Commit e625cbd9 authored by Alessandro Rubini's avatar Alessandro Rubini

Run ./scripts/Lindent on all .c and .h files

This is massive: 4k lines changed (but only 840 if you ignore
space-only changes).  In this case "git blame -w" won't always find
the right patch, and it may fall on this patch -- because those
800 lines changed in content too.

This has been done with

   find . -name '*.[ch]' | xargs -n 1 ./scripts/Lindent

Statistics: all changes and ignoring blank space:

   morgana% git diff --stat HEAD~1 | tail -1
    77 files changed, 3774 insertions(+), 3709 deletions(-)
   morgana% git diff -w --stat HEAD~1 | tail -1
    61 files changed, 894 insertions(+), 829 deletions(-)

However, after this step I hand-fixed some very ugly long expressions
(leaving them long: no content change at all is there).
Signed-off-by: Alessandro Rubini's avatarAlessandro Rubini <rubini@gnudd.com>
parent 1d24ecfb
......@@ -2,38 +2,36 @@
void disable_irq()
{
unsigned int ie, im;
unsigned int Mask = ~1;
unsigned int ie, im;
unsigned int Mask = ~1;
/* disable peripheral interrupts in case they were enabled */
asm volatile ("rcsr %0,ie":"=r"(ie));
ie &= (~0x1);
asm volatile ("wcsr ie, %0"::"r"(ie));
/* disable peripheral interrupts in case they were enabled */
asm volatile ("rcsr %0,ie":"=r" (ie));
ie &= (~0x1);
asm volatile ("wcsr ie, %0"::"r" (ie));
/* disable mask-bit in im */
asm volatile ("rcsr %0, im":"=r"(im));
im &= Mask;
asm volatile ("wcsr im, %0"::"r"(im));
/* disable mask-bit in im */
asm volatile ("rcsr %0, im":"=r" (im));
im &= Mask;
asm volatile ("wcsr im, %0"::"r" (im));
}
void enable_irq()
{
unsigned int ie, im;
unsigned int Mask = 1;
unsigned int ie, im;
unsigned int Mask = 1;
/* disable peripheral interrupts in-case they were enabled*/
asm volatile ("rcsr %0,ie":"=r"(ie));
ie &= (~0x1);
asm volatile ("wcsr ie, %0"::"r"(ie));
/* disable peripheral interrupts in-case they were enabled */
asm volatile ("rcsr %0,ie":"=r" (ie));
ie &= (~0x1);
asm volatile ("wcsr ie, %0"::"r" (ie));
/* enable mask-bit in im */
asm volatile ("rcsr %0, im":"=r"(im));
im |= Mask;
asm volatile ("wcsr im, %0"::"r"(im));
/* enable mask-bit in im */
asm volatile ("rcsr %0, im":"=r" (im));
im |= Mask;
asm volatile ("wcsr im, %0"::"r" (im));
ie |= 0x1;
asm volatile ("wcsr ie, %0"::"r"(ie));
ie |= 0x1;
asm volatile ("wcsr ie, %0"::"r" (ie));
}
......@@ -10,4 +10,4 @@ int board_init()
int board_update()
{
}
\ No newline at end of file
}
......@@ -10,4 +10,4 @@ int board_init()
int board_update()
{
}
\ No newline at end of file
}
......@@ -6,44 +6,44 @@
#define DNA_SHIFT 3
#define DNA_READ 2
void dna_read(uint32_t *lo, uint32_t *hi)
void dna_read(uint32_t * lo, uint32_t * hi)
{
uint64_t dna = 0;
int i;
uint64_t dna = 0;
int i;
gpio_out(DNA_DATA, 0);
delay(10);
gpio_out(DNA_CLK, 0);
delay(10);
gpio_out(DNA_READ, 1);
delay(10);
gpio_out(DNA_SHIFT, 0);
delay(10);
gpio_out(DNA_DATA, 0);
delay(10);
gpio_out(DNA_CLK, 0);
delay(10);
gpio_out(DNA_READ, 1);
delay(10);
gpio_out(DNA_SHIFT, 0);
delay(10);
delay(10);
gpio_out(DNA_CLK, 1);
delay(10);
if(gpio_in(DNA_DATA)) dna |= 1;
delay(10);
gpio_out(DNA_CLK, 0);
delay(10);
gpio_out(DNA_READ, 0);
gpio_out(DNA_SHIFT, 1);
delay(10);
delay(10);
gpio_out(DNA_CLK, 1);
delay(10);
if (gpio_in(DNA_DATA))
dna |= 1;
delay(10);
gpio_out(DNA_CLK, 0);
delay(10);
gpio_out(DNA_READ, 0);
gpio_out(DNA_SHIFT, 1);
delay(10);
for(i=0;i<57;i++)
{
dna <<= 1;
delay(10);
delay(10);
gpio_out(DNA_CLK, 1);
delay(10);
if(gpio_in(DNA_DATA)) dna |= 1;
delay(10);
gpio_out(DNA_CLK, 0);
delay(10);
}
for (i = 0; i < 57; i++) {
dna <<= 1;
delay(10);
delay(10);
gpio_out(DNA_CLK, 1);
delay(10);
if (gpio_in(DNA_DATA))
dna |= 1;
delay(10);
gpio_out(DNA_CLK, 0);
delay(10);
}
*hi = (uint32_t) (dna >> 32);
*lo = (uint32_t) dna;
......
This diff is collapsed.
......@@ -18,7 +18,6 @@ LGPL 2.1
#include <hw/endpoint_regs.h>
#include <hw/endpoint_mdio.h>
/* Length of a single bit on the gigabit serial link in picoseconds. Used for calculating deltaRx/deltaTx
from the serdes bitslip value */
#define PICOS_PER_SERIAL_BIT 800
......@@ -33,150 +32,150 @@ volatile struct EP_WB *EP;
/* functions for accessing PCS (MDIO) registers */
uint16_t pcs_read(int location)
{
EP->MDIO_CR = EP_MDIO_CR_ADDR_W(location >> 2);
while ((EP->MDIO_ASR & EP_MDIO_ASR_READY) == 0);
return EP_MDIO_ASR_RDATA_R(EP->MDIO_ASR) & 0xffff;
EP->MDIO_CR = EP_MDIO_CR_ADDR_W(location >> 2);
while ((EP->MDIO_ASR & EP_MDIO_ASR_READY) == 0) ;
return EP_MDIO_ASR_RDATA_R(EP->MDIO_ASR) & 0xffff;
}
void pcs_write(int location, int value)
{
EP->MDIO_CR = EP_MDIO_CR_ADDR_W(location >> 2)
| EP_MDIO_CR_DATA_W(value)
| EP_MDIO_CR_RW;
EP->MDIO_CR = EP_MDIO_CR_ADDR_W(location >> 2)
| EP_MDIO_CR_DATA_W(value)
| EP_MDIO_CR_RW;
while ((EP->MDIO_ASR & EP_MDIO_ASR_READY) == 0);
while ((EP->MDIO_ASR & EP_MDIO_ASR_READY) == 0) ;
}
/* MAC address setting */
void set_mac_addr(uint8_t dev_addr[])
{
EP->MACL = ((uint32_t)dev_addr[2] << 24)
| ((uint32_t)dev_addr[3] << 16)
| ((uint32_t)dev_addr[4] << 8)
| ((uint32_t)dev_addr[5]);
EP->MACL = ((uint32_t) dev_addr[2] << 24)
| ((uint32_t) dev_addr[3] << 16)
| ((uint32_t) dev_addr[4] << 8)
| ((uint32_t) dev_addr[5]);
EP->MACH = ((uint32_t)dev_addr[0] << 8)
| ((uint32_t)dev_addr[1]);
EP->MACH = ((uint32_t) dev_addr[0] << 8)
| ((uint32_t) dev_addr[1]);
}
void get_mac_addr(uint8_t dev_addr[])
{
dev_addr[5] = (EP->MACL & 0x000000ff);
dev_addr[4] = (EP->MACL & 0x0000ff00) >> 8;
dev_addr[3] = (EP->MACL & 0x00ff0000) >> 16;
dev_addr[2] = (EP->MACL & 0xff000000) >> 24;
dev_addr[1] = (EP->MACH & 0x000000ff);
dev_addr[0] = (EP->MACH & 0x0000ff00) >> 8;
dev_addr[5] = (EP->MACL & 0x000000ff);
dev_addr[4] = (EP->MACL & 0x0000ff00) >> 8;
dev_addr[3] = (EP->MACL & 0x00ff0000) >> 16;
dev_addr[2] = (EP->MACL & 0xff000000) >> 24;
dev_addr[1] = (EP->MACH & 0x000000ff);
dev_addr[0] = (EP->MACH & 0x0000ff00) >> 8;
}
/* Initializes the endpoint and sets its local MAC address */
void ep_init(uint8_t mac_addr[])
{
EP = (volatile struct EP_WB *) BASE_EP;
set_mac_addr(mac_addr);
EP = (volatile struct EP_WB *)BASE_EP;
set_mac_addr(mac_addr);
*(unsigned int *)(0x62000) = 0x2; // reset network stuff (cleanup required!)
*(unsigned int *)(0x62000) = 0;
*(unsigned int *)(0x62000) = 0x2; // reset network stuff (cleanup required!)
*(unsigned int *)(0x62000) = 0;
EP->ECR = 0; /* disable Endpoint */
EP->VCR0 = EP_VCR0_QMODE_W(3); /* disable VLAN unit - not used by WRPC */
EP->RFCR = EP_RFCR_MRU_W(1518); /* Set the max RX packet size */
EP->TSCR = EP_TSCR_EN_TXTS | EP_TSCR_EN_RXTS; /* Enable timestamping */
EP->ECR = 0; /* disable Endpoint */
EP->VCR0 = EP_VCR0_QMODE_W(3); /* disable VLAN unit - not used by WRPC */
EP->RFCR = EP_RFCR_MRU_W(1518); /* Set the max RX packet size */
EP->TSCR = EP_TSCR_EN_TXTS | EP_TSCR_EN_RXTS; /* Enable timestamping */
/* Configure DMTD phase tracking */
EP->DMCR = EP_DMCR_EN | EP_DMCR_N_AVG_W(DMTD_AVG_SAMPLES);
EP->DMCR = EP_DMCR_EN | EP_DMCR_N_AVG_W(DMTD_AVG_SAMPLES);
}
/* Enables/disables transmission and reception. When autoneg is set to 1,
starts up 802.3 autonegotiation process */
int ep_enable(int enabled, int autoneg)
{
uint16_t mcr;
uint16_t mcr;
if(!enabled)
{
EP->ECR = 0;
return 0;
}
if (!enabled) {
EP->ECR = 0;
return 0;
}
/* Disable the endpoint */
EP->ECR = 0;
EP->ECR = 0;
mprintf("ID: %x\n", EP->IDCODE);
mprintf("ID: %x\n", EP->IDCODE);
/* Load default packet classifier rules - see ep_pfilter.c for details */
pfilter_init_default();
pfilter_init_default();
/* Enable TX/RX paths, reset RMON counters */
EP->ECR = EP_ECR_TX_EN | EP_ECR_RX_EN | EP_ECR_RST_CNT;
EP->ECR = EP_ECR_TX_EN | EP_ECR_RX_EN | EP_ECR_RST_CNT;
autoneg_enabled = autoneg;
autoneg_enabled = autoneg;
/* Reset the GTP Transceiver - it's important to do the GTP phase alignment every time
we start up the software, otherwise the calibration RX/TX deltas may not be correct */
pcs_write(MDIO_REG_MCR, MDIO_MCR_PDOWN); /* reset the PHY */
timer_delay(200);
pcs_write(MDIO_REG_MCR, MDIO_MCR_RESET); /* reset the PHY */
pcs_write(MDIO_REG_MCR, 0); /* reset the PHY */
pcs_write(MDIO_REG_MCR, MDIO_MCR_PDOWN); /* reset the PHY */
timer_delay(200);
pcs_write(MDIO_REG_MCR, MDIO_MCR_RESET); /* reset the PHY */
pcs_write(MDIO_REG_MCR, 0); /* reset the PHY */
/* Don't advertise anything - we don't want flow control */
pcs_write(MDIO_REG_ADVERTISE, 0);
pcs_write(MDIO_REG_ADVERTISE, 0);
mcr = MDIO_MCR_SPEED1000_MASK | MDIO_MCR_FULLDPLX_MASK;
if(autoneg)
mcr |= MDIO_MCR_ANENABLE | MDIO_MCR_ANRESTART;
mcr = MDIO_MCR_SPEED1000_MASK | MDIO_MCR_FULLDPLX_MASK;
if (autoneg)
mcr |= MDIO_MCR_ANENABLE | MDIO_MCR_ANRESTART;
pcs_write(MDIO_REG_MCR, mcr);
return 0;
pcs_write(MDIO_REG_MCR, mcr);
return 0;
}
/* Checks the link status. If the link is up, returns non-zero
and stores the Link Partner Ability (LPA) autonegotiation register at *lpa */
int ep_link_up(uint16_t *lpa)
int ep_link_up(uint16_t * lpa)
{
uint16_t flags = MDIO_MSR_LSTATUS;
volatile uint16_t msr;
uint16_t flags = MDIO_MSR_LSTATUS;
volatile uint16_t msr;
if(autoneg_enabled)
flags |= MDIO_MSR_ANEGCOMPLETE;
if (autoneg_enabled)
flags |= MDIO_MSR_ANEGCOMPLETE;
msr = pcs_read(MDIO_REG_MSR);
msr = pcs_read(MDIO_REG_MSR); /* Read this flag twice to make sure the status is updated */
msr = pcs_read(MDIO_REG_MSR);
msr = pcs_read(MDIO_REG_MSR); /* Read this flag twice to make sure the status is updated */
if(lpa) *lpa = pcs_read(MDIO_REG_LPA);
if (lpa)
*lpa = pcs_read(MDIO_REG_LPA);
return (msr & flags) == flags ? 1 : 0;
return (msr & flags) == flags ? 1 : 0;
}
/* Returns the TX/RX latencies. They are valid only when the link is up. */
int ep_get_deltas(uint32_t *delta_tx, uint32_t *delta_rx)
int ep_get_deltas(uint32_t * delta_tx, uint32_t * delta_rx)
{
/* fixme: these values should be stored in calibration block in the EEPROM on the FMC. Also, the TX/RX delays of a particular SFP
should be added here */
/* fixme: these values should be stored in calibration block in the EEPROM on the FMC. Also, the TX/RX delays of a particular SFP
should be added here */
*delta_tx = sfp_deltaTx;
*delta_rx = sfp_deltaRx + PICOS_PER_SERIAL_BIT * MDIO_WR_SPEC_BSLIDE_R(pcs_read(MDIO_REG_WR_SPEC));
*delta_rx =
sfp_deltaRx +
PICOS_PER_SERIAL_BIT *
MDIO_WR_SPEC_BSLIDE_R(pcs_read(MDIO_REG_WR_SPEC));
return 0;
}
int ep_cal_pattern_enable()
{
uint32_t val;
val = pcs_read(MDIO_REG_WR_SPEC);
val |= MDIO_WR_SPEC_TX_CAL;
pcs_write(MDIO_REG_WR_SPEC, val);
uint32_t val;
val = pcs_read(MDIO_REG_WR_SPEC);
val |= MDIO_WR_SPEC_TX_CAL;
pcs_write(MDIO_REG_WR_SPEC, val);
return 0;
return 0;
}
int ep_cal_pattern_disable()
{
uint32_t val;
val = pcs_read(MDIO_REG_WR_SPEC);
val &= (~MDIO_WR_SPEC_TX_CAL);
pcs_write(MDIO_REG_WR_SPEC, val);
uint32_t val;
val = pcs_read(MDIO_REG_WR_SPEC);
val &= (~MDIO_WR_SPEC_TX_CAL);
pcs_write(MDIO_REG_WR_SPEC, val);
return 0;
return 0;
}
This diff is collapsed.
......@@ -6,8 +6,9 @@
void mi2c_delay()
{
int i;
for(i=0;i<I2C_DELAY;i++) asm volatile ("nop");
int i;
for (i = 0; i < I2C_DELAY; i++)
asm volatile ("nop");
}
#define M_SDA_OUT(i, x) { gpio_out(i2c_if[i].sda, x); mi2c_delay(); }
......@@ -16,96 +17,92 @@ void mi2c_delay()
void mi2c_start(uint8_t i2cif)
{
M_SDA_OUT(i2cif, 0);
M_SCL_OUT(i2cif, 0);
M_SDA_OUT(i2cif, 0);
M_SCL_OUT(i2cif, 0);
}
void mi2c_repeat_start(uint8_t i2cif)
{
M_SDA_OUT(i2cif, 1);
M_SCL_OUT(i2cif, 1);
M_SDA_OUT(i2cif, 0);
M_SCL_OUT(i2cif, 0);
M_SDA_OUT(i2cif, 1);
M_SCL_OUT(i2cif, 1);
M_SDA_OUT(i2cif, 0);
M_SCL_OUT(i2cif, 0);
}
void mi2c_stop(uint8_t i2cif)
{
M_SDA_OUT(i2cif, 0);
M_SCL_OUT(i2cif, 1);
M_SDA_OUT(i2cif, 1);
M_SDA_OUT(i2cif, 0);
M_SCL_OUT(i2cif, 1);
M_SDA_OUT(i2cif, 1);
}
unsigned char mi2c_put_byte(uint8_t i2cif, unsigned char data)
{
char i;
unsigned char ack;
char i;
unsigned char ack;
for (i=0;i<8;i++, data<<=1)
{
M_SDA_OUT(i2cif, data&0x80);
M_SCL_OUT(i2cif, 1);
M_SCL_OUT(i2cif, 0);
}
for (i = 0; i < 8; i++, data <<= 1) {
M_SDA_OUT(i2cif, data & 0x80);
M_SCL_OUT(i2cif, 1);
M_SCL_OUT(i2cif, 0);
}
M_SDA_OUT(i2cif, 1);
M_SCL_OUT(i2cif, 1);
M_SDA_OUT(i2cif, 1);
M_SCL_OUT(i2cif, 1);
ack = M_SDA_IN(i2cif); /* ack: sda is pulled low ->success. */
ack = M_SDA_IN(i2cif); /* ack: sda is pulled low ->success. */
M_SCL_OUT(i2cif, 0);
M_SDA_OUT(i2cif, 0);
M_SCL_OUT(i2cif, 0);
M_SDA_OUT(i2cif, 0);
return ack!=0;
return ack != 0;
}
void mi2c_get_byte(uint8_t i2cif, unsigned char *data, uint8_t last)
{
int i;
unsigned char indata = 0;
M_SDA_OUT(i2cif, 1);
/* assert: scl is low */
M_SCL_OUT(i2cif, 0);
for (i=0;i<8;i++)
{
M_SCL_OUT(i2cif, 1);
indata <<= 1;
if ( M_SDA_IN(i2cif) ) indata |= 0x01;
M_SCL_OUT(i2cif, 0);
}
if(last)
{
M_SDA_OUT(i2cif, 1); //noack
M_SCL_OUT(i2cif, 1);
M_SCL_OUT(i2cif, 0);
}
else
{
M_SDA_OUT(i2cif, 0); //ack
M_SCL_OUT(i2cif, 1);
M_SCL_OUT(i2cif, 0);
}
*data= indata;
int i;
unsigned char indata = 0;
M_SDA_OUT(i2cif, 1);
/* assert: scl is low */
M_SCL_OUT(i2cif, 0);
for (i = 0; i < 8; i++) {
M_SCL_OUT(i2cif, 1);
indata <<= 1;
if (M_SDA_IN(i2cif))
indata |= 0x01;
M_SCL_OUT(i2cif, 0);
}
if (last) {
M_SDA_OUT(i2cif, 1); //noack
M_SCL_OUT(i2cif, 1);
M_SCL_OUT(i2cif, 0);
} else {
M_SDA_OUT(i2cif, 0); //ack
M_SCL_OUT(i2cif, 1);
M_SCL_OUT(i2cif, 0);
}
*data = indata;
}
void mi2c_init(uint8_t i2cif)
{
M_SCL_OUT(i2cif, 1);
M_SDA_OUT(i2cif, 1);
M_SCL_OUT(i2cif, 1);
M_SDA_OUT(i2cif, 1);
}
uint8_t mi2c_devprobe(uint8_t i2cif, uint8_t i2c_addr)
{
uint8_t ret;
mi2c_start(i2cif);
ret = !mi2c_put_byte(i2cif, i2c_addr<<1);
mi2c_stop(i2cif);
uint8_t ret;
mi2c_start(i2cif);
ret = !mi2c_put_byte(i2cif, i2c_addr << 1);
mi2c_stop(i2cif);
return ret;
return ret;
}
//void mi2c_scan(uint8_t i2cif)
......
This diff is collapsed.
......@@ -10,106 +10,115 @@ uint8_t found_msk;
void own_scanbus(uint8_t portnum)
{
// Find the device(s)
found_msk = 0;
devsnum = 0;
devsnum += FindDevices(portnum, &FamilySN[devsnum], 0x28, MAX_DEV1WIRE - devsnum); /* Temperature 28 sensor (SPEC) */
if(devsnum>0) found_msk |= FOUND_DS18B20;
devsnum += FindDevices(portnum, &FamilySN[devsnum], 0x42, MAX_DEV1WIRE - devsnum); /* Temperature 42 sensor (SCU) */
devsnum += FindDevices(portnum, &FamilySN[devsnum], 0x43, MAX_DEV1WIRE - devsnum); /* EEPROM */
// Find the device(s)
found_msk = 0;
devsnum = 0;
devsnum += FindDevices(portnum, &FamilySN[devsnum], 0x28, MAX_DEV1WIRE - devsnum); /* Temperature 28 sensor (SPEC) */
if (devsnum > 0)
found_msk |= FOUND_DS18B20;
devsnum += FindDevices(portnum, &FamilySN[devsnum], 0x42, MAX_DEV1WIRE - devsnum); /* Temperature 42 sensor (SCU) */
devsnum += FindDevices(portnum, &FamilySN[devsnum], 0x43, MAX_DEV1WIRE - devsnum); /* EEPROM */
#if DEBUG_PMAC
mprintf("Found %d onewire devices\n", devsnum);
mprintf("Found %d onewire devices\n", devsnum);
#endif
}
int16_t own_readtemp(uint8_t portnum, int16_t *temp, int16_t *t_frac)
int16_t own_readtemp(uint8_t portnum, int16_t * temp, int16_t * t_frac)
{
if(!(found_msk & FOUND_DS18B20))
return -1;
if(ReadTemperature28(portnum, FamilySN[0], temp))
{
*t_frac = 5000*(!!(*temp & 0x08)) + 2500*(!!(*temp & 0x04)) + 1250*(!!(*temp & 0x02)) +
625*(!!(*temp & 0x01));
*t_frac = *t_frac/100 + (*t_frac%100)/50;
*temp >>= 4;
return 0;
}
return -1;
if (!(found_msk & FOUND_DS18B20))
return -1;
if (ReadTemperature28(portnum, FamilySN[0], temp)) {
*t_frac =
5000 * (! !(*temp & 0x08)) + 2500 * (! !(*temp & 0x04)) +
1250 * (! !(*temp & 0x02)) + 625 * (! !(*temp & 0x01));
*t_frac = *t_frac / 100 + (*t_frac % 100) / 50;
*temp >>= 4;
return 0;
}
return -1;
}
/* 0 = success, -1 = error */
int8_t get_persistent_mac(uint8_t portnum, uint8_t* mac)
int8_t get_persistent_mac(uint8_t portnum, uint8_t * mac)
{
uint8_t read_buffer[32];
uint8_t i;
int8_t out;
uint8_t read_buffer[32];
uint8_t i;
int8_t out;
out = -1;
out = -1;
if(devsnum == 0) return out;
if (devsnum == 0)
return out;
for (i = 0; i < devsnum; ++i) {
for (i = 0; i < devsnum; ++i) {
//#if DEBUG_PMAC
mprintf("Found device: %x:%x:%x:%x:%x:%x:%x:%x\n",
FamilySN[i][7], FamilySN[i][6], FamilySN[i][5], FamilySN[i][4],
FamilySN[i][3], FamilySN[i][2], FamilySN[i][1], FamilySN[i][0]);
mprintf("Found device: %x:%x:%x:%x:%x:%x:%x:%x\n",
FamilySN[i][7], FamilySN[i][6], FamilySN[i][5], FamilySN[i][4],
FamilySN[i][3], FamilySN[i][2], FamilySN[i][1], FamilySN[i][0]);
//#endif
/* If there is a temperature sensor, use it for the low three MAC values */
if (FamilySN[i][0] == 0x28 || FamilySN[i][0] == 0x42) {
mac[3] = FamilySN[i][3];
mac[4] = FamilySN[i][2];
mac[5] = FamilySN[i][1];
out = 0;
/* If there is a temperature sensor, use it for the low three MAC values */
if (FamilySN[i][0] == 0x28 || FamilySN[i][0] == 0x42) {
mac[3] = FamilySN[i][3];
mac[4] = FamilySN[i][2];
mac[5] = FamilySN[i][1];
out = 0;
#if DEBUG_PMAC
mprintf("Using temperature ID for MAC\n");
mprintf("Using temperature ID for MAC\n");
#endif
}
/* If there is an EEPROM, read page 0 for the MAC */
if (FamilySN[i][0] == 0x43) {
owLevel(portnum, MODE_NORMAL);
if (ReadMem43(portnum, FamilySN[i], EEPROM_MAC_PAGE, &read_buffer) == TRUE) {
if (read_buffer[0] == 0 && read_buffer[1] == 0 && read_buffer[2] == 0) {
/* Skip the EEPROM since it has not been programmed! */
}
/* If there is an EEPROM, read page 0 for the MAC */
if (FamilySN[i][0] == 0x43) {
owLevel(portnum, MODE_NORMAL);
if (ReadMem43(portnum, FamilySN[i], EEPROM_MAC_PAGE,
&read_buffer) == TRUE) {
if (read_buffer[0] == 0 && read_buffer[1] == 0
&& read_buffer[2] == 0) {
/* Skip the EEPROM since it has not been programmed! */
#if DEBUG_PMAC
mprintf("EEPROM has not been programmed with a MAC\n");
mprintf("EEPROM has not been "
"programmed with a MAC\n");
#endif
} else {
memcpy(mac, read_buffer, 6);