in reg: FIFO 'Tag Readout Register' data output register 0 */
#define SPLL_TRR_R0_CHAN_ID_MASK WBGEN2_GEN_MASK(24, 7)
#define SPLL_TRR_R0_CHAN_ID_SHIFT 24
#define SPLL_TRR_R0_CHAN_ID_W(value) WBGEN2_GEN_WRITE(value, 24, 7)
#define SPLL_TRR_R0_CHAN_ID_R(reg) WBGEN2_GEN_READ(reg, 24, 7)
/* definitions for field: Discontinuous bit in reg: FIFO 'Tag Readout Register' data output register 0 */
#define SPLL_TRR_R0_DISC WBGEN2_GEN_MASK(31, 1)
/* definitions for register: FIFO 'Tag Readout Register' control/status register */
/* definitions for field: FIFO empty flag in reg: FIFO 'Tag Readout Register' control/status register */
#define SPLL_TRR_CSR_EMPTY WBGEN2_GEN_MASK(17, 1)
PACKED struct SPLL_WB {
/* [0x0]: REG SPLL Control/Status Register */
uint32_t CSR;
/* [0x4]: REG External Clock Control Register */
uint32_t ECCR;
/* [0x8]: REG DMTD Clock Control Register */
uint32_t DCCR;
/* [0xc]: REG Reference Channel Undersampling Enable Register */
uint32_t RCGER;
/* [0x10]: REG Output Channel Control Register */
uint32_t OCCR;
/* [0x14]: REG Reference Channel Enable Register */
uint32_t RCER;
/* [0x18]: REG Output Channel Enable Register */
uint32_t OCER;
/* [0x1c]: REG HPLL Period Error */
uint32_t PER_HPLL;
/* [0x20]: REG Helper DAC Output */
uint32_t DAC_HPLL;
/* [0x24]: REG Main DAC Output */
uint32_t DAC_MAIN;
/* [0x28]: REG Deglitcher threshold */
uint32_t DEGLITCH_THR;
/* [0x2c]: REG Debug FIFO Register - SPLL side */
uint32_t DFR_SPLL;
/* [0x30]: REG Counter Resync Register - input channels */
uint32_t CRR_IN;
/* [0x34]: REG Counter Resync Register - output channels */
uint32_t CRR_OUT;
/* padding to: 16 words */
uint32_t __padding_0[2];
/* [0x40]: REG Interrupt disable register */
uint32_t EIC_IDR;
/* [0x44]: REG Interrupt enable register */
uint32_t EIC_IER;
/* [0x48]: REG Interrupt mask register */
uint32_t EIC_IMR;
/* [0x4c]: REG Interrupt status register */
uint32_t EIC_ISR;
/* [0x50]: REG FIFO 'Debug FIFO Register - Host side' data output register 0 */
uint32_t DFR_HOST_R0;
/* [0x54]: REG FIFO 'Debug FIFO Register - Host side' data output register 1 */
uint32_t DFR_HOST_R1;
/* [0x58]: REG FIFO 'Debug FIFO Register - Host side' control/status register */
uint32_t DFR_HOST_CSR;
/* [0x5c]: REG FIFO 'Tag Readout Register' data output register 0 */
uint32_t TRR_R0;
/* [0x60]: REG FIFO 'Tag Readout Register' control/status register */
uint32_t TRR_CSR;
};
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "board.h"
#include "trace.h"
#include "hw/softpll_regs.h"
#include "hw/pps_gen_regs.h"
#include "softpll_ng.h"
#include "irq.h"
volatile int irq_count = 0;
static volatile struct SPLL_WB *SPLL;
static volatile struct PPSG_WB *PPSG;
/* The includes below contain code (not only declarations) to enable the compiler
to inline functions where necessary and save some CPU cycles */
#include "spll_defs.h"
#include "spll_common.h"
#include "spll_debug.h"
#include "spll_helper.h"
#include "spll_main.h"
#include "spll_ptracker.h"
#include "spll_external.h"
#define SEQ_START_EXT 1
#define SEQ_WAIT_EXT 2
#define SEQ_START_HELPER 3
#define SEQ_WAIT_HELPER 4
#define SEQ_START_MAIN 5
#define SEQ_WAIT_MAIN 6
#define SEQ_DISABLED 7
#define SEQ_READY 8
#define SEQ_CLEAR_DACS 9
#define SEQ_WAIT_CLEAR_DACS 10
#define AUX_DISABLED 1
#define AUX_LOCK_PLL 2
#define AUX_ALIGN_PHASE 3
#define AUX_READY 4
struct spll_aux_state {
int state;
int32_t phase_target;
};
struct softpll_state {
int mode;
int seq_state;
int helper_locked;
int dac_timeout;
int default_dac_main;
int delock_count;
int32_t mpll_shift_ps;
struct spll_helper_state helper;
struct spll_external_state ext;
struct spll_main_state mpll;
struct spll_main_state aux[MAX_CHAN_AUX];
struct spll_aux_state aux_fsm[MAX_CHAN_AUX];
struct spll_ptracker_state ptrackers[MAX_PTRACKERS];
};
static volatile struct softpll_state softpll;
static volatile int ptracker_mask = 0; /* fixme: should be done by spll_init() but spll_init is called to switch modes (and we won't like messing around with ptrackers there) */
void _irq_entry()
{
volatile uint32_t trr;
int src = -1, tag, i;
struct softpll_state *s = (struct softpll_state *) &softpll;
/* check if there are more tags in the FIFO */
while(! (SPLL->TRR_CSR & SPLL_TRR_CSR_EMPTY))
{
trr = SPLL->TRR_R0;
src = SPLL_TRR_R0_CHAN_ID_R(trr);
tag = SPLL_TRR_R0_VALUE_R(trr);
switch(softpll.seq_state)
{
case SEQ_CLEAR_DACS:
SPLL->DAC_HPLL = 65535;
SPLL->DAC_MAIN = softpll.default_dac_main;
SPLL->OCER |= 1;
softpll.seq_state = SEQ_WAIT_CLEAR_DACS;
softpll.dac_timeout = timer_get_tics();
if(softpll.mode == SPLL_MODE_SLAVE)
spll_resync_dmtd_counter(softpll.mpll.id_ref);
break;
case SEQ_WAIT_CLEAR_DACS:
if(timer_get_tics() - softpll.dac_timeout > TICS_PER_SECOND/20)
softpll.seq_state = (softpll.mode == SPLL_MODE_GRAND_MASTER ? SEQ_START_EXT : SEQ_START_HELPER);
break;
case SEQ_DISABLED:
break;
case SEQ_START_EXT:
external_update((struct spll_external_state *) &s->ext, tag, src);
external_start((struct spll_external_state *) &s->ext);
softpll.seq_state = SEQ_WAIT_EXT;
break;
case SEQ_WAIT_EXT:
if(external_locked((struct spll_external_state *) &s->ext))
softpll.seq_state = SEQ_START_HELPER;
break;
case SEQ_START_HELPER:
softpll.helper_locked = 0;
helper_start((struct spll_helper_state *) &s->helper);
softpll.seq_state = SEQ_WAIT_HELPER;
break;
case SEQ_WAIT_HELPER:
if(softpll.helper.ld.locked && !softpll.helper_locked)
{
softpll.helper_locked = 1;
if(softpll.mode == SPLL_MODE_SLAVE)
softpll.seq_state = SEQ_START_MAIN;
else {
for(i=0;i<n_chan_ref; i++)
if(ptracker_mask & (1<<i))
ptracker_start((struct spll_ptracker_state *) &s->ptrackers[i]);
softpll.seq_state = SEQ_READY;
}
}
break;
case SEQ_START_MAIN:
mpll_start((struct spll_main_state *) &s->mpll);
softpll.seq_state = SEQ_WAIT_MAIN;
break;
case SEQ_WAIT_MAIN:
if(softpll.mpll.ld.locked)
{
softpll.seq_state = SEQ_READY;
for(i=0;i<n_chan_ref; i++)
if(ptracker_mask & (1<<i))
ptracker_start((struct spll_ptracker_state *) &s->ptrackers[i]);
}
break;
case SEQ_READY:
if(!softpll.helper.ld.locked)
{
softpll.seq_state = SEQ_CLEAR_DACS;
softpll.delock_count++;
} else if (softpll.mode == SPLL_MODE_GRAND_MASTER && !external_locked((struct spll_external_state *) &s->ext))
{
softpll.seq_state = SEQ_START_EXT;
softpll.delock_count++;
} else if (softpll.mode == SPLL_MODE_SLAVE && !softpll.mpll.ld.locked)
{
softpll.seq_state = SEQ_CLEAR_DACS;
softpll.delock_count++;
};
break;
};
switch(softpll.seq_state)
{
case SEQ_WAIT_EXT:
external_update((struct spll_external_state *) &s->ext, tag, src);
break;
case SEQ_WAIT_HELPER:
if(softpll.mode == SPLL_MODE_GRAND_MASTER)
external_update((struct spll_external_state *) &s->ext, tag, src);
helper_update((struct spll_helper_state *) &s->helper, tag, src);
break;
case SEQ_WAIT_MAIN:
case SEQ_READY:
helper_update((struct spll_helper_state *) &s->helper, tag, src);
if(softpll.mode == SPLL_MODE_GRAND_MASTER)
external_update((struct spll_external_state *) &s->ext, tag, src);
if(softpll.mode == SPLL_MODE_SLAVE)
{
mpll_update((struct spll_main_state *) &s->mpll, tag, src);
for(i=0;i<n_chan_out-1;i++)
mpll_update(&softpll.aux[i], tag, src);
}
for(i=0;i<n_chan_ref; i++)
if(ptracker_mask & (1<<i))
ptracker_update((struct spll_ptracker_state *) &s->ptrackers[i], tag, src);
break;
}
}
irq_count++;
clear_irq();
}
void spll_clear_dacs()
{
SPLL->DAC_HPLL = 0;
SPLL->DAC_MAIN = 0;
timer_delay(10000);
}
void spll_init(int mode, int slave_ref_channel, int align_pps)
{
char mode_str[20];
volatile int dummy;
int i;
SPLL = (volatile struct SPLL_WB *) BASE_SOFTPLL;
PPSG = (volatile struct PPSG_WB *) BASE_PPS_GEN;
disable_irq();
n_chan_ref = SPLL_CSR_N_REF_R(SPLL->CSR);
n_chan_out = SPLL_CSR_N_OUT_R(SPLL->CSR);
softpll.helper_locked = 0;
softpll.mode = mode;
softpll.default_dac_main = 0;
softpll.delock_count = 0;
SPLL->DAC_HPLL = 0;
SPLL->DAC_MAIN = 0;
SPLL->CSR= 0 ;
SPLL->OCER = 0;
SPLL->RCER = 0;
SPLL->ECCR = 0;
SPLL->RCGER = 0;
SPLL->DCCR = 0;
SPLL->OCCR = 0;
SPLL->DEGLITCH_THR = 1000;
PPSG->ESCR = 0;
PPSG->CR = PPSG_CR_CNT_EN | PPSG_CR_CNT_RST | PPSG_CR_PWIDTH_W(100);
switch(mode)
{
case SPLL_MODE_DISABLED:
strcpy(mode_str, "Disabled");
softpll.seq_state = SEQ_DISABLED;
break;
case SPLL_MODE_GRAND_MASTER:
strcpy(mode_str, "Grand Master");
softpll.seq_state = SEQ_CLEAR_DACS;
external_init(&softpll.ext, n_chan_ref + n_chan_out, align_pps);
helper_init(&softpll.helper, n_chan_ref);
mpll_init(&softpll.mpll, slave_ref_channel, n_chan_ref);
for(i=0;i<n_chan_out-1;i++)
{
mpll_init(&softpll.aux[i], slave_ref_channel, n_chan_ref + i + 1);
softpll.aux_fsm[i].state = AUX_DISABLED;
}
break;
case SPLL_MODE_FREE_RUNNING_MASTER:
strcpy(mode_str, "Free-running Master");
softpll.seq_state = SEQ_CLEAR_DACS;
softpll.default_dac_main = 32000;
helper_init(&softpll.helper, n_chan_ref + slave_ref_channel);
mpll_init(&softpll.mpll, slave_ref_channel, n_chan_ref);
for(i=0;i<n_chan_out-1;i++)
{
mpll_init(&softpll.aux[i], slave_ref_channel, n_chan_ref + i + 1);
softpll.aux_fsm[i].state = AUX_DISABLED;
}
PPSG->ESCR = PPSG_ESCR_PPS_VALID | PPSG_ESCR_TM_VALID;
break;
case SPLL_MODE_SLAVE:
strcpy(mode_str, "Slave");
softpll.seq_state = SEQ_CLEAR_DACS;
spll_resync_dmtd_counter(slave_ref_channel);
while(!spll_check_dmtd_resync(slave_ref_channel));
helper_init(&softpll.helper, slave_ref_channel);
mpll_init(&softpll.mpll, slave_ref_channel, n_chan_ref);
for(i=0;i<n_chan_out-1;i++)
{
mpll_init(&softpll.aux[i], slave_ref_channel, n_chan_ref + i + 1);
softpll.aux_fsm[i].state = AUX_DISABLED;
}
// PPSG->ESCR = PPSG_ESCR_PPS_VALID | PPSG_ESCR_TM_VALID;
break;
}
for(i=0; i<n_chan_ref;i++)
ptracker_init(&softpll.ptrackers[i], n_chan_ref, i, PTRACKER_AVERAGE_SAMPLES);
TRACE_DEV("SPLL_Init: running as %s, %d ref channels, %d out channels\n", mode_str, n_chan_ref, n_chan_out);
/* Purge tag buffer */
while(! (SPLL->TRR_CSR & SPLL_TRR_CSR_EMPTY)) dummy = SPLL->TRR_R0;
dummy = SPLL->PER_HPLL;
SPLL->EIC_IER = 1;
SPLL->OCER |= 1;
enable_irq();
/* for(;;)
{
mprintf("irqcount %d Seqstate %d TmrTics %d m %d ast %d ", irq_count, softpll.seq_state, timer_get_tics(), softpll.mode, softpll.ext.realign_state);
for(i=0;i<n_chan_ref;i++)
{
int ph, ready;
ready = spll_read_ptracker(i, &ph);
mprintf("rp%d[%d]: %dps ", i, ready, ph);
}
mprintf("\n");
}*/
}
void spll_shutdown()
{
SPLL->OCER = 0;
SPLL->RCER = 0;
SPLL->ECCR = 0;
SPLL->EIC_IDR = 1;
}
void spll_start_channel(int channel)
{
if (softpll.seq_state != SEQ_READY || !channel)
{
TRACE_DEV("Can't start channel %d, the PLL is not ready\n", channel);
return;
}
mpll_start(&softpll.aux[channel-1]);
}
void spll_stop_channel(int channel)
{
if(!channel)
return;
mpll_stop(&softpll.aux[channel-1]);
}
int spll_check_lock(int channel)
{
if(!channel)
return (softpll.seq_state == SEQ_READY);
else
return (softpll.seq_state == SEQ_READY) && softpll.aux[channel-1].ld.locked;
}
static int32_t from_picos(int32_t ps)
{
return (int32_t) ((int64_t)ps * (int64_t)(1<<HPLL_N) / (int64_t)CLOCK_PERIOD_PICOSECONDS);
}
static int32_t to_picos(int32_t units)
{
return (int32_t) (((int64_t)units * (int64_t)CLOCK_PERIOD_PICOSECONDS) >> HPLL_N);
}
/* Channel 0 = local PLL reference, 1...N = aux oscillators */
static void set_phase_shift(int channel, int32_t value_picoseconds)
{
volatile struct spll_main_state *st = (!channel ? &softpll.mpll : &softpll.aux[channel-1]);
int div = (DIVIDE_DMTD_CLOCKS_BY_2 ? 2: 1);
mpll_set_phase_shift(st, from_picos(value_picoseconds) / div);
softpll.mpll_shift_ps = value_picoseconds;
}
void spll_set_phase_shift(int channel, int32_t value_picoseconds)
{
int i;
if(channel == SPLL_ALL_CHANNELS)
{
spll_set_phase_shift(0, value_picoseconds);
for(i=0;i<n_chan_out-1;i++)
if(softpll.aux_fsm[i].state == AUX_READY)
set_phase_shift(i+1, value_picoseconds);
} else
set_phase_shift(channel, value_picoseconds);
}
void spll_get_phase_shift(int channel, int32_t *current, int32_t *target)
{
volatile struct spll_main_state *st = (!channel ? &softpll.mpll : &softpll.aux[channel-1]);
int div = (DIVIDE_DMTD_CLOCKS_BY_2 ? 2: 1);
if(current) *current = to_picos(st->phase_shift_current * div);
if(target) *target = to_picos(st->phase_shift_target * div);
}
int spll_read_ptracker(int channel, int32_t *phase_ps, int *enabled)
{
volatile struct spll_ptracker_state *st = &softpll.ptrackers[channel];
int phase = st->phase_val;
if(phase < 0) phase += (1<<HPLL_N);
else if (phase >= (1<<HPLL_N)) phase -= (1<<HPLL_N);
if(DIVIDE_DMTD_CLOCKS_BY_2)
{
phase <<= 1;
phase &= (1<<HPLL_N)-1;
}
*phase_ps = to_picos(phase);
if(enabled)
*enabled = ptracker_mask & (1<<st->id_b) ? 1 : 0;
return st->ready;
}
void spll_get_num_channels(int *n_ref, int *n_out)
{
if(n_ref) *n_ref = n_chan_ref;
if(n_out) *n_out = n_chan_out;
}
void spll_show_stats()
{
if(softpll.mode > 0)
TRACE_DEV("Irq_count %d Sequencer_state %d mode %d Alignment_state %d HL%d EL%d ML%d HY=%d MY=%d DelCnt=%d\n",
irq_count, softpll.seq_state, softpll.mode, softpll.ext.realign_state,
softpll.helper.ld.locked, softpll.ext.ld.locked, softpll.mpll.ld.locked,
softpll.helper.pi.y, softpll.mpll.pi.y, softpll.delock_count);
}
int spll_shifter_busy(int channel)
{
if(!channel)
return mpll_shifter_busy(&softpll.mpll);
else
return mpll_shifter_busy(&softpll.aux[channel-1]);
}
void spll_enable_ptracker(int ref_channel, int enable)
{
if(enable) {
spll_enable_tagger(ref_channel, 1);
ptracker_start((struct spll_ptracker_state *) &softpll.ptrackers[ref_channel]);
ptracker_mask |= (1<<ref_channel);
TRACE_DEV("Enabling ptracker channel: %d\n", ref_channel);
} else {
ptracker_mask &= ~(1<<ref_channel);
if(ref_channel != softpll.mpll.id_ref)
spll_enable_tagger(ref_channel, 0);
TRACE_DEV("Disabling ptracker tagger: %d\n", ref_channel);
}
}
int spll_get_delock_count()
{
return softpll.delock_count;
}
int spll_update_aux_clocks()
{
uint32_t occr_aux_en = SPLL_OCCR_OUT_EN_R(SPLL->OCCR);
int i;
for(i=0;i<n_chan_out-1;i++)
{
volatile struct spll_aux_state *s = &softpll.aux_fsm[i];
if((! (occr_aux_en & (1<<(i+1))) && s->state != AUX_DISABLED))
{
TRACE_DEV("[aux] disabled channel %d\n", i);
spll_stop_channel(i+1);
SPLL->OCCR &= ~ (SPLL_OCCR_OUT_LOCK_W((1<<(i+1))));
s->state = AUX_DISABLED;
} else switch(s->state)
{
case AUX_DISABLED:
if(occr_aux_en & (1<<(i+1)) && softpll.mpll.ld.locked)
{
TRACE_DEV("[aux] enabled channel %d\n", i);
s->state = AUX_LOCK_PLL;
spll_start_channel(i+1);
}
break;
case AUX_LOCK_PLL:
if(softpll.aux[i].ld.locked)
{
TRACE_DEV("[aux] channel %d locked [aligning @ %d ps]\n", i, softpll.mpll_shift_ps);
set_phase_shift(i+1, softpll.mpll_shift_ps);
s->state = AUX_ALIGN_PHASE;
}
break;
case AUX_ALIGN_PHASE:
if(!mpll_shifter_busy(&softpll.aux[i]))
{
TRACE_DEV("[aux] channel %d phase aligned\n", i);
SPLL->OCCR |= SPLL_OCCR_OUT_LOCK_W((1<<(i+1)));
s->state = AUX_READY;
}
break;
case AUX_READY:
if(!softpll.mpll.ld.locked || !softpll.aux[i].ld.locked)
{
TRACE_DEV("[aux] aux channel or mpll lost lock\n");
SPLL->OCCR &= ~ (SPLL_OCCR_OUT_LOCK_W((1<<(i+1))));
s->state = AUX_DISABLED;
}
break;
}
}
return 0;
}
int spll_get_aux_status(int channel)
{
int rval = 0;
if(softpll.aux_fsm[channel].state != AUX_DISABLED)
rval |= SPLL_AUX_ENABLED;
if(softpll.aux_fsm[channel].state == AUX_READY)
rval |= SPLL_AUX_LOCKED;
return rval;
}
int spll_get_dac(int index)
{
if(index < 0)
return softpll.helper.pi.y;
else if (index == 0)
return softpll.mpll.pi.y;
else if (index > 0)
return softpll.aux[index-1].pi.y;
return 0;
}
void spll_set_dac(int index, int value)
{
if(index < 0)
{
softpll.helper.pi.y = value;
SPLL->DAC_HPLL = value;
}
else {
SPLL->DAC_MAIN = SPLL_DAC_MAIN_DAC_SEL_W(index) | (value & 0xffff);
if (index == 0)
softpll.mpll.pi.y = value;
else if (index > 0)
softpll.aux[index-1].pi.y = value;
}
}
#ifndef __SOFTPLL_NG_H
#define __SOFTPLL_NG_H
#include <stdio.h>
#include <stdlib.h>
/* Modes */
#define SPLL_MODE_GRAND_MASTER 1
#define SPLL_MODE_FREE_RUNNING_MASTER 2
#define SPLL_MODE_SLAVE 3
#define SPLL_MODE_DISABLED 4
#define SPLL_ALL_CHANNELS 0xffff
#define SPLL_AUX_ENABLED (1<<0)
#define SPLL_AUX_LOCKED (1<<1)
void spll_init(int mode, int slave_ref_channel, int align_pps);
void spll_shutdown();
void spll_start_channel(int channel);
void spll_stop_channel(int channel);
int spll_check_lock(int channel);
void spll_set_phase_shift(int channel, int32_t value_picoseconds);
void spll_get_phase_shift(int channel, int32_t *current, int32_t *target);
int spll_read_ptracker(int channel, int32_t *phase_ps, int *enabled);
void spll_get_num_channels(int *n_ref, int *n_out);
int spll_shifter_busy(int channel);
int spll_get_delock_count();
int spll_update_aux_clocks();
int spll_get_aux_status(int channel);
void spll_set_dac(int index, int value);
int spll_get_dac(int index);
#endif
/*
White Rabbit Softcore PLL (SoftPLL) - common definitions
Copyright (c) 2010 - 2012 CERN / BE-CO-HT (Tomasz Włostowski)
Licensed under LGPL 2.1.
spll_common.h - common data structures and functions
*/
/* Number of reference/output channels. Currently we support only one SoftPLL instantiation per project,
so these can remain static. */
static int n_chan_ref, n_chan_out;
/* PI regulator state */
typedef struct {
int ki, kp; /* integral and proportional gains (1<<PI_FRACBITS == 1.0f) */
int integrator; /* current integrator value */
int bias; /* DC offset always added to the output */
int anti_windup; /* when non-zero, anti-windup is enabled */
int y_min; /* min/max output range, used by clapming and antiwindup algorithms */
int y_max;
int x, y; /* Current input (x) and output value (y) */
} spll_pi_t;
/* lock detector state */
typedef struct {
int lock_cnt; /* Lock sample counter */
int lock_samples; /* Number of samples below the (threshold) to assume that we are locked */
int delock_samples; /* Accumulated number of samples that causes the PLL go get out of lock.
delock_samples < lock_samples. */
int threshold; /* Error threshold */
int locked; /* Non-zero: we are locked */
} spll_lock_det_t;
/* simple, 1st-order lowpass filter */
typedef struct {
int alpha;
int y_d;
} spll_lowpass_t;
/* Processes a single sample (x) with PI control algorithm (pi). Returns the value (y) to
drive the actuator. */
static inline int pi_update(spll_pi_t *pi, int x)
{
int i_new, y;
pi->x = x;
i_new = pi->integrator + x;
y = ((i_new * pi->ki + x * pi->kp) >> PI_FRACBITS) + pi->bias;
/* clamping (output has to be in <y_min, y_max>) and anti-windup:
stop the integrator if the output is already out of range and the output
is going further away from y_min/y_max. */
if(y < pi->y_min)
{
y = pi->y_min;
if((pi->anti_windup && (i_new > pi->integrator)) || !pi->anti_windup)
pi->integrator = i_new;
} else if (y > pi->y_max) {
y = pi->y_max;
if((pi->anti_windup && (i_new < pi->integrator)) || !pi->anti_windup)
pi->integrator = i_new;
} else /* No antiwindup/clamping? */
pi->integrator = i_new;
pi->y = y;
return y;
}
/* initializes the PI controller state. Currently almost a stub. */
static inline void pi_init(spll_pi_t *pi)
{
pi->integrator = 0;
}
/* Lock detector state machine. Takes an error sample (y) and checks if it's withing an acceptable range
(i.e. <-ld.threshold, ld.threshold>. If it has been inside the range for (ld.lock_samples) cyckes, the
FSM assumes the PLL is locked.
Return value:
0: PLL not locked
1: PLL locked
-1: PLL just got out of lock
*/
static inline int ld_update(spll_lock_det_t *ld, int y)
{
if (abs(y) <= ld->threshold)
{
if(ld->lock_cnt < ld->lock_samples)
ld->lock_cnt++;
if(ld->lock_cnt == ld->lock_samples)
{
ld->locked = 1;
return 1;
}
} else {
if(ld->lock_cnt > ld->delock_samples)
ld->lock_cnt--;
if(ld->lock_cnt == ld->delock_samples)
{
ld->lock_cnt= 0;
ld->locked = 0;
return -1;
}
}
return ld->locked;
}
static void ld_init(spll_lock_det_t *ld)
{
ld->locked = 0;
ld->lock_cnt = 0;
}
static void lowpass_init(spll_lowpass_t *lp, int alpha)
{
lp->y_d = 0x80000000;
lp->alpha = alpha;
}
static int lowpass_update(spll_lowpass_t *lp, int x)
{
if(lp->y_d == 0x80000000)
{
lp->y_d = x;
return x;
} else {
int scaled = (lp->alpha * (x - lp->y_d)) >> 15;
lp->y_d = lp->y_d + (scaled >> 1) + (scaled & 1);
return lp->y_d;
}
}
/* Enables/disables DDMTD tag generation on a given (channel).
Channels (0 ... n_chan_ref - 1) are the reference channels (e.g. transceivers' RX clocks
or a local reference)
Channels (n_chan_ref ... n_chan_out + n_chan_ref-1) are the output channels (local voltage
controlled oscillators). One output (usually the first one) is always used to drive the
oscillator which produces the reference clock for the transceiver. Other outputs can be
used to discipline external oscillators (e.g. on FMCs).
*/
static void spll_enable_tagger(int channel, int enable)
{
if(channel >= n_chan_ref) /* Output channel? */
{
if(enable)
SPLL->OCER |= 1<< (channel - n_chan_ref);
else
SPLL->OCER &= ~ (1<< (channel - n_chan_ref));
} else { /* Reference channel */
if(enable)
SPLL->RCER |= 1<<channel;
else
SPLL->RCER &= ~ (1<<channel);
}
// TRACE("%s: ch %d, OCER 0x%x, RCER 0x%x\n", __FUNCTION__, channel, SPLL->OCER, SPLL->RCER);
}
static void spll_resync_dmtd_counter(int channel)
{
if(channel >= n_chan_ref) /* Output channel? */
SPLL->CRR_OUT = 1<< (channel - n_chan_ref);
else
SPLL->CRR_IN = 1<< channel;
}
static int spll_check_dmtd_resync(int channel)
{
if(channel >= n_chan_ref) /* Output channel? */
return (SPLL->CRR_OUT & (1<< (channel - n_chan_ref))) ? 1 : 0;
else
return (SPLL->CRR_IN & (1<< channel)) ? 1 :0;
}
\ No newline at end of file
/*
White Rabbit Softcore PLL (SoftPLL) - common definitions
Copyright (c) 2010 - 2012 CERN / BE-CO-HT (Tomasz Włostowski)
Licensed under LGPL 2.1.
spll_debug.h - debugging/diagnostic interface
The so-called debug inteface is a large, interrupt-driven FIFO which passes
various realtime parameters (e.g. error value, tags, DAC drive) to an external
application where they are further analyzed. It's very useful for optimizing PI coefficients
and/or lock thresholds.
The data is organized as a stream of samples, where each sample can store a number of parameters.
For example, a stream samples with Y and ERR parameters can be used to evaluate the impact of
integral/proportional gains on the response of the system.
*/
#define DBG_Y 0
#define DBG_ERR 1
#define DBG_TAG 2
#define DBG_REF 5
#define DBG_PERIOD 3
#define DBG_EVENT 4
#define DBG_SAMPLE_ID 6
#define DBG_HELPER 0x20 /* Sample source: Helper PLL */
#define DBG_EXT 0x40 /* Sample source: External Reference PLL */
#define DBG_MAIN 0x0 /* ... : Main PLL */
#define DBG_EVT_START 1 /* PLL has just started */
#define DBG_EVT_LOCKED 2 /* PLL has just become locked */
/* Writes a parameter to the debug FIFO.
value: value of the parameter.
what: type of the parameter and its' source. For example,
- DBG_ERR | DBG_HELPER means that (value) contains the phase error of the helper PLL.
- DBG_EVENT indicates an asynchronous event. (value) must contain the event type (DBG_EVT_xxx)
last: when non-zero, indicates the last parameter in a sample.
*/
static inline void spll_debug(int what, int value, int last)
{
SPLL->DFR_SPLL = (last ? 0x80000000 : 0) | (value & 0xffffff) | (what << 24);
}
#include <syscon.h>
/* Number of bits of the BB phase detector error counter. Bit [BB_ERROR_BITS] is the wrap-around bit */
#define BB_ERROR_BITS 16
/* Alignment FSM states */
/* 1st alignment stage, done before starting the ext channel PLL: alignment of the rising edge
of the external clock (10 MHz), with the rising edge of the local reference (62.5/125 MHz)
and the PPS signal. Because of non-integer ratio (6.25 or 12.5), the PLL must know which edges
shall be kept at phase==0. We align to the edge of the 10 MHz clock which comes right after the edge
of the PPS pulse (see drawing below):
PLL reference (62.5 MHz) ____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|
External clock (10 MHz) ^^^^^^^^^|________________________|^^^^^^^^^^^^^^^^^^^^^^^^^|________________________|^^^^^^^^^^^^^^^^^^^^^^^^^|___
External PPS ___________|^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
*/
#define REALIGN_STAGE1 1
#define REALIGN_STAGE1_WAIT 2
/* 2nd alignment stage, done after the ext channel PLL has locked. We make sure that the switch's internal PPS signal
is produced exactly on the edge of PLL reference in-phase with 10 MHz clock edge, which has come right after the PPS input
PLL reference (62.5 MHz) ____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|^^^^|____|
External clock (10 MHz) ^^^^^^^^^|________________________|^^^^^^^^^^^^^^^^^^^^^^^^^|________________________|^^^^^^^^^^^^^^^^^^^^^^^^^|___
External PPS ___________|^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Internal PPS __________________________________|^^^^^^^^^|______________________________________________________________________
^ aligned clock edges and PPS
*/
#define REALIGN_STAGE2 3
#define REALIGN_STAGE2_WAIT 4
/* Error state - PPS signal missing or of bad frequency */
#define REALIGN_PPS_INVALID 5
/* Realignment is disabled (i.e. the switch inputs only the reference frequency, but not time) */
#define REALIGN_DISABLED 6
/* Realignment done */
#define REALIGN_DONE 7
struct spll_external_state {
int ref_src;
int sample_n;
int ph_err_offset, ph_err_cur, ph_err_d0, ph_raw_d0;
int realign_clocks;
int realign_state;
int realign_timer;
spll_pi_t pi;
spll_lowpass_t lp_short, lp_long;
spll_lock_det_t ld;
};
static void external_init(volatile struct spll_external_state *s, int ext_ref, int realign_clocks)
{
s->pi.y_min = 5;
s->pi.y_max = (1 << DAC_BITS) - 5;
s->pi.kp = (int)(300);
s->pi.ki = (int)(1);
s->pi.anti_windup = 1;
s->pi.bias = 32768;
/* Phase branch lock detection */
s->ld.threshold = 250;
s->ld.lock_samples = 10000;
s->ld.delock_samples = 9990;
s->ref_src = ext_ref;
s->ph_err_cur = 0;
s->ph_err_d0 = 0;
s->ph_raw_d0 = 0;
s->realign_clocks = realign_clocks;
s->realign_state = (realign_clocks ? REALIGN_STAGE1 : REALIGN_DISABLED);
pi_init((spll_pi_t *) &s->pi);
ld_init((spll_lock_det_t *) &s->ld);
lowpass_init((spll_lowpass_t *) &s->lp_short, 4000);
lowpass_init((spll_lowpass_t *) &s->lp_long, 300);
}
static inline void realign_fsm( struct spll_external_state *s)
{
switch(s->realign_state)
{
case REALIGN_STAGE1:
SPLL->ECCR |= SPLL_ECCR_ALIGN_EN;
s->realign_state = REALIGN_STAGE1_WAIT;
s->realign_timer = timer_get_tics();
break;
case REALIGN_STAGE1_WAIT:
if(SPLL->ECCR & SPLL_ECCR_ALIGN_DONE)
s->realign_state = REALIGN_STAGE2;
else if (timer_get_tics() - s->realign_timer > 2*TICS_PER_SECOND)
{
SPLL->ECCR &= ~SPLL_ECCR_ALIGN_EN;
s->realign_state = REALIGN_PPS_INVALID;
}
break;
case REALIGN_STAGE2:
if(s->ld.locked)
{
PPSG->CR = PPSG_CR_CNT_RST | PPSG_CR_CNT_EN;
PPSG->ADJ_UTCLO = 0;
PPSG->ADJ_UTCHI = 0;
PPSG->ADJ_NSEC = 0;
PPSG->ESCR = PPSG_ESCR_SYNC;
s->realign_state = REALIGN_STAGE2_WAIT;
s->realign_timer = timer_get_tics();
}
break;
case REALIGN_STAGE2_WAIT:
if(PPSG->ESCR & PPSG_ESCR_SYNC)
{
PPSG->ESCR = PPSG_ESCR_PPS_VALID | PPSG_ESCR_TM_VALID;
s->realign_state = REALIGN_DONE;
} else if (timer_get_tics() - s->realign_timer > 2*TICS_PER_SECOND)
{
PPSG->ESCR = 0;
s->realign_state = REALIGN_PPS_INVALID;
}
break;
case REALIGN_PPS_INVALID:
case REALIGN_DISABLED:
case REALIGN_DONE:
return ;
}
}
static int external_update( struct spll_external_state *s, int tag, int source)
{
int err, y, y2, ylt;
if(source == s->ref_src)
{
int wrap = tag & (1<<BB_ERROR_BITS) ? 1 : 0;
realign_fsm(s);
tag &= ((1<<BB_ERROR_BITS) - 1);
// mprintf("err %d\n", tag);
if(wrap)
{
if(tag > s->ph_raw_d0)
s->ph_err_offset -= (1<<BB_ERROR_BITS);
else if(tag <= s->ph_raw_d0)
s->ph_err_offset += (1<<BB_ERROR_BITS);
}
s->ph_raw_d0 = tag;
err = (tag + s->ph_err_offset) - s->ph_err_d0;
s->ph_err_d0 = (tag + s->ph_err_offset);
y = pi_update(&s->pi, err);
y2 = lowpass_update(&s->lp_short, y);
ylt = lowpass_update(&s->lp_long, y);
if(! (SPLL->ECCR & SPLL_ECCR_EXT_REF_PRESENT)) /* no reference? de-lock now */
{
ld_init(&s->ld);
y2 = 32000;
}
SPLL->DAC_MAIN = y2 & 0xffff;
spll_debug(DBG_ERR | DBG_EXT, ylt, 0);
spll_debug(DBG_SAMPLE_ID | DBG_EXT, s->sample_n++, 0);
spll_debug(DBG_Y | DBG_EXT, y2, 1);
if(ld_update(&s->ld, y2 - ylt))
return SPLL_LOCKED;
}
return SPLL_LOCKING;
}
static void external_start( struct spll_external_state *s)
{
// mprintf("ExtStartup\n");
SPLL->ECCR = 0;
s->sample_n = 0;
s->realign_state = (s->realign_clocks ? REALIGN_STAGE1 : REALIGN_DISABLED);
SPLL->ECCR = SPLL_ECCR_EXT_EN;
spll_debug(DBG_EVENT | DBG_EXT, DBG_EVT_START, 1);
}
static inline int external_locked( struct spll_external_state *s)
{
return (s->ld.locked && (s->realign_clocks ? s->realign_state == REALIGN_DONE : 1));
}
/* State of the Helper PLL producing a clock (clk_dmtd_i) which is
slightly offset in frequency from the recovered/reference clock (clk_rx_i or clk_ref_i), so the
Main PLL can use it to perform linear phase measurements.
*/
#define SPLL_LOCKED 1
#define SPLL_LOCKING 0
#define HELPER_TAG_WRAPAROUND 100000000
/* Maximum abs value of the phase error. If the error is bigger, it's clamped to this value. */
#define HELPER_ERROR_CLAMP 150000
struct spll_helper_state {
int p_adder; /* anti wrap-around adder */
int p_setpoint, tag_d0;
int ref_src;
int sample_n;
int delock_count;
spll_pi_t pi;
spll_lock_det_t ld;
};
static void helper_init(volatile struct spll_helper_state *s, int ref_channel)
{
/* Phase branch PI controller */
s->pi.y_min = 5;
s->pi.y_max = (1 << DAC_BITS) - 5;
s->pi.kp = (int)(0.3 * 32.0 * 16.0);// / 2;
s->pi.ki = (int)(0.03 * 32.0 * 3.0);// / 2;
s->pi.anti_windup = 1;
/* Phase branch lock detection */
s->ld.threshold = 200;
s->ld.lock_samples = 10000;
s->ld.delock_samples = 100;
s->ref_src = ref_channel;
s->delock_count = 0;
}
static int helper_update(volatile struct spll_helper_state *s, int tag, int source)
{
int err, y;
if(source == s->ref_src)
{
spll_debug(DBG_TAG | DBG_HELPER, tag, 0);
spll_debug(DBG_REF | DBG_HELPER, s->p_setpoint, 0);
if(s->tag_d0 < 0)
{
s->p_setpoint = tag;
s->tag_d0 = tag;
return SPLL_LOCKING;
}
if(s->tag_d0 > tag)
s->p_adder += (1<<TAG_BITS);
err = (tag + s->p_adder) - s->p_setpoint;
if(HELPER_ERROR_CLAMP)
{
if(err < -HELPER_ERROR_CLAMP) err = -HELPER_ERROR_CLAMP;
if(err > HELPER_ERROR_CLAMP) err = HELPER_ERROR_CLAMP;
}
if((tag + s->p_adder) > HELPER_TAG_WRAPAROUND && s->p_setpoint > HELPER_TAG_WRAPAROUND)
{
s->p_adder -= HELPER_TAG_WRAPAROUND;
s->p_setpoint -= HELPER_TAG_WRAPAROUND;
}
s->p_setpoint += (1<<HPLL_N);
s->tag_d0 = tag;
y = pi_update((spll_pi_t *) &s->pi, err);
SPLL->DAC_HPLL = y;
spll_debug(DBG_SAMPLE_ID | DBG_HELPER, s->sample_n++, 0);
spll_debug(DBG_Y | DBG_HELPER, y, 0);
spll_debug(DBG_ERR | DBG_HELPER, err, 1);
if(ld_update((spll_lock_det_t *) &s->ld, err))
return SPLL_LOCKED;
}
return SPLL_LOCKING;
}
static void helper_start(volatile struct spll_helper_state *s)
{
/* Set the bias to the upper end of tuning range. This is to ensure that
the HPLL will always lock on positive frequency offset. */
s->pi.bias = s->pi.y_max;
s->p_setpoint = 0;
s->p_adder = 0;
s->sample_n = 0;
s->tag_d0 = -1;
pi_init((spll_pi_t *) &s->pi);
ld_init((spll_lock_det_t *)&s->ld);
spll_enable_tagger(s->ref_src, 1);
spll_debug(DBG_EVENT | DBG_HELPER, DBG_EVT_START, 1);
}
#define MPLL_TAG_WRAPAROUND 100000000
#define MATCH_NEXT_TAG 0
#define MATCH_WAIT_REF 1
#define MATCH_WAIT_OUT 2
#undef WITH_SEQUENCING
/* State of the Main PLL */
struct spll_main_state {
int state;
spll_pi_t pi;
spll_lock_det_t ld;
int adder_ref, adder_out, tag_ref, tag_out, tag_ref_d, tag_out_d;
// tag sequencing stuff
uint32_t seq_ref, seq_out;
int match_state;
int match_seq;
int phase_shift_target;
int phase_shift_current;
int id_ref, id_out; /* IDs of the reference and the output channel */
int sample_n;
int delock_count;
int dac_index;
};
static void mpll_init(volatile struct spll_main_state *s, int id_ref, int id_out)
{
/* Frequency branch PI controller */
s->pi.y_min = 5;
s->pi.y_max = 65530;
s->pi.anti_windup = 1;
s->pi.bias = 65000;
s->pi.kp = 1100;// / 2;
s->pi.ki = 30;// / 2;
s->delock_count = 0;
/* Freqency branch lock detection */
s->ld.threshold = 1200;
s->ld.lock_samples = 1000;
s->ld.delock_samples = 100;
s->id_ref = id_ref;
s->id_out = id_out;
s->dac_index = id_out - n_chan_ref;
pi_init((spll_pi_t *) &s->pi);
ld_init((spll_lock_det_t *) &s->ld);
}
static void mpll_start(volatile struct spll_main_state *s)
{
s->adder_ref = s->adder_out = 0;
s->tag_ref = -1;
s->tag_out = -1;
s->tag_ref_d = -1;
s->tag_out_d = -1;
s->seq_ref = 0;
s->seq_out = 0;
s->match_state = MATCH_NEXT_TAG;
s->phase_shift_target = 0;
s->phase_shift_current = 0;
s->sample_n= 0;
pi_init((spll_pi_t *) &s->pi);
ld_init((spll_lock_det_t *) &s->ld);
spll_enable_tagger(s->id_ref, 1);
spll_enable_tagger(s->id_out, 1);
spll_debug(DBG_EVENT | DBG_MAIN, DBG_EVT_START, 1);
}
static void mpll_stop(volatile struct spll_main_state *s)
{
spll_enable_tagger(s->id_out, 0);
}
static int mpll_update(volatile struct spll_main_state *s, int tag, int source)
{
int err, y;
#ifdef WITH_SEQUENCING
int new_ref = -1, new_out = -1;
if(source == s->id_ref)
{
new_ref = tag;
s->seq_ref++;
} else if(source == s->id_out) {
new_out = tag;
s->seq_out++;
}
switch(s->match_state)
{
case MATCH_NEXT_TAG:
if(new_ref > 0 && s->seq_out < s->seq_ref)
{
s->tag_ref = new_ref;
s->match_seq = s->seq_ref;
s->match_state = MATCH_WAIT_OUT;
}
if (new_out > 0 && s->seq_out > s->seq_ref)
{
s->tag_out = new_out;
s->match_seq = s->seq_out;
s->match_state = MATCH_WAIT_REF;
}
break;
case MATCH_WAIT_REF:
if(new_ref > 0 && s->seq_ref == s->match_seq)
{
s->match_state = MATCH_NEXT_TAG;
s->tag_ref = new_ref;
}
break;
case MATCH_WAIT_OUT:
if(new_out > 0 && s->seq_out == s->match_seq)
{
s->match_state = MATCH_NEXT_TAG;
s->tag_out = new_out;
}
break;
}
#else
if(source == s->id_ref)
s->tag_ref = tag;
if(source == s->id_out)
s->tag_out = tag;
#endif
if(s->tag_ref >= 0 && s->tag_out >= 0)
{
if(s->tag_ref_d >= 0 && s->tag_ref_d > s->tag_ref)
s->adder_ref += (1<<TAG_BITS);
if(s->tag_out_d >= 0 && s->tag_out_d > s->tag_out)
s->adder_out += (1<<TAG_BITS);
s->tag_ref_d = s->tag_ref;
s->tag_out_d = s->tag_out;
err = s->adder_ref + s->tag_ref - s->adder_out - s->tag_out;
#ifndef WITH_SEQUENCING
/* Hack: the PLL is locked, so the tags are close to each other. But when we start phase shifting, after reaching
full clock period, one of the reference tags will flip before the other, causing a suddent 2**HPLL_N jump in the error.
So, once the PLL is locked, we just mask out everything above 2**HPLL_N.
Proper solution: tag sequence numbers */
if(s->ld.locked)
{
err &= (1<<HPLL_N)-1;
if(err & (1<<(HPLL_N-1)))
err |= ~((1<<HPLL_N)-1);
}
#endif
y = pi_update((spll_pi_t *) &s->pi, err);
SPLL->DAC_MAIN = SPLL_DAC_MAIN_VALUE_W(y) | SPLL_DAC_MAIN_DAC_SEL_W(s->dac_index);
spll_debug(DBG_MAIN | DBG_REF, s->tag_ref + s->adder_ref, 0);
spll_debug(DBG_MAIN | DBG_TAG, s->tag_out + s->adder_out, 0);
spll_debug(DBG_MAIN | DBG_ERR, err, 0);
spll_debug(DBG_MAIN | DBG_SAMPLE_ID, s->sample_n++, 0);
spll_debug(DBG_MAIN | DBG_Y, y, 1);
s->tag_out = -1;
s->tag_ref = -1;
if(s->adder_ref > 2*MPLL_TAG_WRAPAROUND && s->adder_out > 2*MPLL_TAG_WRAPAROUND)
{
s->adder_ref -= MPLL_TAG_WRAPAROUND;
s->adder_out -= MPLL_TAG_WRAPAROUND;
}
if(s->ld.locked)
{
if(s->phase_shift_current < s->phase_shift_target)
{
s->phase_shift_current++;
s->adder_ref++;
} else if(s->phase_shift_current > s->phase_shift_target) {
s->phase_shift_current--;
s->adder_ref--;
}
}
if(ld_update((spll_lock_det_t *) &s->ld, err))
return SPLL_LOCKED;
}
return SPLL_LOCKING;
}
static int mpll_set_phase_shift(volatile struct spll_main_state *s, int desired_shift)
{
s->phase_shift_target = desired_shift;
return 0;
}
static int mpll_shifter_busy(volatile struct spll_main_state *s)
{
return s->phase_shift_target != s->phase_shift_current;
}
/* State of a Phase Tracker */
struct spll_ptracker_state {
int id_a, id_b;
int n_avg, acc, avg_count;
int phase_val, ready;
int tag_a, tag_b;
int sample_n;
int preserve_sign;
};
static void ptracker_init(volatile struct spll_ptracker_state *s, int id_a, int id_b, int num_avgs)
{
s->tag_a = s->tag_b = -1;
s->id_a = id_a;
s->id_b = id_b;
s->ready = 0;
s->n_avg = num_avgs;
s->acc = 0;
s->avg_count = 0;
s->sample_n= 0;
s->preserve_sign = 0;
}
static void ptracker_start(volatile struct spll_ptracker_state *s)
{
s->tag_a = s->tag_b = -1;
s->ready = 0;
s->acc = 0;
s->avg_count = 0;
s->sample_n= 0;
s->preserve_sign = 0;
spll_resync_dmtd_counter(s->id_b);
spll_enable_tagger(s->id_a, 1);
spll_enable_tagger(s->id_b, 1);
}
#define PTRACK_WRAP_LO (1<<(HPLL_N-2))
#define PTRACK_WRAP_HI (3*(1<<(HPLL_N-2)))
static int ptracker_update(volatile struct spll_ptracker_state *s, int tag, int source)
{
if(source == s->id_a)
s->tag_a = tag;
if(source == s->id_b)
s->tag_b = tag;
if(s->tag_a >= 0 && s->tag_b >= 0)
{
int delta = (s->tag_a - s->tag_b) & ((1<<HPLL_N) - 1);
s->sample_n++;
if(s->avg_count == 0)
{
if(delta <= PTRACK_WRAP_LO)
s->preserve_sign = -1;
else if (delta >= PTRACK_WRAP_HI)
s->preserve_sign = 1;
else
s->preserve_sign = 0;
s->avg_count++;
s->acc = delta;
} else {
if(delta <= PTRACK_WRAP_LO && s->preserve_sign > 0)
s->acc += delta + (1<<HPLL_N);
else if (delta >= PTRACK_WRAP_HI && s->preserve_sign < 0)
s->acc += delta - (1<<HPLL_N);
else
s->acc += delta;
s->avg_count++;
if(s->avg_count == s->n_avg)
{
s->phase_val = s->acc / s->n_avg;
s->ready = 1;
s->acc = 0;
s->avg_count = 0;
}
}
s->tag_b = s->tag_a = -1;
}
return SPLL_LOCKING;
}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment