Commit dee80aff authored by Matthieu Cattin's avatar Matthieu Cattin

test12: Uses common modules, added exception handling.

parent c0bc2bce
......@@ -5,19 +5,28 @@
# Author: Matthieu Cattin <matthieu.cattin@cern.ch>
# Licence: GPL v2 or later.
# Website: http://www.ohwr.org
# Last modifications: 30/5/2012
# Import system modules
import sys
import rr
import time
import os
from numpy import *
from pylab import *
# Add common modules and libraries location to path
sys.path.append('../../../')
sys.path.append('../../../gnurabbit/python/')
sys.path.append('../../../common/')
# Import common modules
from ptsexcept import *
import rr
import spec_fmc_adc
import fmc_adc
import calibr_box
# Import specific modules
from fmc_adc_spec import *
from fmc_adc import *
from numpy import *
from pylab import *
from calibr_box import *
import find_usb_tty
from PAGE.Agilent33250A import *
from PAGE.SineWaveform import *
......@@ -30,14 +39,6 @@ test12: Takes an aqcuisition of all channels and print it to a file and on the s
Note: Requires test00.py to run first to load the firmware!
"""
# Calibration box vendor and product IDs
BOX_USB_VENDOR_ID = 0x10c4 # Cygnal Integrated Products, Inc.
BOX_USB_PRODUCT_ID = 0xea60 # CP210x Composite Device
# Agilent AWG serial access vendor and product IDs
AWG_USB_VENDOR_ID = 0x0403 # Future Technology Devices International, Ltd
AWG_USB_PRODUCT_ID = 0x6001 # FT232 USB-Serial (UART) IC
AWG_BAUD = 57600
NB_CHANNELS = 4
......@@ -54,23 +55,13 @@ NB_SHOTS = 1
ACQ_LENGTH = 10000 # in samples
def load_firmware(default_directory):
print('Load firmware to FPGA')
path_fpga_loader = '../../../gnurabbit/user/fpga_loader';
path_firmware = '../firmwares/spec_fmcadc100m14b4cha.bin';
firmware_loader = os.path.join(default_directory, path_fpga_loader)
bitstream = os.path.join(default_directory, path_firmware)
print firmware_loader + ' ' + bitstream
os.system( firmware_loader + ' ' + bitstream )
time.sleep(2);
def open_all_channels(fmc):
for i in range(1,NB_CHANNELS+1):
fmc.set_input_range(i, 'OPEN')
time.sleep(SSR_SET_SLEEP)
def fmc_adc_init(spec, fmc):
print('Initialise FMC board.')
print "Initialise FMC board.\n"
# Reset offset DACs
fmc.dc_offset_reset()
# Make sure all switches are OFF
......@@ -93,7 +84,7 @@ def hex2signed(value):
def digital2volt(value, full_scale, nb_bit):
return float(value) * float(full_scale)/2**nb_bit
def acq_channels(fmc, spec_fmc, adc_fs, pause):
def acq_channels(fmc, carrier, adc_fs, pause):
# Make sure no acquisition is running
fmc.stop_acq()
time.sleep(pause)
......@@ -114,11 +105,11 @@ def acq_channels(fmc, spec_fmc, adc_fs, pause):
# Retrieve data trough DMA
trig_pos = fmc.get_trig_pos()
# Enable "DMA done" iinterrupt
spec_fmc.set_irq_en_mask(0x1)
carrier.set_irq_en_mask(0x1)
# Read ACQ_LENGTH samples after the trigger for all channels
channels_data = spec_fmc.get_data((trig_pos<<3), ACQ_LENGTH*8)
channels_data = carrier.get_data((trig_pos<<3), ACQ_LENGTH*8)
# Disable "DMA done" iinterrupt
spec_fmc.set_irq_en_mask(0x0)
carrier.set_irq_en_mask(0x0)
channels_data = [hex2signed(item) for item in channels_data]
channels_data = [digital2volt(item,adc_fs,16) for item in channels_data]
return channels_data
......@@ -142,115 +133,162 @@ def plot_channels(ch_data, ch_mean, ylimit):
def main (default_directory='.'):
# Load firmware
load_firmware(default_directory)
# Objects declaration
spec = rr.Gennum() # bind to the SPEC board
spec_fmc = spec_fmc_adc.CSpecFmcAdc100Ms(spec)
fmc = fmc_adc.CFmcAdc100Ms(spec)
usb_tty = find_usb_tty.CttyUSB()
awg_tty = usb_tty.find_usb_tty(AWG_USB_VENDOR_ID, AWG_USB_PRODUCT_ID)
box_tty = usb_tty.find_usb_tty(BOX_USB_VENDOR_ID, BOX_USB_PRODUCT_ID)
gen = Agilent33250A(device=awg_tty[0], bauds=AWG_BAUD)
sine = SineWaveform()
box = calibr_box.CCalibr_box(box_tty[0])
# Initialise fmc adc
fmc_adc_init(spec, fmc)
# Use test data instead of data from ADC
#fmc.test_data_en()
# Use data pattern instead of ADC data
#fmc.testpat_en(0x2000)
# Set UTC
current_time = time.time()
utc_seconds = int(current_time)
spec_fmc.set_utc_second_cnt(utc_seconds)
print('UTC core seconds counter: %d')%spec_fmc.get_utc_second_cnt()
utc_coarse = int((current_time - utc_seconds)/8E-9)
spec_fmc.set_utc_coarse_cnt(utc_coarse)
print('UTC core coarse counter: %d')%spec_fmc.get_utc_coarse_cnt()
# Print configuration
fmc.print_adc_core_config()
# Print ADC config
fmc.print_adc_config()
# Acquisition parameters
ACQ_PAUSE = 1 # pause between acq. stop and start, start and trigger
IN_RANGE = '100mV'
IN_TERM = 'ON'
ADC_FS = {'10V':10.0, '1V':1.0, '100mV':0.1}
# Set sine params
sine.frequency = 1E6
sine.amplitude = 0.8 * ADC_FS[IN_RANGE]
sine.dc = 0
print('\nSine frequency:%3.3fMHz amplitude:%2.3fVp offset:%2.3fV')%(sine.frequency/1E6, sine.amplitude, sine.dc)
# Set AWG
gen.connect()
gen.play(sine)
gen.output = True
time.sleep(AWG_SET_SLEEP)
channels_data = [[],[],[],[]]
for ch in range(NB_CHANNELS):
print "\nAcquiring channel %d"%(ch+1)
# Configure analogue input
fmc.set_input_range(ch+1, IN_RANGE)
fmc.set_input_term(ch+1, IN_TERM)
time.sleep(SSR_SET_SLEEP)
# connect AWG to current channel
box.select_output_ch(ch+1)
time.sleep(BOX_SET_SLEEP)
# Perform an acquisition
acq_data = acq_channels(fmc, spec_fmc, ADC_FS[IN_RANGE], ACQ_PAUSE)
channels_data[ch] = acq_data[ch::4]
# Get time-tags
trig_tag = spec_fmc.get_utc_trig_tag()
start_tag = spec_fmc.get_utc_start_tag()
stop_tag = spec_fmc.get_utc_stop_tag()
end_tag = spec_fmc.get_utc_end_tag()
print('Acq stop time-tag : %10.10f [s]')%(stop_tag[2]+(stop_tag[3]*8E-9))
print('Acq start time-tag : %10.10f [s]')%(start_tag[2]+(start_tag[3]*8E-9))
print('Trigger time-tag : %10.10f [s]')%(trig_tag[2]+(trig_tag[3]*8E-9))
print('Acq end time-tag : %10.10f [s]')%(end_tag[2]+(end_tag[3]*8E-9))
# Calculate mean for each channel data
ch_mean = []
for ch in range(NB_CHANNELS):
ch_mean.append(mean(channels_data[ch]))
# print aqcuisition to file
file_name = "test12_data.txt"
f = open(file_name, 'w')
f.write("CH1 value [V], CH2 value [V], CH3 value [V], CH4 value [V]\n")
for i in range(len(channels_data[0])):
f.write("%2.4f, %2.4f, %2.4f, %2.4f\n"%(channels_data[0][i], channels_data[1][i], channels_data[2][i], channels_data[3][i]))
f.close()
# Plot all channels
plot_channels(channels_data, ch_mean, (ADC_FS[IN_RANGE]/2))
# Make sure all switches are OFF
open_all_channels(fmc)
# Switch AWG OFF
gen.output = False
gen.close()
# Check if an error occured during frequency response test
#if(error != 0):
# raise PtsError('An error occured, check log for details.')
# Constants declaration
TEST_NB = 12
FMC_ADC_BITSTREAM = '../firmwares/spec_fmcadc100m14b4cha.bin'
FMC_ADC_BITSTREAM = os.path.join(default_directory, FMC_ADC_BITSTREAM)
EXPECTED_BITSTREAM_TYPE = 0x1
# Calibration box vendor and product IDs
BOX_USB_VENDOR_ID = 0x10c4 # Cygnal Integrated Products, Inc.
BOX_USB_PRODUCT_ID = 0xea60 # CP210x Composite Device
# Agilent AWG serial access vendor and product IDs
AWG_USB_VENDOR_ID = 0x0403 # Future Technology Devices International, Ltd
AWG_USB_PRODUCT_ID = 0x6001 # FT232 USB-Serial (UART) IC
AWG_BAUD = 57600
start_test_time = time.time()
print "================================================================================"
print "Test%02d start\n" % TEST_NB
# SPEC object declaration
print "Loading hardware access library and opening device.\n"
spec = rr.Gennum()
# Load FMC ADC firmware
print "Loading FMC ADC firmware: %s\n" % FMC_ADC_BITSTREAM
spec.load_firmware(FMC_ADC_BITSTREAM)
time.sleep(2)
# Carrier object declaration (SPEC board specific part)
# Used to check that the firmware is loaded.
try:
carrier = CFmcAdc100mSpec(spec, EXPECTED_BITSTREAM_TYPE)
except FmcAdc100mSpecOperationError as e:
raise PtsCritical("Carrier init failed, test stopped: %s" % e)
# Mezzanine object declaration (FmcAdc100m14b4cha board specific part)
try:
fmc = CFmcAdc100m(spec)
except FmcAdc100mOperationError as e:
raise PtsCritical("Mezzanine init failed, test stopped: %s" % e)
try:
# Others objects declaration
usb_tty = find_usb_tty.CttyUSB()
awg_tty = usb_tty.find_usb_tty(AWG_USB_VENDOR_ID, AWG_USB_PRODUCT_ID)
box_tty = usb_tty.find_usb_tty(BOX_USB_VENDOR_ID, BOX_USB_PRODUCT_ID)
gen = Agilent33250A(device=awg_tty[0], bauds=AWG_BAUD)
sine = SineWaveform()
box = CCalibr_box(box_tty[0])
# Initialise fmc adc
fmc_adc_init(spec, fmc)
# Use test data instead of data from ADC
# fmc.test_data_en()
# Use data pattern instead of ADC data
# fmc.testpat_en(0x2000)
# Set UTC
current_time = time.time()
utc_seconds = int(current_time)
carrier.set_utc_second_cnt(utc_seconds)
print "UTC core seconds counter initialised to : %d" % carrier.get_utc_second_cnt()
utc_coarse = int((current_time - utc_seconds)/8E-9)
carrier.set_utc_coarse_cnt(utc_coarse)
print "UTC core coarse counter initialised to : %d" % carrier.get_utc_coarse_cnt()
# Print configuration
fmc.print_adc_core_config()
# Print ADC config
fmc.print_adc_config()
# Acquisition parameters
ACQ_PAUSE = 1 # pause between acq. stop and start, start and trigger
IN_RANGE = '100mV'
IN_TERM = 'ON'
ADC_FS = {'10V':10.0, '1V':1.0, '100mV':0.1}
# Set sine params
sine.frequency = 1E6
sine.amplitude = 0.8 * ADC_FS[IN_RANGE]
sine.dc = 0
print "\nSine frequency:%3.3fMHz amplitude:%2.3fVp offset:%2.3fV" % (sine.frequency/1E6, sine.amplitude, sine.dc)
# Set AWG
gen.connect()
gen.play(sine)
gen.output = True
time.sleep(AWG_SET_SLEEP)
channels_data = [[],[],[],[]]
for ch in range(NB_CHANNELS):
print "\nAcquiring channel %d"%(ch+1)
# Configure analogue input
fmc.set_input_range(ch+1, IN_RANGE)
fmc.set_input_term(ch+1, IN_TERM)
time.sleep(SSR_SET_SLEEP)
# connect AWG to current channel
box.select_output_ch(ch+1)
time.sleep(BOX_SET_SLEEP)
# Perform an acquisition
acq_data = acq_channels(fmc, carrier, ADC_FS[IN_RANGE], ACQ_PAUSE)
channels_data[ch] = acq_data[ch::4]
# Get time-tags
trig_tag = carrier.get_utc_trig_tag()
start_tag = carrier.get_utc_start_tag()
stop_tag = carrier.get_utc_stop_tag()
end_tag = carrier.get_utc_end_tag()
print('Acq stop time-tag : %10.10f [s]')%(stop_tag[2]+(stop_tag[3]*8E-9))
print('Acq start time-tag : %10.10f [s]')%(start_tag[2]+(start_tag[3]*8E-9))
print('Trigger time-tag : %10.10f [s]')%(trig_tag[2]+(trig_tag[3]*8E-9))
print('Acq end time-tag : %10.10f [s]')%(end_tag[2]+(end_tag[3]*8E-9))
# Calculate mean for each channel data
ch_mean = []
for ch in range(NB_CHANNELS):
ch_mean.append(mean(channels_data[ch]))
# print aqcuisition to file
file_name = "test12_data.txt"
f = open(file_name, 'w')
f.write("CH1 value [V], CH2 value [V], CH3 value [V], CH4 value [V]\n")
for i in range(len(channels_data[0])):
f.write("%2.4f, %2.4f, %2.4f, %2.4f\n"%(channels_data[0][i], channels_data[1][i], channels_data[2][i], channels_data[3][i]))
f.close()
# Plot all channels
plot_channels(channels_data, ch_mean, (ADC_FS[IN_RANGE]/2))
# Make sure all switches are OFF
open_all_channels(fmc)
# Switch AWG OFF
gen.output = False
gen.close()
# Check if an error occured during frequency response test
# if(error != 0):
# raise PtsError('An error occured, check log for details.')
except(FmcAdc100mSpecOperationError, FmcAdc100mOperationError, CalibrBoxOperationError) as e:
raise PtsError("Test failed: %s" % e)
print ""
print "==> End of test%02d" % TEST_NB
print "================================================================================"
end_test_time = time.time()
print "Test%02d elapsed time: %.2f seconds\n" % (TEST_NB, end_test_time-start_test_time)
if __name__ == '__main__' :
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment