

This is the Scripting Specification for Layer 2-3.

It describes the Xena Scripting API for the XenaBay and XenaCompact Layer 2-3 test products.

Last updated: 2018-08-02

Introduction

This manual describes the Xena Scripting API for the XenaBay and XenaCompact layer 2-3 test products.

As an alternative to using the XenaManager, you can interact with the testers using a command-line interface (CLI).

This also allows the tester to be controlled from a scripting environment, and be part of a larger automation

environment.

1

Introduction 1

Overview 11

Scripting Explained 11

Connecting to the Chassis 12

Relation to XenaManager 14

Command Syntax 15

Status Messages 16

Defaults and Wild-carding 17

Special Scripting Commands 18

Sample Script Session 19

Output from Sample Session 22

Detailed Script Parameters 28

Chassis Scripting Parameters 28

Identification 28

C_NAME chassisname 28

C_COMMENT comment 28

C_PASSWORD password 29

C_MODEL model 29

C_SERIALNO serialno 29

C_VERSIONNO chassis_majorvers driver_vers 29

C_VERSIONNO_MINOR chassis_minorvers 30

C_CAPABILITIES integer integer … 30

C_ALLPORTCAPS ? 30

C_PORTCOUNTS portcount portcount … 31

C_INFO ? 31

C_CONFIG ? 31

Logon 32

C_LOGON password 32

C_LOGOFF 32

C_OWNER username 32

Chassis Management Address 33

C_IPADDRESS address subnetmask gateway 33

C_DHCP usedhcp 33

C_MACADDRESS macaddress 34

C_HOSTNAME hostname 34

Status 34

C_KEEPALIVE ticks 34

2

C_TIMEOUT seconds 35

C_INDICES session session … 35

C_STATSESSION [ses] typ adr own ops req rsp 35

C_STATS ? 36

C_PORTERRORS errorcount errorcount … 36

Reservation 37

C_RESERVATION whattodo 37

C_RESERVEDBY username 37

Actions 37

C_DOWN magic whatodo 37

C_TRAFFIC on/off moduleA portA ……. moduleX portX 38

C_TRAFFICSYNC on/off timestamp moduleA portA … 38

C_FLASH onoff 39

File Upload 39

C_FILESTART type size time mode chk name 39

C_FILEDATA offset databytes 40

C_FILEFINISH magic 40

Module Scripting Parameters 41

Identification 41

M_MODEL model 41

M_COMMENT comment 41

M_SERIALNO serialno 41

M_VERSIONNO version 42

M_PORTCOUNT count 42

M_INFO ? 42

M_CONFIG ? 43

Reservation 43

M_RESERVATION whattodo 43

M_RESERVEDBY username 44

Status 44

M_STATUS temperature 44

Timing Configuration 45

M_TIMESYNC mode 45

M_TIMEADJUSTMENT adjust 45

M_CLOCKPPB ppb 45

M_SMASTATUS status 46

M_SMAINPUT smain 46

3

M_SMAOUTPUT smaout 46

M_TXCLOCKSOURCE txclk 47

M_TXCLOCKFILTER filter 47

M_TXCLOCKSTATUS status 48

Media Configuration 48

M_CFPTYPE info 48

M_CFPCONFIG ports speed 49

M_CFPCONFIGEXT ports speed 49

M_MEDIASUPPORT cagetype speedsavailable portsperspeed speed 50

M_MEDIA media 50

Firmware Upgrade 51

M_UPGRADE magic imagename 51

M_UPGRADEPROGRESS progress 51

Port Scripting Parameters 53

General State and Identification 53

P_RESERVATION whattodo 53

P_RESERVEDBY username 53

P_RESET 54

P_CAPABILITIES integer integer … 54

P_INTERFACE interface 55

P_RECEIVESYNC syncstatus 56

P_COMMENT comment 56

P_INFO ? 56

P_CONFIG ? 57

P_FULLCONFIG ? 57

TX Control 58

P_TRAFFIC onoff 58

P_TXENABLE onoff 58

P_TXDELAY delayval 59

P_TXTIMELIMIT microseconds 59

P_TXTIME microseconds 59

P_TXPACKETLIMIT count* 60

P_XMITONE hexdata 60

P_XMITONETIME nanoseconds 61

P_DYNAMIC onoff 61

TX Profile 61

P_TXMODE txmode 61

4

P_RATEFRACTION fraction 63

P_RATEPPS pps 63

P_RATEL2BPS bps 64

P_RATE ? 64

P_TXBURSTPERIOD period* 64

Layer-1 Control 65

P_SPEEDSELECTION selection 65

P_MDIXMODE selection 65

P_SPEED mbps 66

P_AUTONEGSELECTION onoff 66

P_BRRMODE selection* 67

P_STATUS opticalpower 67

P_ERRORS errorcount 67

P_SPEEDREDUCTION ppm 68

P_INTERFRAMEGAP minbytes 68

P_FAULTSIGNALING setting 69

P_FAULTSTATUS status 69

Low Power Ethernet Control 70

P_LPENABLE onoff 70

P_LPTXMODE onoff 70

P_LPSTATUS txh rxh txc rxc linkup 70

P_LPPARTNERAUTONEG speed0 …. speed 5 71

P_LPSNRMARGIN chA chB chC chD 71

Layer-2 Control 72

P_MACADDRESS hexdata 72

P_AUTOTRAIN interval 72

P_PAUSE onoff 72

P_PFCENABLE onoff-array 73

P_GAPMONITOR start stop 73

IP Address Properties 74

P_IPADDRESS address subnet gateway wild 74

P_ARPREPLY onoff 74

P_PINGREPLY onoff 74

P_ARPV6REPLY onoff 75

P_PINGV6REPLY onoff 75

P_MULTICAST ipaddress operation seconds 76

P_MULTICASTEXT ipaddresses operation seconds igmpversion 76

5

P_MCSRCLIST ipaddresses 77

Capture Control 77

P_CAPTURE onoff 77

Payload Properties 77

P_CHECKSUM offset 77

P_RANDOMSEED value 78

P_MAXHEADERLENGTH value 78

P_MIXWEIGHTS weights 79

P_TPLDMODE setting 79

P_PAYLOADMODE mode 80

Loopback and Latency 81

P_LOOPBACK loopmode 81

P_LATENCYMODE mode 82

P_LATENCYOFFSET value 82

Misc. Parameters 83

P_FLASH onoff 83

Stream Scripting Parameters 83

General Information 83

Enabling Traffic 83

Stream Test Payload Data (TPLD) 83

Normal TPLD (20 or 22 bytes) 84

Micro-TPLD (6 bytes) 84

Disable TPLD 85

Minimum Packet Size Considerations 85

State and Identification Parameters 85

PS_INDICES sid sid … 85

PS_CREATE [sid] 86

PS_DELETE [sid] 86

PS_ENABLE [sid] state 86

PS_COMMENT [sid] comment 87

PS_TPLDID [sid] tpldid 87

PS_CONFIG [sid]? 88

PS_FULLCONFIG ? 89

Traffic Profile 89

PS_RATEFRACTION [sid] fraction 89

PS_RATEPPS [sid] pps 89

PS_RATEL2BPS [sid] bps 90

6

PS_RATE [sid]? 90

PS_BURST [sid] size density 91

PS_BURSTGAP [sid] ipg ibg* 91

PS_PACKETLIMIT [sid] count 92

Protocol Headers 93

PS_PACKETHEADER [sid] hexdata 93

PS_HEADERPROTOCOL [sid] segment segment … 94

PS_INSERTFCS [sid] onoff 95

PS_ARPREQUEST [sid] macaddress 95

PS_PINGREQUEST [sid] delay ttl 96

Modifiers 96

PS_MODIFIERCOUNT [sid] count 96

PS_MODIFIER [sid,mid] pos mask act rep 97

PS_MODIFIERRANGE [sid,mid] min step max 97

PS_MODIFIEREXTCNT [sid] count 98

PS_MODIFIEREXT [sid,mid] pos mask act rep 98

PS_MODIFIEREXTRANGE [sid,mid] min step max 99

Packet Size and Payload 100

PS_PACKETLENGTH [sid] type min max 100

PS_PAYLOAD [sid] type hexdata 101

PS_EXTPAYLOAD [sid] hexdata 101

PS_CDFOFFSET [sid] offset 102

PS_CDFCOUNT [sid] count 103

PS_CDFDATA [sid, cid] hexdata 103

Error Injection 105

PS_INJECTFCSERR [sid] 105

PS_INJECTSEQERR [sid] 105

PS_INJECTMISERR [sid] 105

PS_INJECTPLDERR [sid] 106

PS_INJECTTPLDERR [sid] 106

Filter Scripting Parameters 107

PM_INDICES mid mid … 107

PM_CREATE [mid] 107

PM_DELETE [mid] 108

PM_PROTOCOL [mid] segment segment … 108

PM_POSITION [mid] byteoffset 109

PM_MATCH [mid] mask value 109

7

PM_CONFIG [mid]? 109

PM_FULLCONFIG ? 110

PL_INDICES lid lid … 110

PL_CREATE [lid] 111

PL_DELETE [lid] 111

PL_LENGTH [lid] type size 111

PL_FULLCONFIG ? 112

PF_INDICES fid fid … 112

PF_CREATE [fid] 112

PF_DELETE [fid] 113

PF_ENABLE [fid] onoff 113

PF_COMMENT [fid] comment 113

PF_CONDITION [fid] terms terms … 114

PF_CONFIG [fid]? 115

PF_CONFIG [fid]? 115

Capture Scripting Parameters 116

PC_TRIGGER start filter1 stop filter2 116

PC_KEEP which index bytes 117

PC_STATS status packets starttime 117

PC_PACKET [cid] hexdata 118

PC_EXTRA [cid] time latency ifg length 118

PC_INFO [cid]? 118

PC_FULLCONFIG ? 119

Statistics Scripting Parameters 120

PT_TOTAL bps pps bytes packets 120

PT_NOTPLD bps pps bytes packets 120

PT_TOTAL bps pps bytes packets 121

PT_NOTPLD bps pps bytes packets 121

PT_EXTRA arptxreq arptxrsp pingtxreq pingtxrsp fcs seq mis pld tpld train igmp 122

PT_STREAM [sid] bps pps bytes packets 122

PT_ALL ? 122

PT_CLEAR 123

PR_TOTAL bps pps bytes packets 123

PR_NOTPLD bps pps bytes packets 124

PR_EXTRA miscstats… 124

PR_TPLDS tid tid … 124

PR_TPLDTRAFFIC [tid] bps pps byt pac 125

8

PR_TPLDERRORS [tid] dummy seq mis pld 125

PR_TPLDLATENCY [tid] min avg max avg1sec min1sec max1sec 126

PR_TPLDJITTER [tid] min avg max avg1sec min1sec max1sec 127

PR_FILTER [fid] bps pps bytes packets 127

PR_PFCSTATS packets priocount-array 128

PR_ALL ? 128

PR_ALLERRORS ? 128

PR_CALIBRATE 129

PR_CLEAR 129

PR_PFCSTATS ? 129

PT_EXTRA arptxreq arptxrsp pingtxreq pingtxrsp fcs seq mis pld tpld train igmp 129

PT_STREAM [sid] bps pps bytes packets 130

PT_ALL ? 130

PT_CLEAR 131

PR_TOTAL bps pps bytes packets 131

PR_NOTPLD bps pps bytes packets 131

PR_EXTRA miscstats… 132

PR_TPLDS tid tid … 132

PR_TPLDTRAFFIC [tid] bps pps byt pac 133

PR_TPLDERRORS [tid] dummy seq mis pld 133

PR_TPLDLATENCY [tid] min avg max avg1sec min1sec max1sec 134

PR_TPLDJITTER [tid] min avg max avg1sec min1sec max1sec 134

PR_FILTER [fid] bps pps bytes packets 135

PR_PFCSTATS packets priocount-array 135

PR_ALL ? 136

PR_ALLERRORS ? 136

PR_CALIBRATE 136

PR_CLEAR 137

PR_PFCSTATS ? 137

Dataset (Histogram) Scripting Parameters 138

PD_CREATE [did] 138

PD_ENABLE [did] onoff 138

PD_SOURCE [did] type which id 139

PD_RANGE [did] start step count 140

PD_SAMPLES [did] value value … 140

PD_CONFIG [did] ? 141

PD_FULLCONFIG ? 141

9

PD_ALL ? 141

40/100G Port Scripting Parameters 143

PP_TXLANECONFIG [pid] virtlane skew 143

PP_TXLANEINJECT [pid] type 144

PP_TXPRBSCONFIG [pid] dummy onoff errors 144

PP_TXERRORRATE rate 144

PP_TXINJECTONE 145

PP_RXLANELOCK [pid] headerlock alignlock 145

PP_RXLANESTATUS [pid] virtlane skew 146

PP_RXLANEERRORS [pid] header align bip8 146

PP_RXPRBSSTATUS [pid] bytes errors lock 146

PP_RXLASERPOWER nanowatts… 147

PP_RXCLEAR 147

PP_CONFIG ? 148

PP_ALL ? 148

PP_ALLERRORS ? 148

PP_EYEMEASURE [serdes] status dummy 149

PP_EYERESOLUTION [serdes] xres yres 149

PP_EYEINFO [serdes] value0, value1…. valueN 150

PP_EYEREAD [serdes,column] xres yres valid_cols values* 151

PP_PHYTXEQ [serdes] preemph attn postemph 152

PP_PHYRETUNE [serdes] dummy 152

PP_PHYAUTOTUNE [serdes] onoff 153

10

Overview

Everything that can be done using the XenaManager can also be done through scripting, and in a nearly identical

fashion. (Please keep this in mind even though most of the examples use the XenaManager for illustration.)

The commands are simple lines of text exchanged between a client and the Xena chassis. An example command to the

chassis could be:

0/5 PS_RATEPPS [3] 500000

This goes to module 0, port 5, and sets stream 3’s rate to 500000 packets per second. The chassis responds with:

<OK>

You would query for the current value this way:

0/5 PS_RATEPPS [3] ?

And the chassis would respond in exactly the same way that you set the value yourself:

0/5 PS_RATEPPS [3] 500000

Note that this is exactly the same syntax used when saving and loading port configurations to files on the client PC.

This lets you use saved configurations as a starting point for scripting, and it also allows you to modify the saved files

before loading them back into the chassis.

Scripting Explained

The chassis of the Xena test platform can be controlled in two separate fashions: in a point-and-click

interactive style using XenaManager, and in a command-line-interface style using a text-based scripting

interface.

The script commands are simple lines of text exchanged between a client and the Xena chassis. An example

command to the chassis could be:

0/5 PS_RATEPPS [3] 500000

This goes to module 0, port 5, and sets stream 3’s rate to 500000 packets per second. The chassis responds

with:

11

<OK>

You would query for the current value this way:

0/5 PS_RATEPPS [3] ?

And the chassis would respond in exactly the same way that you set the value yourself:

0/5 PS_RATEPPS [3] 500000

This document contains a general overview of the scripting mechanism, followed by reference sections

describing each group of scriptable parameters in detail. There are a few hundred parameters in total, but

only a handful is required for typical simple tasks.

To set up basic traffic patterns and obtain traffic statistics, use the port parameters (starting with P_…), the

stream parameters (starting with PS_…), and the transmit/receive statistics parameters (starting with

PT_… and PR_…).

At the end of the overview sections there is a complete example of how to use a collection of script

commands to define and execute some simple operations on a chassis.

Connecting to the Chassis

The chassis support multiple concurrent scripting sessions, just like they support multiple concurrent

interactive Manager sessions. And like Manager sessions, scripting sessions interact with the chassis in its

current state; establishing a scripting session does not in itself impact the chassis state.

In order to start a scripting session, you establish a TCP/IP connection with the chassis using port 22611, on

the same IP address as when using XenaManager.

You then send lines of ASCII text to the chassis, terminated by CR/LF, and receive lines of ASCII text in

response. The first command should be a logon with the valid password for the chassis, or the session will

be terminated.

You can use any client platform that is able to establish a TCP/IP connection and send and receive lines of

text through it. Typical client platforms include Tcl, Perl, Python, Java, Excel/VBA, and Telnet. You may use

client-side functionality to execute script commands conditionally or repetitively.

12

REMEMBER: all lines sent to the chassis must be ​terminated by CR/LF​. You will need to include these

characters explicitly if the connection library of your platform does not do so automatically.

ALSO: please make sure to read all the responses send back to you from the chassis, so that the buffer is

empty when the connection is eventually closed down.

Xena also provides a simple interactive scripting client application that runs on Windows and allows you to

manually type commands to the chassis and see its responses.

Figure 1 The Xena Script Client used to change a chassis description​.

To keep the session alive the client must show some activity every minute or so; else the chassis will

assume that the client has stopped, and there are also routers that will kill a TCP session that is inactive for

more than a few minutes. The simplest way is to send an empty line, and the chassis will also respond with

an empty line. The timeout interval can be changed with the C_TIMEOUT command, so that for instance

C_TIMEOUT 99999 effectively disables the timeout.

Chassis resources must as always be reserved before they can be updated, whereas you can view any

chassis, module, or port parameter as soon as the session is logged on. Reserving and releasing is done

through the C/M/P_RESERVATION commands.

13

Before reservation, a user name must be provided for the scripting session using the C_OWNER command.

If the chassis has resources reserved to this username they will automatically be granted to this session.

Any line starting with a semicolon is treated as a comment and ignored by the chassis, e.g.:

;This script implements the RFC2544 suite

Commands to the chassis are not case-sensitive, and replies from the chassis are in upper-case.

Relation to XenaManager

Anything you can do with XenaManager application you can also do via scripting, and the correspondence

is quite straightforward. For example, just as the Manager’s PORT PROPERTIES panel has a field for viewing

and changing a port’s minimum inter-frame gap, the scripting interface can view and change the

P_INTERFRAMEGAP parameter for doing the same. The same applies to most of the other fields of the

Manager’s user interface.

However, there are a few areas where the Manager has more advanced functionality which is missing in

the scripting interface. This does not limit what you can do, but the way you must do it is more primitive.

● Stream rates and capping. When you specify the rate of a stream using either a percentage, layer-2

Mbps, or packets per second, the Manager calculates the equivalent rates using the other two

methods. It also checks that you do not exceed the available bandwidth for the port. This is not

available through scripting: you just specify the rate using your method of choice, and you must

take care not to exceed the available bandwidth.

● Protocol field editing. The Manager knows the field-by-field layout of various common protocols,

and allows you to inspect and edit packet data at the field level. With scripting you just specify

packet data as a sequence of hexadecimal bytes.

● Filter conditions. The Manager allows you to enter filter conditions as an easy-to-read Boolean

expression on the various terms. With scripting you need to encode the condition using a set of

bitmasks.

● Capture protocol decoding. The Manager inspects the raw bytes of captured packets in order to

identify the protocols at the header of the packet. With scripting you must decode the packet data

yourself if needed.

Also, the manager will disable the user-interface whenever a particular operation is not currently allowed;

for instance trying to update the configuration of a port that has not been reserved, changing a parameter

for an enabled stream while traffic is on, or changing a filter term used in the condition of an enabled filter.

Attempting such things in a scripting session will instead lead to error status messages.

14

At a more fundamental level, the Manager supports the notion of a testbed containing multiple chassis.

This is not applicable through scripting, since each scripting session runs through its own connection to a

single chassis, and indeed the chassis are not aware of each other. Any cross-chassis control must be

handled at the scripting client environment; in particular cross-chassis statistics such as packet loss.

In contrast, the scripting environment provides wild-carding across modules and ports, which is not

available through the Manager.

Command Syntax

The scripting language contains similar syntax for setting and getting values of individual parameters of the

chassis resources. Some parameters, like inter-frame gap, support both set and get; others, like physical

port type, support only get; and a few, like injecting errors, support only set.

You change the value of a settable parameter using:

module/port​ ​parameter​ [​index​,…] ​value​ ​value​ …

Here, ​module​ and ​port​ are the numeric indices for a particular port (for chassis-level parameters neither of

these are present, and for module-level parameters only ​module​ is present); ​parameter​ is one of the names

specified later in this document in the reference sections; ​index​ is a possible sub-index of the parameter,

for instance identifying a stream; and each ​value​ specifies a value appropriate for the particular parameter.

All indices start at zero.

Values are specified using one of the following formats:

● Integer (I): decimal integer, in the 32-bit range, e.g.: 1234567.

● Long (L): decimal integer, in the 64-bit range, e.g.: 123456789123.

● Byte (B): decimal integer, in the 8-bit range, e.g.: 123.

● Hex (H): two hexadecimal digits prefixed by 0x, e.g.: 0xF7.

● String (S): printable 7-bit ASCII characters enclosed in ”, e.g.: ”A string”. Characters with values

outside the 32-126 range and the ” character itself are specified by their decimal value, outside the

quotation marks and separated by commas, e.g.: ”A line”,13,10,”and the next line”.

● Owner (O): a short string used to identify an owner, used for reservation.

● Address (A): a dot-separated IP address, e.g.: 192.168.1.200.

Some parameters allow a variable number of values of a particular type (I*, B*, H*), and these are simply

written with spaces in between. For hex values (H*), multiple bytes can be specified using a single0x prefix,

e.g.: 0xF700ABCD2233.

15

Finally, certain parameters are actually integers, but use coded names for special numeric values to

enhance readability, e.g.: (0=OFF,1=ON).

You query the current value of a gettable parameter using a very similar syntax:

module/port​ ​parameter​ [​index​,…] ?

The chassis responds with a line using identical syntax to the change-command, containing the current

values. These responses can therefore be ‘replayed’ back to the chassis to re-establish the value from a

previous query. This is actually the core of the load/save mechanism of the Xena Manager, as you can see

by using an ordinary text editor to inspect the local files produced by save. You can also change the content

if you want to; it is not interpreted by the Xena Manager.

Note that some queries, like P_INFO ? and P_CONFIG ?, are special in that they do not refer to one

particular parameter, but rather to a collection of parameters. The response is multiple lines containing the

current value of each of these parameters.

Status Messages

The set/change commands themselves simply produce a reply from the chassis of:

<OK>

In case something is unacceptable to the chassis, it may return one of the following status messages:

<NOTLOGGEDON> You have not issued a C_LOGON providing the chassis password.

<NOTRESERVED> You have not issued a x_RESERVATION for the resource you want to change.

<NOTWRITABLE> The parameter is read-only.

<NOTREADABLE> The parameter is write-only.

<NOTVALID> The operation is not valid in the current chassis state, e.g. because traffic is on.

<BADMODULE> The module index value is out of bounds.

<BADPORT> The port index value is out of bounds.

<BADINDEX> A parameter sub-index value is wrong.

<BADSIZE> The size of a data value is not appropriate.

<BADVALUE> A value is not appropriate.

<FAILED> An operation failed to produce a result.

In case of a plain syntax error, misspelled parameter, or an inappropriate use of module/port/indices, the

chassis will return a line pointing out the column where the error was detected, e.g.:

16

0/5 PS_RATEPPS [] 5q00

---^

#Syntax error in column 24

Defaults and Wild-carding

The scripting environment provides you with optional default values for the module index and port index,

allowing you to change and query parameters without providing the module and port index explicitly.

Default indices are enabled and disabled using the following short commands:

module/port​ Set default module and port to the specified values.

port​ Set default port to the specified value, retaining the default module.

-/- Disable the default module and port.

– Disable the default port, retaining the default module.

module/-​ Set the default module, and disable the default port.

? Show the current default module and port.

When a default module and port is provided, parameters that would otherwise require explicit module and

port index values can be written without them, e.g.:

PS_RATEPPS [3] 500

^---

#Index error in column 1

0/5

PS_RATEPPS [3] 500

<OK>

17

Replies from the chassis will also use the current default values to suppress the explicit module and port

indices when possible.

The scripting environment also provides wild-carding across modules and ports. Using an asterisk as a

module or port index effectively makes the chassis execute the command for each value, e.g.:

0/* P_INTERFRAMEGAP 30

This sets the inter-frame gap for every port on module 0. It will generate an individual status response for

each operation, and indeed some may succeed while others fail, for instance due to lack of reservation.

Wild-cards also work for queries. This will give you the inter-frame gap for each port of module 0:

0/* P_INTERFRAMEGAP ?

Wild-cards cannot be used as default values, but the default and wild-card mechanisms can be combined,

for instance to use a default module together with a wild-carded port:

0/-

* P_INTERFRAMEGAP 30

Indeed, for chassis with a single module you will typically set it as the default module and then use only

port indices.

Special Scripting Commands

The scripting environment provides a few commands that do not directly interact with the chassis state,

but rather support the scripting process itself.

● SYNC. This command simply produces a reply of <SYNC>, which can be helpful when parsing and

delimiting the lines returned from the chassis, in particular when using multi-parameter queries.

You can also do SYNC ON, which will subsequently cause an automatic SYNC after each command.

SYNC OFF disables this.

● WAIT n. This command waits for the specified number of seconds, up to 60, and then produces a

reply of <RESUME>. This is a simple mechanism for inserting pauses into scripts that are contained

in a file and simply sent to the chassis line-by-line. Longer waits and more sophisticated automation

require client-side functionality, which must also handle the keep-alives.

18

● HELP ?. This command gives you an overview of the built-in help function, useful when using the

scripting environment interactively, as from the Xena Scripting Client.

● HELP ”​parameter​”. Gives you a brief overview of the required indices and values for the specified

parameter. You are allowed to specify only a prefix of the parameter name, which will then give

you the overview for each matching parameter, e.g.: HELP ”P_” for all port-level parameters. The

summary of the required values uses the abbreviations for the various types introduced in the

command syntax above, e.g.:B(0=OFF,1=ON) which means a single byte value where the two

relevant values can be specified using coded names.

Sample Script Session

Below is an example of using the scripting commands to define and execute a simple test. A file containing

these commands can simply be uploaded to a chassis using the XenaScripting Client.

; This is an example of using the Xena scripting language to set-up and

; execute a simple test case.

;

; This file is simply sent to TCP/IP port 22611 on a Xena chassis,

; and while it is executing on the chassis it sends lines of text

; back on the same TCP/IP connection.

;

; Much of what you see in response from the chassis is an "<OK>" for

; each new parameter value that you have sent. There will also be a

; blank line in response to each comment you send to the chassis. More

; importantly, of course, you will see the values of the parameters and

; statistics that you explicitly query for.

;

; The chassis has a basic "WAIT" command to allow simple server-side

; waiting. For more advanced scripting logic, you should use a client-

; side scripting environment like Tcl/Perl/Python/Basic/C to send commands

; to the chassis, and retrieve and parse the responses.

;

; The example works on a single port configured in TX-to-RX loop mode

; so that everything sent is also received on the same port.

; First we authenticate the connection to the chassis and provide a user

; name for reservation:

C_LOGON "xena"

C_OWNER "example"

19

; We now set a default port for the session so that all port-specific

; parameters go to this port; this also gives you a single place to edit

; if you want to run the example on a different port. The syntax is

; simply "m/p" where "m" is the module number and "p" is the port number:

0/0

; Let's see what kind of port this is by querying for the interface type:

P_INTERFACE ?

; Now relinquish and reserve the port, clear any existing configuration,

; and set it in loop-mode:

P_RESERVATION RELINQUISH

P_RESERVATION RESERVE

P_RESET

P_LOOPBACK TXON2RX

; Make a stream for transmitting 1000 packets of varying size at a 50% of

; the wire rate for the port. The packet data is just an Ethernet header,

; and we put a modifier on the last byte of the MAC destination address.

; The rest of the packet payload is and incrementing pattern of bytes.

; Finally we insert a Xena test payload at the end containing a TID value

; of 77. We use index 10 for the stream definition itself:

PS_CREATE [10]

PS_COMMENT [10] "Example stream of 1000 packets"

PS_PACKETLIMIT [10] 1000

PS_PACKETLENGTH [10] RANDOM 100 200

PS_RATEFRACTION [10] 500000

PS_MODIFIERCOUNT [10] 1

PS_MODIFIER [10,0] 5 0xFF000000 DEC 1

PS_PAYLOAD [10] INCREMENTING

PS_TPLDID [10] 77

PS_ENABLE [10] ON

; That was the stream definition. Until now we have been sending values

; to the chassis. Now we'll ask for information from the chassis just to

; verify our configuration. Queries have the same format as used when

; setting values, but with a "?" instead of the values:

PS_PACKETLENGTH [10] ?

P_MACADDRESS ?

; You can also ask for multiple parameters a at time using some special

; pseudo-parameters. Here we'll query for the complete stream definition.

; This will give us all the parameters defined for the stream, including

; some which we have not set explicitly and therefore still have their

; default values from when the configuration was reset:

PS_CONFIG [10] ?

20

; When parsing the responses from a multi-parameter query you cannot

; immediately tell which parameter value is the last one. To establish a

; fix-point in the stream of response lines you can issue the special "SYNC"

; command which simply responds with "<SYNC>"; so when you receive this

; response you know that there are no more parameters coming:

SYNC

; We're finally ready to run some traffic, but before we start the stream

; we have just defined we'll start the capture function and send out a single

; packet. Since we are in loop mode this packet will be captured on our port,

; and we'll pull it over to the client:

P_CAPTURE ON

P_XMITONE 0x001122334455,AABBCCDDEEFF,2222,FEDCBA9876543210,00000000

PC_STATS ?

PC_PACKET [0] ?

; Ok, now we'll start the stream. Capture is already on. Since this may be a

; slow port we insert a short wait period to make sure all 1000 packets are

; sent, and then we query for the TX and RX statistics:

P_TRAFFIC ON

WAIT 3

PT_ALL ?

PR_ALL ?

; All the packets should have been captured. We pull in a few of them to see

; the varying length and check that the modifier has correctly varied the 5th

; byte. We'll use another multi-parameter query that gives us both the packet

; data and the extra information available for each capture event:

PC_STATS ?

PC_INFO [1] ?

PC_INFO [2] ?

PC_INFO [3] ?

PC_INFO [4] ?

PC_INFO [5] ?

; Even though the single stream of the port has run dry we must still explicitly

; stop traffic generation, and we also stop capturing:

P_TRAFFIC OFF

P_CAPTURE OFF

; That's it.

; You have now seen how to build a stream, transmit the packets, do some

; capturing, and issue queries for statistics, capture, and configuration.

21

You can download the file here: ​Samplescript

Output from Sample Session

Below you can find the output generated by the chassis when it receives the commands shown in the

previous section. A dump like this can be obtained and saved using the XenaScriptClient.

You need to do a line-by-line correlation of the two lists in order to fully understand the output. Note that

there are sections of blank lines in the output corresponding to the comment lines in the input.

;; This is an example of using the Xena scripting language to set-up and

;; execute a simple test case.

;;

;; This file is simply sent to TCP/IP port 22611 on a Xena chassis,

;; and while it is executing on the chassis it sends lines of text

;; back on the same TCP/IP connection.

;;

;; Much of what you see in response from the chassis is an "<OK>" for

;; each new parameter value that you have sent. There will also be a

;; blank line in response to each comment you send to the chassis. More

;; importantly, of course, you will see the values of the parameters and

;; statistics that you explicitly query for.

;;

;; The chassis has a basic "WAIT" command to allow simple server-side

;; waiting. For more advanced scripting logic, you should use a client-

;; side scripting environment like Tcl/Perl/Python/Basic/C to send commands

;; to the chassis, and retrieve and parse the responses.

;;

;; The example works on a single port configured in TX-to-RX loop mode

;; so that everything sent is also received on the same port.

;

;; First we authenticate the connection to the chassis and provide a user

;; name for reservation:

;C_LOGON "xena"

;C_OWNER "example"

;

;; We now set a default port for the session so that all port-specific

;; parameters go to this port; this also gives you a single place to edit

;; if you want to run the example on a different port. The syntax is

;; simply "m/p" where "m" is the module number and "p" is the port number:

;0/0

;

;; Let's see what kind of port this is by querying for the interface type:

;P_INTERFACE ?

;

22

http://www.xenanetworks.com/wp-content/uploads/samplescript.txt
http://www.xenanetworks.com/wp-content/uploads/samplescript.txt

;; Now relinquish and reserve the port, clear any existing configuration,

;; and set it in loop-mode:

;P_RESERVATION RELINQUISH

;P_RESERVATION RESERVE

;P_RESET

;P_LOOPBACK TXON2RX

;

;; Make a stream for transmitting 1000 packets of varying size at a 50% of

;; the wire rate for the port. The packet data is just an Ethernet header,

;; and we put a modifier on the last byte of the MAC destination address.

;; The rest of the packet payload is and incrementing pattern of bytes.

;; Finally we insert a Xena test payload at the end containing a TID value

;; of 77. We use index 10 for the stream definition itself:

;PS_CREATE [10]

;PS_COMMENT [10] "Example stream of 1000 packets"

;PS_PACKETLIMIT [10] 1000

;PS_PACKETLENGTH [10] RANDOM 100 200

;PS_RATEFRACTION [10] 500000

;PS_MODIFIERCOUNT [10] 1

;PS_MODIFIER [10,0] 5 0xFF000000 DEC 1

;PS_PAYLOAD [10] INCREMENTING

;PS_TPLDID [10] 77

;PS_ENABLE [10] ON

;

;; That was the stream definition. Until now we have been sending values

;; to the chassis. Now we'll ask for information from the chassis just to

;; verify our configuration. Queries have the same format as used when

;; setting values, but with a "?" instead of the values:

;PS_PACKETLENGTH [10] ?

;P_MACADDRESS ?

;; You can also ask for multiple parameters a at time using some special

;; pseudo-parameters. Here we'll query for the complete stream definition.

;; This will give us all the parameters defined for the stream, including

;; some which we have not set explicitly and therefore still have their

;; default values from when the configuration was reset:

;PS_CONFIG [10] ?

;

;; When parsing the responses from a multi-parameter query you cannot

;; immediately tell which parameter value is the last one. To establish a

;; fix-point in the stream of response lines you can issue the special "SYNC"

;; command which simply responds with "<SYNC>"; so when you receive this

;; response you know that there are no more parameters coming:

;SYNC

;

;; We're finally ready to run some traffic, but before we start the stream

;; we have just defined we'll start the capture function and send out a single

;; packet. Since we are in loop mode this packet will be captured on our port,

;; and we'll pull it over to the client:

;

;P_CAPTURE ON

;P_XMITONE 0x001122334455,AABBCCDDEEFF,2222,FEDCBA9876543210,00000000

23

;PC_STATS ?

;PC_PACKET [0] ?

;

;; Ok, now we'll start the stream. Capture is already on. Since this may be a

;; slow port we insert a short wait period to make sure all 1000 packets are

;; sent, and then we query for the TX and RX statistics:

;P_TRAFFIC ON

;WAIT 3

;PT_ALL ?

;PR_ALL ?

;

;; All the packets should have been captured. We pull in a few of them to see

;; the varying length and check that the modifier has correctly varied the 5th

;; byte. We'll use another multi-parameter query that gives us both the packet

;; data and the extra information available for each capture event:

;PC_STATS ?

;PC_INFO [1] ?

;PC_INFO [2] ?

;PC_INFO [3] ?

;PC_INFO [4] ?

;PC_INFO [5] ?

;

;; Even though the single stream of the port has run dry we must still

explicitly

;; stop traffic generation, and we also stop capturing:

;P_TRAFFIC OFF

;P_CAPTURE OFF

;

;; That's it.

;; You have now seen how to build a stream, transmit the packets, do some

;; capturing, and issue queries for statistics, capture, and configuration.

24

<OK>

<OK>

P_INTERFACE "SFP-E 10/100/1000M [Triple] [Auto]"

<NOTVALID>

<OK>

<OK>

<OK>

<OK>

<OK>

<OK>

<OK>

<OK>

<OK>

<OK>

<OK>

<OK>

<OK>

PS_PACKETLENGTH [10] RANDOM 100 200

P_MACADDRESS 0x04F4BC1A0CE0

PS_ENABLE [10] ON

PS_PACKETLIMIT [10] 1000

25

PS_COMMENT [10] "Example stream of 1000 packets"

PS_RATEFRACTION [10] 500000

PS_BURST [10] -1 100

PS_HEADERPROTOCOL [10] ETHERNET

PS_PACKETHEADER [10] 0x00000000000004F4BC1A0CE0FFFF

PS_MODIFIERCOUNT [10] 1

PS_MODIFIER [10,0] 5 0xFF000000 DEC 1

PS_MODIFIERRANGE [10,0] 0 1 65535

PS_PACKETLENGTH [10] RANDOM 100 200

PS_PAYLOAD [10] INCREMENTING

PS_TPLDID [10] 77

PS_INSERTFCS [10] ON

<SYNC>

<OK>

<OK>

PC_STATS 0 1 150048282720010104

PC_PACKET [0] 0x001122334455AABBCCDDEEFF2222FEDCBA9876543210F06ECC85

<OK>

<RESUME>

PT_TOTAL 0 0 149443 1001

PT_NOTPLD 0 0 26 1

PT_EXTRA 0 0 0 0 0 0 0 0 0 0 0

PT_STREAM [10] 0 0 149417 1000

P_RECEIVESYNC IN_SYNC

PR_TOTAL 0 0 149443 1001

PR_NOTPLD 0 0 26 1

PR_EXTRA 0 0 0 0 0 0 0 0

PR_TPLDS 77

PR_TPLDTRAFFIC [77] 0 0 149417 1000

PR_TPLDERRORS [77] 0 0 0 0

PR_TPLDLATENCY [77] 0 0 0 0

PR_TPLDJITTER [77] -1 -1 -1 -1

26

PC_STATS 1 102 150048282720010104

PC_EXTRA [1] 96759552 0 12094759 185

PC_PACKET [1]

0x0000000000FF04F4BC1A0CE0FFFF0E0F101112131415161718191A1B1C1D1E1F20212223242526

2728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E

4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273747576

7778797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9E

9FA0000000C88E6E50004D0E8000BAC3F360F4D0A5C8E8491995

PC_EXTRA [2] 96762552 0 191 187

PC_PACKET [2]

0x0000000000FE04F4BC1A0CE0FFFF0E0F101112131415161718191A1B1C1D1E1F20212223242526

2728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E

4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273747576

7778797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9E

9FA0A1A2000001C88E6FCA004D0E00000BC3226165CB9FC8BCB813A6

PC_EXTRA [3] 96765552 0 189 143

PC_PACKET [3]

0x0000000000FD04F4BC1A0CE0FFFF0E0F101112131415161718191A1B1C1D1E1F20212223242526

2728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E

4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273747576

000002C88E7117004D0E0000D1C3EC7FC91574C8EC77D934

PC_EXTRA [4] 96768240 0 191 185

PC_PACKET [4]

0x0000000000FC04F4BC1A0CE0FFFF0E0F101112131415161718191A1B1C1D1E1F20212223242526

2728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E

4F505152535455565758595A5B5C5D5E5F606162636465666768696A6B6C6D6E6F70717273747576

7778797A7B7C7D7E7F808182838485868788898A8B8C8D8E8F909192939495969798999A9B9C9D9E

9FA0000003C88E728E004D0E000051C3677C478D7CC8183FC6DF

PC_EXTRA [5] 96771216 0 189 106

PC_PACKET [5]

0x0000000000FB04F4BC1A0CE0FFFF0E0F101112131415161718191A1B1C1D1E1F20212223242526

2728292A2B2C2D2E2F303132333435363738393A3B3C3D3E3F404142434445464748494A4B4C4D4E

4F5051000004C88E73B7004D0E00008CC3EB7D4DB3D7C8DED1C74B

<OK>

<OK>

You can download the file here: ​Sampleoutput

27

http://www.xenanetworks.com/wp-content/uploads/sampleoutput.txt

Detailed Script Parameters

This section describes the individual script parameters.

Chassis Scripting Parameters

The chassis parameters correspond to the ​Chassis Resource Properties​ panel of the XenaManager, and

deal with basic information and configuration of the chassis itself (rather than its modules and test ports),

as well as overall control of the scripting session.

The chassis parameter names all have the form ​C_​xxxx​ and use neither a module index nor a port index.

Identification

C_NAME chassisname

Explanation
The name of the chassis, as it appears at various places in the Manager

user-interface. The name is also used to distinguish the various chassis contained

within a testbed and in files containing the configuration for an entire test-case.

Summary set and get, value type: S

Parameters chassisname​: string, containing the name of the chassis.

Example C_NAME ”Lab ABC”

C_COMMENT comment

Explanation
The description of the chassis.

Summary set and get, value type: S

Parameters comment​: string, containing the description of the chassis.

Example C_COMMENT ”This chassis belongs to the XYZ project.”

28

C_PASSWORD password

Explanation
The password of the chassis, which must be provided when logging on to the chassis.

Summary set and get, value type: S

Parameters password​: string, containing the password for the chassis.

Example C_PASSWORD ”SeCrEt”

C_MODEL model

Explanation
Obtains the specific model of this Xena chassis.

Summary get only, value type: S

Parameters model: string, the Xena model designation for the chassis.

Example C_MODEL ”C1-M2SFP+”

C_SERIALNO serialno

Explanation
Obtains the unique serial number of this particular Xena chassis.

Summary get only, value type: I

Parameters serialno​: integer, the serial number of this chassis.

Example C_SERIALNO 12345678

C_VERSIONNO chassis_majorvers driver_vers

Explanation
Obtains the major version numbers for the chassis firmware and the Xena PCI driver

installed on the chassis.

29

Summary get only, value types: I,I

Parameters chassis_majorvers​: integer, the chassis firmware major version number.

driver_vers​: integer, the Xena PCI driver version number.

Example C_VERSIONNO 200 30

C_VERSIONNO_MINOR chassis_minorvers

Explanation
Obtains the minor version number for the chassis firmware. The full version of the

chassis firmware is thus ​<major>.<minor>​ where the <major> number is obtained with

the C_VERSIONNO parameter and the <minor> number is obtained with the

C_VERSIONNO_MINOR parameter.

Summary get only, value types: I

Parameters chassis_minorvers​: integer, the chassis firmware minor version number.

Example C_VERSIONNO_MINOR 2

C_CAPABILITIES integer integer …

Explanation
A series of integer values specifying various internal limits (aka. capabilities) of the

chassis.

Summary get only, value types: I*

Parameters integer​: integer, internally defined limit values.

Example C_CAPABILITIES 1 25 …

C_ALLPORTCAPS ?

Explanation
Multi-parameter query, obtaining the port capabilities for all ports of the chassis.

Summary get only.

Parameters None

30

Example 0/0 P_CAPABILITIES 1110 10000 …

0/1 P_CAPABILITIES 1000 5000 …

C_PORTCOUNTS portcount portcount …

Explanation
Obtains the number of ports in each module slot of the chassis, and indirectly the

number of slots and modules.

Note: CFP modules return the number 8 which is the maximum number of 10G ports,

but the actual number of ports can be configured dynamically using the M_CFPCONFIG

command.

Summary get only, value types: B*

Parameters portcount​: byte, the number of ports, typically 2 or 6, or 0 for an empty slot.

Example C_PORTCOUNTS 2

C_INFO ?

Explanation
Multi-parameter query, obtaining all the non-settable parameters for the chassis.

Summary get only.

Parameters None

Example C_RESERVATION RESERVED_BY_YOU

C_RESERVEDBY ”HH”

C_PORTCOUNTS 2

C_MODEL ”C1-M2SFP+”

C_SERIALNO 12345678

C_VERSIONNO 200 30

C_CONFIG ?

31

Explanation
Multi-parameter query, obtaining all the settable parameters for the chassis.

Summary get only.

Parameters None

Example C_NAME ”Lab ABC”

C_COMMENT ”This chassis belongs to the XYZ project.”

C_PASSWORD ”SeCrEt”

C_IPADDRESS 192.168.1.200 255.255.255.0 192.168.1.1

Logon

C_LOGON password

Explanation
You log on to the chassis by setting the value of this parameter to the correct

password for the chassis. All other commands will fail if the session has not been

logged on.

Summary set only, value type: S

Parameters password​: string, containing the correct password value.

Example (set) C_LOGON ”xena”

C_LOGOFF

Explanation
Terminates the current scripting session. Courtesy only, the chassis will also handle

disconnection at the TCP/IP level

Summary set only.

Parameters None

Example C_LOGOFF

C_OWNER username

32

Explanation
Identify the owner of the scripting session. The name can be any short quoted string up

to eight characters long. This name will be used when reserving ports prior to updating

their configuration.

There is no authentication of the users, and the chassis does not have any actual user

accounts. Multiple concurrent connections may use the same owner name, but only

one connection can have any particular resource reserved at any given time.

Until an owner is specified the chassis configuration can only be read. Once specified,

the session can reserve ports for that owner, and will inherit any existing reservations

for that owner retained at the chassis.

Summary set and get, value type: O

Parameters username​: string, containing the name of the owner of this session.

Example C_OWNER ”HH”

Chassis Management Address

C_IPADDRESS address subnetmask gateway

Explanation
The network configuration parameters of the chassis management port.

Summary set and get, value types: A,A,A

Parameters address​: address, the static IP address of the chassis.

subnetmask​: address, the subnet mask of the local network segment.

gateway​: address, the gateway of the local network segment.

Example C_IPADDRESS 192.168.1.200 255.255.255.0 192.168.1.1

C_DHCP usedhcp

33

Explanation
Controls whether the chassis will use DHCP to obtain the management IP address.

Summary set and get, value types: B

Parameters usedhcp​: coded byte, whether DHCP is used: OFF ON (default OFF)

Example C_DHCP ON

C_MACADDRESS macaddress

Explanation
Obtain the MAC address for the chassis management port.

Summary get only, value types: HHHHHH

Parameters macaddress​: list of hex number indicating the MAC address

Example C_MACADDRESS 0x00187D1672D3

C_HOSTNAME hostname

Explanation
Get or set the chassis hostname used when DHCP is enabled.

Summary set and get, value type: string

Parameters hostname​: Hostname for chassis (default value: ​xena-<serialno>​)

Example C_HOSTNAME “xtester12”

Status

C_KEEPALIVE ticks

34

Explanation
You can request this value from the chassis, simply to let it (as well as and any routers

and proxies between you) know that the connection is

still valid.

Summary get only, value type: I

Parameters ticks: integer, an increasing number from the chassis.

Example C_KEEPALIVE 1234

C_TIMEOUT seconds

Explanation
The maximum number of idle seconds allowed before the connection is timed out by

the tester.

Summary set and get, value type: I

Parameters seconds​: integer, the maximum idle interval, default is 130 seconds.

Example C_TIMEOUT 999

C_INDICES session session …

Explanation
Obtains the session indices for all current sessions on the chassis.

Summary get only, value types: I*

Parameters None

Example C_INDICES 0 1 7 9 13

C_STATSESSION [ses] typ adr own ops req rsp

Explanation
Obtains information and statistics for a particular session on the chassis.

Summary get only, session index, value types: I,A,O,L,L,L

35

Parameters ses​: integer, session index.

typ​: coded integer, which kind of session: [MANAGER | SCRIPT]

adr​: address, client IP address. own: string, user name of the session.

ops​: long, number of operations done on session.

req​: long, number of bytes received by the chassis.

rsp​: long, number of bytes sent by the chassis.

Example C_STATSESSION [7] SCRIPT 88.99.77.66 ”HH” 100 12345 23456

C_STATS ?

Explanation
Multi-parameter query, obtaining all the chassis-level statistics.

Summary get only.

Parameters None

Example C_INDICES 7 13

C_STATSESSION [7] SCRIPT 88.99.77.66 ”HH” 100 12345 23456

C_STATSESSION [13] NATIVE 88.99.77.55 ”JVN” 111 22345 33456

C_PORTERRORS errorcount errorcount …

Explanation
Obtains the number of errors detected across all streams on each port of each test

module of the chassis. The counts are ordered in sequence with those of the module in

the lowest numbered chassis slot first. Empty slots are skipped, so that a chassis with a

6-port and a 2-port test module will return eight counts regardless of which slots they

are in.

Note: CFP modules return eight error counts since they can be configured as up to eight

10G ports. When in 100G and 40G mode only the first one or two counts are significant.

Note: FCS errors are included, which leads to double-counting for streams detecting

lost packets using the test payload mechanism.

Summary get only, value types: L*

Parameters errorcount​: long, the total number of errors across all streams, and including FCS errors.

36

Example C_PORTERRORS 0 0 0 7 0 123

Reservation

C_RESERVATION whattodo

Explanation
You set this parameter to reserve, release, or relinquish the chassis itself. The chassis

must be reserved before any of the chassis-level parameters can be changed.The

owner of the session must already have been specified. Reservation will fail if any

modules or ports are reserved to other users.

Summary set or get, value type: B

Parameters whattodo​: coded byte, containing the operation to perform: RELEASE RESERVE

RELINQUISH

The reservation parameters are slightly asymmetric with respect to set/get. When

querying for the current reservation state, the chassis will use these values: RELEASED

RESERVED_BY_YOU RESERVED_BY_OTHER

Example C_RESERVATION RESERVE

C_RESERVEDBY username

Explanation
Identify the user who has the chassis reserved. The empty string if the chassis is not

currently reserved.

Summary get only, value type: O

Parameters username​: string, containing the name of the current owner of the chassis.

Example C_RESERVEDBY ”HH”

Actions

C_DOWN magic whatodo

37

Explanation
Shuts down the chassis, and either restarts it in a clean state or leaves it powered off.

Summary set only, value types: I,B

Parameters magic​: integer, must be the special value -1480937026.

whattodo​: coded byte, what to do after shutting chassis down: RESTART POWEROFF

Example C_DOWN -1480937026 RESTART

C_TRAFFIC on/off moduleA portA ……. moduleX portX

Explanation
Starts or stops the traffic on a number of ports on the chassis simultaneously. The ports

are identified by pairs of integers (module port) separated by white space.

Summary set only, value types: B(0=OFF,1=ON),I*

Parameters on/off​: byte, determines if traffic is stopped (off) or started (on).

moduleX portX​: two integers, specifies one port on a module, which should be

stopped/started.Note: From Release 57.1, if any of the specified packet sizes cannot fit

into the packet generator on any of the specified ports, this command will return

FAILED and not start the traffic on those ports.

Example (starts traffic on module/port 0/0, 3/1, 3/2 and 5/4)

C_TRAFFIC ON 0 0 3 1 3 2 5 4

C_TRAFFICSYNC on/off timestamp moduleA portA …

Explanation
Works just as the C_TRAFFIC command described above with an additional option to

specify a point in time where traffic should be started. This can be used to start traffic

simultaneously on multiple chassis.

Note: This requires that the chassis in question all uses the TimeKeeper option to keep

their CPU clocks synchronized.

Summary set only, value types: B(0=OFF,1=ON),L,I*

38

Parameters on/off​: byte, determines if traffic is stopped (off) or started (on).

timestamp​: long integer, the time where traffic should be started, expressed as the

number of seconds since January 1 2010, 00:00:00. To get the current timestamp of the

chassis, execute “C_TIME ?”. Then add a number of seconds to the value fetched in

order to generate traffic at that time.

moduleX portX​: two integers, specifies one port on a module, which should be

stopped/started.Note: From Release 57.1, if any of the specified packet sizes cannot fit

into the packet generator on any of the specified ports, this command will return

FAILED and not start the traffic on those ports.

Example C_TIME 189200000

(starts traffic on module/port 0/0, 3/1, 3/2 and 5/4 at 10 seconds later)

C_TRAFFICSYNC ON 189200010 0 3 1 3 2 5 4

C_FLASH onoff

Explanation
Make all the test port LEDs flash on and off with a 1-second interval. This is helpful if

you have multiple chassis mounted side by side and you need to identify a specific one.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether all test port LEDs are blinking: OFF ON

Example C_FLASH OFF

File Upload

C_FILESTART type size time mode chk name

Explanation
Initiates upload of a file to the chassis. This parameter should be followed by a

sequence og C_FILEDATA parameters to provide the file content, and finally a

C_FILEFINISHto commit the new file to the chassis.

Summary set only, value types: HHHH,HHHH,HHHH,HHHH,HHHH,S

39

Parameters type​: little-endian integer as four hex bytes, the file type, should be 1.

size​: little-endian integer as four hex bytes, the number of bytes in the file.

time​: little-endian integer as four hex bytes, the Linux date+time of the file.

mode​: little-endian integer as four hex bytes, the Linux permisions of the file.

chk​: little-endian integer as four hex bytes, the checksum of the file.

name​: string, the name and location of the file, as a full path.

Example C_FILESTART 0x01000000 … 0xF9B1A073 ”/xbin/xenaserver”

C_FILEDATA offset databytes

Explanation
Uploads a fragment of a file to the chassis.

Summary set only, value types: I,H*

Parameters offset​: integer, the position within the file. databytes: hex bytes, the data content of a

section of the file.

Example C_FILEDATA 10240 0x11FC3344…………43AB

C_FILEFINISH magic

Explanation Completes upload of a file to the chassis. After validation it will replace any existing file

with the same name.

Summary set only, value type: I

Parameters magic​: integer, must be the special value -1480937026.

Example C_FILEFINISH -1480937026

40

Module Scripting Parameters

In the following, the layer 2-3 module level scripting parameters are described.

The chassis parameters correspond to the ​Module Resource Properties​ panel of the XenaManager, and

deal with basic information about, and configuration of, the module itself.

The chassis parameter names all have the form M​_<xxx>​ and require a module index before the parameter

name.

Identification

M_MODEL model

Explanation Obtains the specific Xena model of a module.

Summary get only, value type: S

Parameters model​: string, the Xena model designation for the module.

Example 0 M_MODEL ”M2SFP+”

M_COMMENT comment

Explanation Obtains the user-defined description string of a module.

Summary get only, value type: S

Parameters comment​: string, The user-specified comment/description for the module.

Example 0 M_COMMENT ”My test module”

M_SERIALNO serialno

Explanation Obtains the unique serial number of a module.

Summary get only, value type: I

41

Parameters serialno​: integer, the serial number of this module.

Example 0 M_SERIALNO 16703

M_VERSIONNO version

Explanation Obtains the version number of the hardware image installed on a module.

Summary get only, value types: I

Parameters version​: integer, the hardware image version number.

Example 0 M_VERSIONNO 170

M_PORTCOUNT count

Explanation Obtains the max. number of ports on a module.

Please note:​ For a CFP-type module this number refers to the maximum number of

ports possible on the module regardless of the media configuration.

So if a CFP-type module can be set in for instance either 1x100G mode or 8x10G mode

then this parameter will always return 8. If you want the current number of ports for a

CFP-type module you need to read the M_CFPCONFIG parameter which returns te

number of current ports.

Summary get only, value types: I

Parameters count​: integer, the max. number of ports.

Example 0 M_PORTCOUNT 8

M_INFO ?

Explanation Multi-parameter query, obtaining all the non-settable parameters for a module.

Summary get only.

42

Parameters None

Example 0 M_RESERVATION RESERVED_BY_YOU

0 M_RESERVEDBY ”HH”

0 M_MODEL ”M2SFP+”

0 M_SERIALNO 16703

0 M_VERSIONNO 170

0 M_STATUS 45

0 M_CFPTYPE NOTCFP

M_CONFIG ?

Explanation Multi-parameter query, obtaining all the settable parameters for a module.

Summary get only.

Parameters None

Example

Reservation

M_RESERVATION whattodo

Explanation You set this parameter to reserve, release, or relinquish a module itself (as opposed to

its ports). The module must be reserved before its hardware image can be upgraded.

The owner of the session must already have been specified. Reservation will fail if the

chassis or any ports are reserved to other users.

Summary set or get, value type: B

43

Parameters whattodo​: coded byte, containing the operation to perform: [RELEASE (0) | RESERVE

(1) | RELINQUISH (2)]

Note: The reservation parameters are slightly asymmetric with respect to set/get.

When querying for the current reservation state, the chassis will use these values: [

RELEASED (0) | RESERVED_BY_YOU (1) | RESERVED_BY_OTHER (2)]

Example (set) 0 M_RESERVATION RELEASE

M_RESERVEDBY username

Explanation Identify the user who has a module reserved. Returns an empty string if the module is

not currently reserved by anyone.

Summary get only, value type: O

Parameters username: string, containing the name of the current owner of the module.

Example 0 M_RESERVEDBY ””

Status

M_STATUS temperature

Explanation Get status readings for the test module itself.

Summary get only, I*

Parameters temperature​: temperature of the main hardware chip, in degrees Celsius.

Example 0 M_STATUS 45

44

Timing Configuration

M_TIMESYNC mode

Explanation Control how the test module time-stamp clock is running, either freely in the chassis or

locked to an external system time.

Running with free chassis time allows nano-second precision measurements of

latencies, but only when the transmitting and receiving ports are in the same chassis.

Running with locked external time enables inter-chassis latency measurements, but can

introduce small time discontinuities as the test module time is adjusted.

Summary set and get, value type: B

Parameters mode​: coded byte, selecting the time sync mode: [CHASSIS | EXTERNAL | MODULE]

Example 0 M_TIMESYNC CHASSIS

M_TIMEADJUSTMENT adjust

Explanation Control time adjustment for module wall clock.

Summary set and get, value type: I

Parameters adjust​: integer, adjustment in nanoseconds. This value should be a multiple of 8 as it

will be converted to number of 125 MHz clocks.

Example 0 M_TIMEADJUSTMENT 64

M_CLOCKPPB ppb

Explanation Makes small adjustment to the local clock of the test module, which drives the TX rate

of the test ports.

Summary set and get, value type: I

Parameters ​ppb​: adjustment from nominal value, in parts-per-billion, positive or negative.

45

Example 0 M_CLOCKPPB -200000

M_SMASTATUS status

Explanation For test modules with SMA connectors, this returns the status of the SMA input.

Summary get, value type: B

Parameters status​: coded byte, specifying the status of the SMA input:

● OK (valid signal is received)

● NO_VALID_SIGNAL (no valid signal is received

Example 0 M_SMASTATUS OK

M_SMAINPUT smain

Explanation For test modules with SMA connectors, selects the function of the SMA input.

Summary set and get, value type: B

Parameters smain​: coded byte, specifying the function:

● NOTUSED

● TX2MHZ (nominal 2.048 MHz reference clock for port TX rate)

● TX10MHZ (nominal 10.0 MHz reference clock for port TX rate)

Example 0 M_SMAINPUT NOTUSED

M_SMAOUTPUT smaout

Explanation For test modules with SMA connectors, selects the function of the SMA output.

Summary set and get, value type: B

46

Parameters smaout​: coded byte, specifying the function:

● DISABLED

● PASSTHROUGH (replica of the SMA input signal)

● P0SOF (start-of-frame pulse for port 0 TX)

● P1SOF (start-of-frame pulse for port 1 TX)

● REF2MHZ (nominal 2.048 MHz reference clock from TX port rate)

● REF10MHZ (nominal 10.0 MHz reference clock from TX port rate)

● REF156MHZ (nominal 156.25 MHz reference clock from TX port rate)

● P0RXCLK (recovered clock from port 0 RX)

● P1RXCLK (recovered clock from port 1 RX)

● TS_PPS (timing reference in pulse-per-second format)

Example 0 M_SMAOUTPUT DISABLED

M_TXCLOCKSOURCE txclk

Explanation For test modules with advanced timing features, select what drives the port TX rates.

Summary set and get, value type: B

Parameters txclk​: coded byte, specifying the function:

● MODULELOCALCLOCK (default, the local oscillator of the test module)

● SMAINPUT (clock derived from the reference on the SMA input)

● P0RXCLK (SyncE, clock derived from RX clock of port 0)

● P1RXCLK (SyncE, clock derived from RX clock of port 1)

Example 0 M_TXCLOCKSOURCE MODULELOCALCLOCK

M_TXCLOCKFILTER filter

Explanation For test modules with advanced timing features, the loop bandwidth on the TX clock

filter.

Summary set and get, value type: B

47

Parameters filter​: coded byte, specifying the bandwidth:

● BW103HZ (bandwidth of 103 Hz)

● BW207HZ (bandwidth of 207 Hz)

● BW416HZ (bandwidth of 416 Hz)

● BW1683HZ (bandwidth of 1683 Hz)

● BW7019HZ (bandwidth of 7019 Hz)

Example 0 M_TXCLOCKFILTER BW114HZ

M_TXCLOCKSTATUS status

Explanation For test modules with advanced timing features, check whether a valid clock is present.

Summary get only, value type: B

Parameters status​: coded byte, specifying the function:

● OK

● NOVALIDTXCLK (no valid clock, can be missing SMA input or no clock recovery

from test port)

Example 0 M_TXCLOCKSTATUS OK

Media Configuration

M_CFPTYPE info

Explanation Get information about the CFP transceiver currently inserted into the cage of a CFP test

module.

Summary get only, B

48

Parameters info​: coded byte, specifying the CFP state:

● NOTCFP (this is not a CFP-based test module)

● NOTPRESENT (no transceiver, the CFP cage is empty)

● NOTFLEXIBLE (transceiver present, supporting a fixed speed and port-count)

● FLEXIBLE (transceiver present, supporting flexible speed and port-count)

Example 0 M_CFPTYPE FLEXIBLE

M_CFPCONFIG ports speed

Explanation The current number of ports and their speed of a CFP test module.

If the CFP type is NOTFLEXIBLE then it reflects the transceiver currently in the CFP cage.

If the CFP type is FLEXIBLE(or NOTPRESENT) then the configuration can be changed

explicitly.

The following combinations are possible: 4x10G, 8x10G, 1x40G, 2x40G, and 1x100G.

Summary set and get, value types: B,B

Parameters ports​: number of ports. speed: port speed, in Gbps.

Example 0 M_CFPCONFIG 2 40

M_CFPCONFIGEXT ports speed

Explanation This property defines the current number of ports and the speed of each of them on a

CFP test module

Summary set and get, value types: B, I ….

Parameters ports​: number of ports

speed​: port speed, in Mbps. ​speed​ is listed for all ports on the module

Example For a Loki-100G-5S-1P module at 25 Gbps:

0 M_CFPCONFIGEXT 4 25000 25000 25000 25000

49

M_MEDIASUPPORT cagetype speedsavailable portsperspeed speed

Explanation This property shows the available speeds on a module

Summary get, value type: B, B, B, I, B, I …..

Parameters cagetype​, coded integer, cage type:

● 0 = cfp4

· ​1 = qsfp28

· ​2 = cxp

· ​3 = sfp28

· ​4 = qsfp56

· ​5 = qsfpdd

· ​6 = sfp56

· ​7 = sfpdd

· ​8 = sfp112

· ​99 = cfp

speedsavailable,​ integer, number of speeds available for the ​cagetype

portsperspeed​ integer, number of ports available for the ​speed

speed,​ integer, a speed in Mbps supported by the ​cagetype

portsperspeed ​ ​speed​ are repeated until all speeds supported by the ​cagetype​ has been

listed

cagetype speedsavailable​ are repeated for all cages on the module including the

related ​portsperspeed speed​ information

Example For a Loki-100G-5S-1P module:

0 M_MEDIASUPPORT 1 5 1 1000000 2 50000 1 40000 4 25000 4 10000 3 2 2 25000 2

10000

M_MEDIA media

50

Explanation For the M1CFP4QSFP28CXP test module where one of several front ports (media types)

can be selected as the input/output, this command sets the desired media type (front

port).

Summary get/set, value type: B

Parameters media​: coded byte, specifying the active front port:

● CFP4

● QSFP28

● CXP

Example 0 M_MEDIA CFP4

Firmware Upgrade

M_UPGRADE magic imagename

Explanation Transfers a hardware image file from the chassis to a module. This image will take

effect when the chassis is powered-on the next time. The transfer takes approximately

3 minutes, but no further action is required by the client.

Summary set only, value types: I,S

Parameters magic​: integer, must be the special value -1480937026.

imagename​: string, the fully qualified name of a file previously uploaded to the chassis.

Example 0 M_UPGRADE -1480937026 ”/xbin/xenaimageXE_18”

M_UPGRADEPROGRESS progress

Explanation Provides a value indicating the current stage of an on-going hardware image upgrade

operation. This is for information only; the upgrade operation runs to completion by

itself. The progress values are pushed to the client without it having to request them.

51

Summary pushed (get) only, value type: I

● 1-100: Erase completion percentage.

● 101-200: Write completion percentage + 100.

● 201-300: Verify completion percentage + 200.

● 0: Failure.

Parameters progress​: integer, the current stage within the three phases: erase, write, verify.

Example 0 M_UPGRADEPROGRESS 277

52

Port Scripting Parameters

This page describes the layer 2-3 port level scripting parameters. The apa hassis parameters correspond to

the ​Port Resource Properties​ panel of the XenaManager, and deal with basic information and configuration

of the test ports. The port parameter names all have the form ​P_<xxx>​ and require both a module index

and a port index before the parameter name. In general, port parameters cannot be changed while traffic is

on. Additionally, every stream must be disabled before changing parameters that affect the bandwidth of

the port.

General State and Identification

P_RESERVATION whattodo

Explanation You set this parameter to reserve, release, or relinquish a port. The port must be

reserved before any of its configuration can be changed, including streams, filters,

capture, and datasets.The owner of the session must already have been specified.

Reservation will fail if the chassis or module is reserved to other users.

Summary set or get, value type: B

Parameters whattodo​: coded byte, containing the operation to perform: RELEASE RESERVE

RELINQUISH The reservation parameters are slightly asymmetric with respect to

set/get. When querying for the current reservation state, the chassis will use these

values: RELEASED RESERVED_BY_YOU RESERVED_BY_OTHER

Example, set: 0/5 P_RESERVATION RESERVE Example, get: 0/5 P_RESERVATION RESERVED_BY_YOU

P_RESERVEDBY username

Explanation Identify the user who has a port reserved. The empty string if the port is not currently

reserved. Note that multiple connections can specify the same name with C_OWNER,

but a resource can only be reserved to one connection. Therefore you cannot count on

having the port just because it is reserved in your name. The port is reserved to this

connection only if P_RESERVATIONreturns RESERVED_BY_YOU.

53

Summary get only, value type: O

Parameters username​: string, containing the name of the current owner of the port.

Example,

get:

0/5 P_RESERVEDBY ”HH”

P_RESET

Explanation Reset port-level parameters to standard values, and delete all streams, filters, capture,

and dataset definitions.

Summary set only.

Parameters None

Example, set: 0/1 P_RESET

P_CAPABILITIES integer integer …

Explanation A series of integer values specifying various internal limits of a port. integer: integer, internally defined

limit values.

Summary get only, value types: I*

Parameters capability​: integer value

Example, get: 0/1 P_CAPABILITIES 1000 …

The returned integers will be in the following order:

54

P_INTERFACE interface

Explanation Obtains the physical interface type of a port. model: string, the name of the port’s

physical interface.

55

Summary get only, value type: S

Parameters interface​: string value describing the interface

Example, get: 0/5 P_INTERFACE ”SFP+ LR”

P_RECEIVESYNC syncstatus

Explanation Obtains the current in-sync status for a port’s receive interface.

Summary get only, value type: B

Parameters syncstatus​: coded byte, current receive sync status:

● NO_SYNC

● IN_SYNC

Example, get: 0/5 P_RECEIVESYNC IN_SYNC

P_COMMENT comment

Explanation The description of a port.

Summary set and get, value type: S

Parameters comment​: string, containing the description of the port.

Example, set or get: 0/5 P_COMMENT ”This port generates IPTV background traffic.”

P_INFO ?

Explanation Multi-parameter query, obtaining all the non-settable parameters for a port. These

parameters should not be included if the port configuration is saved and reloaded at a

later time.

Summary get only.

56

Parameters None

Example, get: 0/5 P_RESERVATION RESERVED_BY_OTHERS 0/5 P_RESERVEDBY ”XX” 0/5

P_INTERFACE ”SFP+ LR” 0/5 P_SPEED 100 0/5 P_TRAFFIC ON 0/5 P_CAPTURE OFF

P_CONFIG ?

Explanation Multi-parameter query, obtaining all the settable parameters for a port itself, but

excluding streams, filters, etc.

Summary get only.

Parameters None

Example, get: ● 0/5 P_SPEEDSELECTION F100M

● 0/5 P_COMMENT ”This port generates IPTV background traffic.”

● 0/5 P_SPEEDREDUCTION 100

● 0/5 P_INTERFRAMEGAP 20

● 0/5 P_MACADDRESS 0x001122AABBCC

● 0/5 P_IPADDRESS 10.0.0.123 255.255.255.0 10.0.0.1 0.0.0.255

● 0/5 P_ARPREPLY ON

● 0/5 P_PINGREPLY OFF

● 0/5 P_PAUSE OFF

● 0/5 P_RANDOMSEED 12345

● 0/5 P_LATENCYMODE LAST2LAST

● 0/5 P_LATENCYOFFSET 1238

● 0/5 P_LOOPBACK L2RX2TX

● <etc>

P_FULLCONFIG ?

Explanation Multi-parameter query, obtaining all the settable parameters for a port, including

streams, filters, capture, and datasets. These parameters comprise the complete

user-definable configuration for the port.

Summary get only.

57

Parameters None

Example, get: ● 0/5 P_SPEEDSELECTION F100M

● 0/5 P_COMMENT ”This port generates IPTV background traffic.”

● 0/5 P_SPEEDREDUCTION 100

● 0/5 P_INTERFRAMEGAP 20

● <etc>

TX Control

P_TRAFFIC onoff

Explanation Whether a port is transmitting packets. When on, the port generates a sequence of

packets with contributions from each stream that is enabled. The streams are

configured using the PS_xxx parameters. NOTE: From Release 57.1, if any of the

specified packet sizes cannot fit into the packet generator, this command will return

FAILED and not start the traffic.While traffic is on the streams for this port cannot be

enabled or disabled, and the configuration of those streams that are enabled cannot

be changed.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether traffic generation is active for this port:OFF ON

Example, set

or get:

0/1 P_TRAFFIC ON

 P_TXENABLE onoff

Explanation Whether a port should enable its transmitter, or keep the outgoing link down.

Summary set and get, value type: B

58

Parameters onoff​: coded byte, whether the transmitter is enabled.

● OFF(0)

● ON(1)

Example, set or get: 0/0 P_TXENABLE ON

P_TXDELAY delayval

Explanation Sets a variable delay from a traffic start command is received by the port until it

starts transmitting. The delay is specified in multiples of 64 microseconds. Valid

values are 0-31250 (0 to 2.000.000 microseconds).

Summary set and get, value type: I

Parameters delayval​: integer, TX delay in multiples of 64 microseconds. (TX delay = delayval * 64

microseconds).

Example, set or

get:

0/1 P_TXDELAY 31250

P_TXTIMELIMIT microseconds

Explanation A port-level time-limit on how long it keeps transmitting when started. After the

elapsed time traffic must be stopped and restarted. This complements the

stream-level PS_PACKETLIMIT function.

Summary set and get, value type: L

Parameters microseconds​: long, time limit after which the port stops transmitting.

Example, set or

get:

0/1 P_TXTIMELIMIT 60000000

P_TXTIME microseconds

59

Explanation How long the port has been transmitting, the elapsed time since traffic was started.

Summary get, value type: L

Parameters microseconds​: long, elapsed time since traffic was started.

Example, get: 0/1 P_TXTIME 37123456

P_TXPACKETLIMIT count*

Explanation The number of packets that will be transmitted from a port when traffic is started on

the port. A value of 0 or -1 makes the port transmit continuously. Traffic from the

streams on the port can however also be set to stop after transmitting a number of

packets.

Summary get, value type: I

Parameters count​: Integer, number of packets transmitted from the port

Example, get: 0/1 P_TXPACKETLIMIT 456789

*Feature requires software release 76 or higher

P_XMITONE hexdata

Explanation Transmits a single packet from a port, independent of the stream definitions, and

independent of whether traffic is on. A valid Frame Check Sum is written into the final

four bytes.

Summary set only, value types: H*

Parameters hexdata​: hex bytes, the data content of the packet to be transmitted.

Example, set: P_XMITONE 0x554433…………48EE

60

P_XMITONETIME nanoseconds

Explanation The time at which the latest packet was transmitted using the P_XMITONE command.

The time reference is the same used by the time stamps of captured packets.

Summary get, value type: L

Parameters nanoseconds​: long, the time at which packet was transmitted.

Example, get: 0/1 P_XMITONETIME 123456789

P_DYNAMIC onoff

Explanation Controls if a 40G/100G port supports dynamic changes when the traffic is running.

This feature is supported by 40G and 100G ports only.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether dynamic traffic change is enabled: OFF ON

Example, set or

get:

0/1 P_DYNAMIC ON

TX Profile

P_TXMODE txmode

61

Explanation The scheduling mode for outgoing traffic from the port, specifying how multiple logical

streams are merged onto one physical port. There are four primary modes:

Normal Interleaved: The streams are treated independently, and are merged into a

combined traffic pattern for the port, which honors each stream’s ideal packet

placements as well as possible. This is the default mode.

Strict Uniform: This is a slight variation of normal interleaved scheduling, which

emphasizes strict uniformity of the inter-packet-gaps as more important than hitting

the stream rates absolutely precisely.

Sequential: Each stream in turn contribute one or more packets, before continuing to

the next stream, in a cyclical pattern. The count of packets for each stream is obtained

from the PS_PACKETLIMIT parameter value for the stream. The individual rates for

each stream are ignored, and instead the overall rate is determined at the port-level

using the P_RATExxx parameters. This in turn determines the rates for each stream,

taking into account their packet lengths and counts. The maximum number of packets

in a cycle (i.e. the sum of PS_PACKETLIMIT for all enabled streams) is 500. If the packet

number is larger than 500, <NOTVALID> will be returned when attempting to start the

traffic (P_TRAFFIC ON).

Burst*: When this mode is selected, frames from the streams on a port are sent as

bursts as depicted below:

The Burst Period is defined in the P_TXBURSTPERIOD parameter. For the individual

streams the number of packets in a burst is defined by the PS_BURST parameter, while

the Inter Packet Gap and the Inter Burst Gap are defined by the PS_BURSTGAP

parameter.

Summary set and get, value type: B

62

Parameters txmode​: coded byte, containing the loop-back mode for the port:

● NORMAL (interleaved packet scheduling)

● STRICTUNIFORM (strict uniform mode)

● SEQUENTIAL (sequential packet scheduling)

● BURST (burst mode)

Example, set

or get:

0/5 P_TXMODE NORMAL

*Feature requires software release 76 or higher. Feature is not supported by the

M1CFP100 and M2CFP40 test modules.

P_RATEFRACTION fraction

Explanation The port-level rate of the traffic transmitted for a port in sequential tx mode,

expressed in millionths of the effective rate for the port. The bandwidth consumption

includes the inter-frame gaps, and does not depend on the length of the packets for

the streams.

Summary set and get, value type: I

Parameters fraction​: integer, port rate expressed as a value between 0..1000000.

Example, set

or get:

0/1 P_RATEFRACTION 500000

P_RATEPPS pps

Explanation The port-level rate of the traffic transmitted for a port in sequential tx mode,

expressed in packets per second. The bandwidth consumption is heavily dependent

on the length of the packets generated for the streams, and also on the inter-frame

gap for the port.

Summary set and get, value type: I

Parameters pps​: integer, port rate expressed as packets per second.

63

Example, set or

get:

0/1 P_RATEPPS 300000

P_RATEL2BPS bps

Explanation The port-level rate of the traffic transmitted for a port in sequential tx mode,

expressed in units of bits per-second at layer-2, thus including the Ethernet header

but excluding the inter-frame gap. The bandwidth consumption is somewhat

dependent on the length of the packets generated for the stream, and also on the

inter-frame gap for the port.

Summary set and get, value type: L

Parameters bps​: long integer, port rate expressed as bits-per-second.

Example, set

or get:

0/1 P_RATEL2BPS 800000000

P_RATE ?

Explanation For a port in sequential tx mode, query the port-level rate of the traffic transmitted in

the manner it was last expressed. The response is one of P_RATEFRACTION,

P_RATEPPS, or P_RATEL2BPS.

Summary get only.

Parameters None

Example, get: 0/1 P_RATE ?

P_TXBURSTPERIOD period*

Explanation In Burst tx mode this parameter defines the time from start of one sequence of bursts

(from a number of streams) to the start of next sequence of bursts. NB: Only used

when Port TX Mode is ”Burst”.

64

Summary set and get, value type: I

Parameters period​: integer, burst period expressed in micro-seconds.

Example, get: 0/1 P_TXBURSTPERIOD​ ​300000

*Feature requires software release 76 or higher

Layer-1 Control

P_SPEEDSELECTION selection

Explanation The speed mode for a port with an interface type supporting multiple speeds. Note:

this is only a settable parameter for tri-speed ports. For CFP ports use the

M_CFPCONFIG command at the module level.

Summary set and get, value type: B

Parameters selection​: coded byte, containing the speed selection for the port:

● AUTO (auto-negotiate)

● F10M (10 Mbps)

● F100M (100 Mbps)

● F1G (1000 Mbps)

● F10G (10000 Mbps)

● F40G (40000 Mbps)

● F100G (100000 Mbps)

● F10MHDX (10 Mbps half duplex)

● F100MHDX (100 Mbps half duplex)

● F10M100M (10/100 Mbps)

● F100M1G (100/1000 Mbps)

Example, set or

get:

● 0/0 P_SPEEDSELECTION F100M

●

●

P_MDIXMODE selection

65

Explanation Selects the MDI/MDIX behaviour of copper interfaces (Currently supported on

M6SFP and M2SFPT).

Summary set and get, value type: B

Parameters selection​:
● AUTO (auto-detect)

● MDI (straight – default for host NICs when Auto MDI-X is not supported)

● MDIX (crossed – default for switch/router interfaces when Auto MDI-X is

not supported)

Example, set or

get:

0/0 P_MDIXMODE MDI

P_SPEED mbps

Explanation Obtains the current physical speed for a port’s interface.

Summary get only, value type: I

Parameters mbps​: integer, current speed in units of Mbps.

Example, get: 0/0 P_SPEED 100

P_AUTONEGSELECTION onoff

Explanation Whether the port responds to incoming auto-negotiation requests. Only applicable

to optical ports, which are fixed speed anyway.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether the port replies to auto-neg requests.OFF ON

Example, set or

get:

0/0 P_AUTONEGSELECTION OFF

66

P_BRRMODE selection*

Explanation Selects the Master/Slave setting of 100 Mbps* and 1000 Mbps** BroadR-Reach

copper interfaces.

Summary set and get, value type: B

Parameters selection​:
● MASTER – (default) Interface acts as a BroadR-Reach Master

● SLAVE – Interface acts as a BroadR-Reach Slave

Example, set or

get:

0/0 P_BRRMODE SLAVE

* Feature requires software release 76.1 or higher.

** Feature requires software release 76.2 or higher.

P_STATUS opticalpower

Explanation Get status readings for the port itself.

Summary get only, I*

Parameters opticalpower​: integer, received signal level for optical ports, in nanowatts, -1 when

not available.

Example, get: 0/5 P_STATUS -1

P_ERRORS errorcount

67

Explanation Obtains the total number of errors detected across all streams on the port, including

lost packets, misorder events, and payload errors. Note: FCS errors are included, which

will typically lead to double-counting of lost packets.

Summary get only, value types: L*

Parameters errorcount​: long, the total number of errors across all streams, and including FCS

errors.

Example, get: 0/5 P_ERRORS 7

P_SPEEDREDUCTION ppm

Explanation A speed-reduction applied to the transmit-side of a port, resulting in an effective

traffic rate that is slightly lower than the rate of the physical interface. Speed

reduction is effectuated by inserting short idle periods in the generated traffic pattern

to consume part of the port’s physical bandwidth. The port’s clock-speed is not

altered.

Summary set and get, value type: I

Parameters ppm​: integer, specifying the speed reduction in units of parts-per-million.

Example, set

or get:

0/3 P_SPEEDREDUCTION 100

P_INTERFRAMEGAP minbytes

Explanation The mimimum gap between packets in the traffic generated for a port. The gap

includes the Ethernet preamble.

Summary set and get, value type: I

Parameters minbytes​: integer, specifying the minimum number of byte-times between

generated packets.

Example, set or

get:

0/3 P_INTERFRAMEGAP 20

68

P_FAULTSIGNALING setting

Explanation Sets the Remote/Local fault signaling behavior of the port (performed by the

Reconciliation Sub-layer). By default, the port acts according to the standard, i.e.

when receiving a bad signal, it transmits “Remote Fault indications” on the output and

when receiving a “Remote Fault indication” from the far-side it will transmit IDLE

sequences.

Summary set and get, value type: B

Parameters setting​: coded byte:Setting can have four different values:

● Normal (0): The port acts according to the standard as described above.

● Force_Local (1): Port will continuously transmit “Local Fault indication” on the

TX output (which is usually not allowed by the standard).

● Force_Remote (2): Port will continuously transmit “Remote Fault indication”

on the TX output.

● Disabled (3) : Port will relay the traffic from the TX core regardless of what it

receives on the input.

Example, set

or get:

0/1 P_FAULTSIGNALING FORCE_REMOTE Note: Currently only available on

M1CFP100, M2CFP40, M2QSFP+ and M1CFP4QSFP28CXP.

P_FAULTSTATUS status

Explanation Shows if a local or remote fault is currently being detected by the Reconciliation

Sub-layer of the port. ​Note:​ Currently only available on M1CFP100, M2CFP40,

M2QSFP+ and M1CFP4QSFP28CXP.

Summary get, value type: B

Parameters status​: coded byte:

● OK (0): The port is receiving a valid Ethernet signal.

● Local_FAULT (1): Port is receiving a bad signal (or no signal at all).

● REMOTE_FAULT (2): Port is receiving a “Remote Fault indication” from its peer

port.

69

Example, get: 0/1 P_FAULTSTATUS LOCAL_FAULT

Low Power Ethernet Control

P_LPENABLE onoff

Explanation Enables/disables Energy Efficient Ethernet (EEE) on the port*.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether the EEE feature is activated or not. OFF (0), ON (1)

Example, set or

get:

0/0 P_LPENABLE ON*EEE functionality is currently only supported on M2RJ45+

and M6RJ45+ modules.

P_LPTXMODE onoff

Explanation Enables/disables the transmission of Low Power Idles (LPIs) on the port. When

enabled, the transmit side of the port will automatically enter low-power mode (and

leave) low-power mode in periods of low or no traffic. LPIs will ​only​ be transmitted if

the Link Partner (receiving port) has advertised EEE capability for the selected port

speed during EEE auto-negotiation.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether low power idles will be transmitted or not. OFF (0) ON (1)

Example, set

or get:

0/0 P_LPTXMODE ON

P_LPSTATUS txh rxh txc rxc linkup

Explanation Displays the EEE status as reported by the PHY.

70

Summary set and get, value type: B, B, B, B, B

Parameters txh​: shows if there has been any recent change in the EEE state on the transmission

side (either going into low power mode or leaving low power mode. — (0) no activity X

(1) activityrxh: shows recent changes on the receive side (see “txh”). ​txc​: shows the

current EEE state of the transmitter (in low power or active) TX_ACTIVE (0) – actively

transmitting TX_LPI (1) – In low power mode ​rxc​: shows the current EEE state of the

receiver (in low power or active) RX_ACTIVE (0) – actively receiving RX_LPI (1) – In low

power mode ​linkup​: shows if the link is up (seen from perspective of the the PHY’s

PCS). LINK_DOWN (0) LINK_UP (1)

Example,

get:

0/0 P_LPSTATUS TXH:– RXH:X TX_LPI RX_LPI LINK_UP

P_LPPARTNERAUTONEG speed0 …. speed 5

Explanation Displays the EEE capabilities advertised during autonegotiation by the far side (link

partner).0 = – , 1 = 100BASE-TX 0 = – , 1 = 1000BASE-T 0 = – , 1 = 10GBASE-T 0 = – , 1 =

100BASE-KX 0 = – , 1 = 10GBASE-KX4 0 = – , 1 = 10GBASE-KR

Summary set and get, value type: B, B, B, B, B, B

Parameters

Example, get: 0/0 P_LPPARTNERAUTONEG 100BASE-TX 1000BASE-T 10GBASE-T – – –

P_LPSNRMARGIN chA chB chC chD

Explanation Displays the SNR margin on the four link channels (Channel A-D) as reported by the

PHY. It is displayed in units of 0.1dB.

Summary set and get, value type: I, I, I, I

Parameters

Example, get: 0/0 P_LPSNRMARGIN 380 376 384 370

71

Layer-2 Control

P_MACADDRESS hexdata

Explanation A 48-bit Ethernet MAC address specified for a port. This address is used as the

default source MAC field in the header of generated traffic for the port, and is also

used for support of the ARP protocol.

Summary set and get, value type: HHHHHH

Parameters hexdata​: hex bytes, specifying the six bytes of the MAC address.

Example, set or

get:

0/3 P_MACADDRESS 0x001122AABBCC

P_AUTOTRAIN interval

Explanation The interval between sending out training packets, allowing a switch to learn the

port’s MAC address. Layer-2 switches configure themselves automatically by detecting

the source MAC addresses of packets received on each port. If a port only receives,

and does not itself transmit test traffic, then the switch will never learn its MAC

address. Also, if transmission is very rare the switch will age-out the learned MAC

address. By setting the auto-train interval you instruct the port to send switch training

packets, independent of whether the port is transmitting test traffic.

Summary set and get, value type: I

Parameters interval​: integer, specifying the number of seconds between training packets. 0,

disable training packets.

Example, set

or get:

0/3 P_AUTOTAIN 60

P_PAUSE onoff

72

 Explanation Whether a port responds to incoming Ethernet PAUSE frames, by holding back

outgoing traffic.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether PAUSE response is enabled: [OFF | ON]

Example, set or get: 0/0 P_PAUSE OFF

P_PFCENABLE onoff-array

Explanation This setting control whether a port responds to incoming Ethernet Priority Flow

Control (PFC) frames, by holding back outgoing traffic for that priority.

Summary set and get, value type: Array of B

Parameters onoff-array​: Array of coded bytes, one for each priority value (0 – 7), each byte

indicating whether PFC response is enabled for that priority: [OFF | ON]

Example, set or

get:

0/0 P_PFCENABLE OFF OFF OFF ON ON ON ON OFF

P_GAPMONITOR start stop

Explanation The gap-start and gap-stop criteria for the port’s gap monitor.The gap monitor

expects a steady stream of incoming packets, and detects larger-than-allowed gaps

between them. Once a gap event is encountered it requires a certain number of

consequtive packets below the threshold to end the event.

Summary set and get, value type: I,I

Parameters start​: integer, the maximum allowed gap between packets, in microseconds. (0 –

134.000 microseconds) 0 = disable gap monitor. ​stop​:integer, the minimum number

of good packets required. (0 – 1024 packets) 0 = disable gap monitor.

Example, set

or get:

0/3 P_GAPMONITOR 1000 5

73

IP Address Properties

P_IPADDRESS address subnet gateway wild

Explanation An IPv4 network configuration specified for a port.The address is used as the default

source address field in the IP header of generated traffic, and the configuration is

also used for support of the ARP and PING protocols.

Summary set and get, value types: A,A,A,A

Parameters address​: address, the IP address of the port. ​subnet​: address, the subnet mask of the

local network segment for the port. ​gateway​: address, the gateway of the local

network segment for the port. ​wild​: address, wildcards used for ARP and PING

replies, must be 255 or 0.

Example, set

or get:

0/3 P_IPADDRESS 10.0.0.123 255.255.255.0 10.0.0.1 0.0.0.255

P_ARPREPLY onoff

Explanation Whether the port generates replies using the Address Resolution Protocol. The port

can reply to incoming ARP requests by mapping the IP address specified for the port

to the MAC address specified for the port. ARP reply generation is independent of

whether traffic and capture is on for the port.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether the port replies to ARP requests: [OFF | ON]

Example, set

or get:

0/0 P_ARPREPLY ON

P_PINGREPLY onoff

74

Explanation Whether the port generates ping replies using the ICMP protocol. The port can reply

to incoming ping requests to the IP address specified for the port. Ping reply

generation is independent of whether traffic and capture is on for the port.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether the port replies to ping requests: [OFF | ON]

Example, set or

get:

0/0 P_PINGREPLY OFF

P_ARPV6REPLY onoff

Explanation Whether the port generates replies using the IPv6 Network Discovery Protocol.The

port can reply to incoming NDP requests by mapping the IPv6 address specified for

the port to the MAC address specified for the port. NDP reply generation is

independent of whether traffic and capture is on for the port.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether the port replies to NDP requests. [OFF | ON]

Example, set

or get:

0/0 P_ARPV6REPLY ON

P_PINGV6REPLY onoff

Explanation Whether the port generates ping replies using the ICMP protocol received over IPv6.

The port can reply to incoming ping requests to the IPv6 address specified for the

port. Ping reply generation is independent of whether traffic and capture is on for the

port.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether the port replies to ping requests: [OFF | ON]

Example, set

or get:

0/0 P_PINGV6REPLY OFF

75

P_MULTICAST ipaddress operation seconds

Explanation A multi-cast mode for a port. Ports can use the IGMP protocol to join or leave

multi-cast groups, either on a one-off basis or repeatedly.

Summary set and get, value type: A,B,B

Parameters ipaddress​: a multi-cast group address to join or leave ​operation​: coded byte,

specifying the operation:

● OFF (stop repeated joins)

● ON (start joining group repeatedly)

● JOIN (do a single join operation)

● LEAVE (do a single leave operation)

seconds​: the interval between repeated joins

Example, set or

get:

0/5 P_MULTICAST 239.1.2.3 ON 30

P_MULTICASTEXT ipaddresses operation seconds igmpversion

Explanation A multicast mode for a port. Ports can use the IGMPvs/IGMPv3 protocol to join or

leave multicast groups, either on a one–off basis or repeatedly.

Summary set and get, value type: A,B,B,B

Parameters ipaddress​: a multi-cast group address to join or leave ​operation​: coded byte,

specifying the operation:

● OFF (stop repeated joins)

● ON (start joining group repeatedly)

● JOIN (do a single join operation)

● LEAVE (do a single leave operation)

seconds​: the interval between repeated joins

igmpversion​: the version of IGMP protocol:

● IGMPV2 (protocol version is IGMPv2)

● IGMPV3 (protocol version is IGMPv3)

76

Example, set or

get:

0/5 P_MULTICASTEXT 255.0.0.2 255.0.0.3 JOIN 10 IGMPV3

P_MCSRCLIST ipaddresses

Explanation Multicast source list of the port. Only valid if the IGMP protocol version is IGMPv3

set by P_MULTICASTEXT.

Summary set and get, value type: A

Parameters ipaddresses​: multicast source list addresses (max 8) in Group Record field of the

IGMPv3 membership report packet.

Example, set or

get:

0/5 P_MCSRCLIST 1.1.1.1 2.2.2.2 3.3.3.3

Capture Control

P_CAPTURE onoff

Explanation Whether a port is capturing packets. When on, the port retains the received packets

and makes them available for inspection. The capture criterias are configured using

the PC_xxxparameters. While capture is on the capture parameters cannot be

changed.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether capture is active for this port: OFF ON

Example, set

or get:

0/1 P_CAPTURE OFF

Payload Properties

P_CHECKSUM offset

77

Explanation Controls an extra payload integrity checksum, which also covers the header

protocols following the Ethernet header. It will therefore catch any modifications to

the protocol fields (which should therefore not have modifiers on them).

Summary set and get, value type: B

Parameters offset​: The offset in the packet where the calculation of the extra checksum is started

from. Set to 0 to disable. Valid enable range is [8 .. 127].

Example, set or

get:

0/0 P_CHECKSUM 8

P_RANDOMSEED value

Explanation A fixed seed value specified for a port. This value is used for a pseudo-random number

generator used when generating traffic that requires random variation in packet

length, payload, or modified fields.As long as no part of the port configuration is

changed, the generated traffic patterns are reproducible when restarting traffic for

the port. A specified seed value of -1 instead creates variation by using a new

time-based seed value each time traffic generation is restarted.

Summary set and get, value type: I

Parameters value​: integer, specifying a fixed seed value for the pseudo-random number

generator. -1, new random sequence for each start.

Example, set

or get:

0/3 P_RANDOMSEED 12345

P_MAXHEADERLENGTH value

Possible values: 128 (default), 256, 512, 1024, 2048

Explanation The maximum number of header content bytes that can be freely specified for each

generated stream. The remaining payload bytes of the packet are auto-generated.The

default is 128 bytes. When a larger number is select there is a corresponding

proportional reduction in the number of stream definitions that are available for the

port.

78

Summary set and get, value type: I

Parameters value​: integer, specifying the maximum number of header bytes.

Example, set

or get:

0/3 P_MAXHEADERLENGTH 256

P_MIXWEIGHTS weights

Explanation Allow changing the distribution of the MIX packet size length by specifying the

percentage of each of the 16 possible frame sizes used in the MIX. The sum of the

percentage values specified must be 100. The command will affect the mix-distribution

for all streams on the port.The possible 16 frame sizes are: 56 (not valid for 40G/100G),

60, 64, 70, 78, 92, 256, 496, 512, 570, 576, 594, 1438, 1518, 9216, and 16360. ​Note​:
This command requires Xena server version 375 or higher.

Summary set and get, value type: I* (16 values in total)

Parameters

Example set: P_MIXWEIGHTS 0 25 25 25 25 0 0 0 0 0 0 0 0 0 0 0

P_TPLDMODE setting

79

Explanation Sets the size of the Xena Test Payload (TPLD) used to track streams, perform latency

measurements etc. Default is “Normal”, which is a 20 byte TPLD. “Micro” is a

condensed version, which is useful when generating very small packets with relatively

long headers (like IPv6). It has the following characteristics compared to the “normal”

TPLD. When the TPLDMODE is changed, it will affect ALL streams on the port.

1. Only 6 byte long.

2. Less accurate mechanism to separate Xena generated packets from other

packet is the network – it is recommended not to have too much other traffic

going into the receive Xena port, when micro TPLD is used.

3. No sequence checking (packet loss or packet misordering). The number of

received packets for each stream can still be compared to the number of

transmitted packets to detect packet loss once traffic has been stopped.

Note: Currently not available on M6SFP, M2SFPT, M6RJ45+/M2RJ45+, M2CFP40,

M1CFP100, M2SFP+4SFP

Summary set and get, value type: B

Parameters setting​: coded byte:

● Normal (0): Default 20B TPLD.

● Micro (1): 6B micro TPLD

Example, set

or get:

0/1 P_TPLDMODE MICRO

P_PAYLOADMODE mode

Explanation You set this parameter to configure the port to use different payload modes, i.e.

normal, extend payload, and custom payload field, for ALL streams on this port. The

extended payload feature allows the definition of a much larger (up to MTU) payload

buffer for each stream. The custom payload field feature allows you to define a

sequence of custom data fields for each stream. The data fields will then be used in a

round–robin fashion when packets are sent based on the stream definition.

Summary set and get, value type: B

80

Parameters mode​: coded integer, which is the payload mode the port should be set

● NORMAL: normal mode

● EXTPL: extended payload

● CDF: custom data field

Example, set

or get:

0/1 P_PAYLOADMODE CDF

Loopback and Latency

P_LOOPBACK loopmode

● NONE (normal non-looped operation)

● L1RX2TX (transmit byte-by-byte copy of the incoming packet) [1] [3]

● L2RX2TX (swap source and destination MAC addresses) [1] [3]

● TXON2RX (packet is also transmitted from the port) [2]

● TXOFF2RX (port’s transmitter is idle) [2]

Explanation The loop-back mode for a port. Ports can be configured to perform two different

kinds of loop-back:

● External RX-to-TX loop-back, where the received packets are re-transmitted

immediately. The packets are still processed by the receive logic, and can be

captured and analysed.

● Internal TX-to-RX loop-back, where the transmitted packets are received

directly by the port itself. This is mainly useful for testing the generated traffic

patterns before actual use.

[1] This mode is currently not available on 40G/100G ports. [2] TX2RX loop modes are

done before the physical layer. Link sync, 40G/100G CAUI statistics and EEE statistics

still reflect the state of the physical link. [3] In L2/L3 RX-to-TX loop mode, a port will

only loop Ethernet frames if the destination MAC address (DMAC) corresponds with

the MAC address of that particular port.

Summary set and get, value type: B

Parameters loopmode​: coded byte, containing the loop-back mode for the port

81

Example, set

or get:

0/5 P_LOOPBACK L2RX2TX

P_LATENCYMODE mode

Explanation Latency is measured by inserting a time-stamp in each packet when it is transmitted,

and relating it to the time when the packet is received. There are three separate

modes for calculating the latency:

● Last-bit-out to last-bit-in, which measures basic bit-transit time,

independent of packet length.

● First-bit-out to last-bit-in, which adds the time taken to transmit the packet

itself.

● Last-bit-out to first-bit-in, which subtracts the time taken to transmit the

packet itself.

The same latency mode must be configured for the transmitting port and the

receiving port; otherwise invalid measurements will result.

Summary set and get, value type: B

Parameters mode​: coded byte, which calculation mode to use:

● LAST2LAST

● FIRST2LAST

● LAST2FIRST

Example, set or

get:

0/3 P_LATENCYMODE LAST2LAST

P_LATENCYOFFSET value

Explanation An offset applied to the latency measurements performed for received traffic

containing test payloads. This value affects the minimum, average, and maximum

latency values obtained through the PR_TPLDLATENCY parameter.

Summary set and get, value type: I

82

Parameters value​: integer, specifying the offset for the latency measurements.

Example, set or

get:

0/3 P_LATENCYOFFSET 1238

Misc. Parameters

P_FLASH onoff

Explanation Make the test port LED for a particular port flash on and off with a 1-second

interval. This is helpful when you need to identify a specific port within a chassis.

Summary set and get, value type: B

Parameters onoff​: coded byte, whether the test port LED is blinking: [OFF | ON]

Example, set or

get:

0/0 P_FLASH ON

Stream Scripting Parameters

The stream parameters correspond to the STREAM DEFINITION panel of the XenaManager, and deal with

configuration of the traffic streams transmitted from a port.

The stream parameter names all have the form PS_xxx and require both a module index and a port index,

as well as a sub-index identifying a particular stream.

General Information

Enabling Traffic

Whether the port is actually transmitting packets is controlled both by the P_TRAFFIC parameter for the

parent port and by the PS_ENABLE parameter for the stream.

While the parent port is transmitting, the parameters of any enabled stream cannot be changed.

Stream Test Payload Data (TPLD)

83

Each Xena test packet contains a special proprietary data area called the ​Test Payload Data​ (TPLD) which

contains various information about the packet. The TPLD is located just before the Ethernet FCS and consist

of the following sections:

Normal TPLD (20 or 22 bytes)

Field Length Explanation

Sequence Number 3 byte Packet sequence number used for loss and misordering

detection.

Timestamp 4 byte Timestamp value used for latency measurements.

Test Payload ID (TID) 2 byte Test payload identifier used to identify the sending stream.

Payload Integrity Offset 1 byte Offset in packet from where to calculate payload integrity.

First Packet Flag 1 bit Set if this is the first packet after traffic is started.

Checksum Enabled 1 bit Set if payload integrity checksum is used.

<reserved> 7 bit

Payload Integrity Offset

(MSB)

3 bit Offset in packet from where to calculate payload integrity, MSB

(bits 10:9:8)

Timestamp Decimals 4 bit Additional decimals for the timestamp.

Checksum 8 byte TPLD integrity checksum.

Total TPLD Size 20 bytes

If the ​Payload Checksum Offset​ option is enabled on the parent port then an additional 2 byte checksum

field is inserted in the TPLD sequence – just before the sequence number. This increases the total size of

the TPLD to 22 bytes.

Micro-TPLD (6 bytes)

Field Length Explanation

84

First Packet Flag 1 bit Set if this is the first packet after traffic is started.

<reserved> 1 bit

Test Payload ID (TID) 10 bit Test payload identifier used to identify the sending stream.

Timestamp 28 bit Timestamp value used for latency measurements.

Checksum 8 bit TPLD integrity checksum (CRC-8).

The selection between the default TPLD or the micro-TPLD is done on the parent port. It is thus not possible

to use different TPLD types for streams on the same port.

Disable TPLD

The TPLD function can also be completely disabled for any given stream by setting the Test Payload ID (TID)

value for the stream to the value -1 (or the empty value in the XenaManager-2G GUI).

Minimum Packet Size Considerations

The stream will generally accept any configuration and attempt to transmit packets according to the

configuration. In order for the various Xena stream features to work correctly certain aspects about the

minimum packet size used must be observed.

The minimum packet size must obviously be large enough to accommodate the defined protocol headers +

the final Ethernet FCS field.

If the TPLD function explained above is enabled then each packet must also be able to contain the TPLD

area (20, 22 or 6 bytes depending on the configuration).

If the stream payload type is set to ​Incrementing​ then an additional minimum payload area of 2 bytes is

needed. Otherwise excessive payload errors will be reported. This is however not necessary if the ​Payload

Checksum Offset​ option is enabled on the parent port as this will override the payload integrity check

implied by the ​Incrementing​ payload type.

State and Identification Parameters

PS_INDICES sid sid …

85

Explanation The full list of which streams are defined for a port. These are the sub-index values

that are used for the parameters defining the traffic patterns transmitted for the

port. Setting the value of this parameter creates a new empty stream for each value

that is not already in use, and deletes each stream that is not mentioned in the list.

The same can be accomplished one-stream-at-a-time using the PS_CREATE and

PS_DELETE commands.

Parameters sid: ​integer, the sub-index of a stream definition for the port.

Summary set and get, value types: I*

Example, set or

get:

0/1 PS_INDICES 1 7 9

PS_CREATE [sid]

Explanation Creates an empty stream definition with the specified sub-index value.

Parameters sid: ​integer, the sub-index value of the stream definition to create.

Summary set only, stream index.

Example, set: 0/1 PS_CREATE [5]

PS_DELETE [sid]

Explanation Deletes the stream definition with the specified sub-index value.

Parameters sid: integer, the sub-index value of the stream definition to delete.

Summary set only, stream index.

Example, set: 0/1 PS_DELETE [5]

PS_ENABLE [sid] state

86

Explanation This property determines if a stream contributes outgoing packets for a port. The

value can be toggled between ON and SUPPRESS while traffic is enabled at the port

level. Streams in the OFF state cannot be set to any other value while traffic is

enabled.

The sum of the rates of all enabled or suppressed streams must not exceed the

effective port rate.

sid: integer, the sub-index value of the stream definition.

state: coded integer, specifies the state of the stream:

● OFF (0) (stream will not be used when port traffic is started)

● ON (1) (stream will be started when port traffic is started)

● SUPPRESS (2) (stream will not be started when port traffic is started but can

be started afterwards)

Summary set and get, stream index, value type: B

Parameters onoff​: coded byte, whether the test port LED is blinking: [OFF | ON]

Example, set or

get:

0/1 PS_ENABLE [5] ON

PS_COMMENT [sid] comment

Explanation The description of a stream.

sid: integer, the sub-index value of the stream definition. comment: string, containing

the description of the stream.

Summary set and get, stream index, value type: S

Example, set or

get:

0/1 PS_COMMENT [5] ”Stream for …”

PS_TPLDID [sid] tpldid

87

Explanation The identifier of the test payloads inserted into packets transmitted for a stream. A

value of -1 disables test payloads for the stream.

Test payloads are inserted at the end of each packet, and contains time-stamp and

sequence-number information. This allows the receiving port to provide

error-checking and latency measurements, in addition to the basic counts and rate

measurements provided for all traffic.

The test payload identifier furthermore allows the receiving port to distinguish

multiple different streams, which may originate from multiple different chassis.

Since test payloads are an inter-port and inter-chassis mechanism, the test payload

identifier assignments should be planned globally across all the chassis and ports of

the testbed.

sid: integer, the sub-index value of the stream definition.

tpldid: integer, the test payload identifier value.

-1 (disable test payloads)

Summary set and get, stream index, value type: I

Example, set or

get:

0/1 PS_TPLDID [5] 17

PS_CONFIG [sid]?

Explanation Multi-parameter query, obtaining all the parameters for a specific stream.

sid: integer, the sub-index value of the stream definition.

Summary get only, stream index.

Example, set: 0/1 PS_ENABLE [5] ON

0/1 PS_PACKETLIMIT [5] 25

…

…

0/1 PS_PAYLOAD [5] PATTERN 0xAABB00FFEE

88

PS_FULLCONFIG ?

Explanation Multi-parameter query, obtaining all parameters for all streams defined on a port.

sid: get only.

Summary

Example, get: 0/1 PS_INDICES 0 1 5 0/1 PS_ENABLE [0] ON 0/1 PS_PACKETLIMIT [0] 25 . . 0/1

PS_PAYLOAD [0] PATTERN 0xAABB00FFEE 0/1 PS_ENABLE [1] OFF . . 0/1 PS_ENABLE

[5] ON . .

Traffic Profile

PS_RATEFRACTION [sid] fraction

Explanation The rate of the traffic transmitted for a stream, expressed in millionths of the

effective rate for the port.

The bandwidth consumption includes the inter-frame gap, and is independent of

the length of the packets generated for the stream. The sum of the bandwidth

consumption for all the enabled streams must not exceed the effective rate for

the port.

Setting this parameter also instructs the Manager to attempt to keep the

rate-percentage unchanged in case it has to cap stream rates. Getting it is only valid

if the rate was last set using this parameter. sid: integer, the sub-index value of the

stream definition.

fraction: integer, stream rate expressed as a value between 0..1000000.

Summary set and get, stream index, value type: I

Example, set: 0/1 PS_RATEFRACTION [5] 500000

PS_RATEPPS [sid] pps

Explanation The rate of the traffic transmitted for a stream, expressed in packets per second.

The bandwidth consumption is heavily dependent on the length of the packets

generated for the stream, and also on the inter-frame gap for the port. The sum of

89

the bandwidth consumption for all the enabled streams must not exceed the

effective rate for

the port.

Setting this parameter also instructs the Manager to attempt to keep the

packets-per-second unchanged in case it has to cap stream rates. Getting it is only

valid if the rate was last set using this parameter. sid: integer, the sub-index value

of the stream definition.

pps: integer, stream rate expressed as packets per second.

Summary set and get, stream index, value type: I

Example, set or

get:

0/1 PS_RATEPPS [5] 300000

PS_RATEL2BPS [sid] bps

Explanation The rate of the traffic transmitted for a stream, expressed in units of

bits-per-second at layer-2, thus including the Ethernet header but excluding the

inter-frame gap. The bandwidth consumption is somewhat dependent on the

length of the packets generated for the stream, and also on the inter-frame gap for

the port.

The sum of the bandwidth consumption for all the enabled streams must not

exceed the effective rate for the port. Setting this parameter also instructs the

Manager to attempt to keep the layer-2 bps rate unchanged in case it has to cap

stream rates. Getting it is only valid if the rate was last set using this parameter.

sid: integer, the sub-index value of the stream definition. bps: long integer, stream rate

expressed as bits-per-second.

Summary set and get, stream index, value type: L

Example, set: 0/1 PS_RATEL2BPS [5] 800000000

PS_RATE [sid]?

Explanation Query the rate of the traffic transmitted for a stream in the manner it was last

expressed. The response is one of PS_RATEFRACTION, PS_RATEPPS, or

PS_RATEL2BPS.

90

This is the rate that is highlighted in the Manager, and the one it attempts to keep

unchanged in case it has to cap stream rates.

sid: integer, the sub-index value of the stream definition.

Summary get only, stream index.

Example, set: 0/1 PS_RATE [5] ?

PS_BURST [sid] size density

Explanation The burstiness of the traffic transmitted for a stream, expressed in terms of the number

of packets in each burst, and how densely they are packed together.

The burstiness does not affect the bandwidth consumed by the stream, only the

spacing between the packets.

A density value of 100 means that the packets are packed tightly together, only spaced

by the minimum inter-frame gap. A value of 0 means even, non-bursty, spacing. The

exact spacing achieved depends on the other enabled streams of the port.

Note For each stream the burst size value may not exceed 500 packets. However, when he

Port TX Mode is ”Burst”​*​, the maximum burst size value for each stream is 10000.

The density value is not used when Port TX Mode is ”Burst”​*

sid: integer, the sub-index value of the stream definition.

size: integer, the number of packets lumped together in a burst.

density: integer, the percentage of the available spacing that is inserted between bursts.

Summary set and get, stream index, value types: I,I

Example, set or

get:

0/1 PS_BURST [5] 4 50

*Feature requires software release 76 or higher

PS_BURSTGAP [sid] ipg ibg*

91

Explanation In Burst tx mode this parameter defines the gap between packets in a burst (inter

packet gap) and the gap after a burst defined in one stream stops until a burst defined

in the next stream starts (inter burst gap).

Note Only used when Port TX Mode is ”Burst”

sid: integer, the sub-index value of the stream definition.

ipg: integer, Burst Inter Packet Gap (in bytes).

ibg: integer, Inter Burst Gap (in bytes).

Summary set and get, stream index, value types: I,I

Example, set or

get:

● 0/1 PS_BURSTGAP [5] 20 500

*​Feature requires software release 76 or higher

PS_PACKETLIMIT [sid] count

Explanation Based on different port transmission mode, the meaning of this API is different.

When Port TX Mode is set to NORMAL, STRICT UNIFORM or BURST​*​:​ The number

of packets that will be transmitted when traffic is started on a port. A value of 0 or

-1 makes the stream transmit continuously.

sid: integer, the sub-index value of the stream definition.

count: integer, the number of packets.

0 or -1 (disable packet limitation)

Summary set and get, stream index, value type: I

Example, set or

get:

● P_TXMODE NORMAL

● PS_PACKETLIMIT [5] 25

92

Explanation When Port TX Mode is set to SEQUENTIAL:​ The number of sequential packets sent

before switching to the next stream. Minimum value is 1. Port will transmit

continuously until user stops the traffic.

sid: integer, the sub-index value of the stream definition.

count: integer, the number of packets. 1 or larger (minimum value since the port transmits

at least 1 packet per stream at a round)

Summary set and get, stream index, value type: I

Example, set or

get:

P_TXMODE SEQUENTIAL

PS_PACKETLIMIT [0] 5

PS_PACKETLIMIT [1] 5

*​Feature requires software release 76 or higher

Protocol Headers

PS_PACKETHEADER [sid] hexdata

Explanation The first portion of the packet bytes that are transmitted for a stream. This starts

with the 14 bytes of the Ethernet header, followed by any contained protocol

segments.

All packets transmitted for the stream start with this fixed header. Individual byte

positions of the packet header may be varied on a packet-to-packet basis using

modifiers.

The full packet comprises the header, the payload, an optional test payload, and

the frame checksum.

The header data is specified as raw bytes, since the script environment does not

know the field-by-field layout of the various protocol segments. But XenaManager

does, so in practice you may use XenaManager’s packet editor, and simply query

for the resulting hex string at the script level.

sid: integer, the sub-index value of the stream definition. hexdata: hex bytes, the raw

bytes comprising the packet header.

Summary set and get, stream index, value types: H*

93

Example, set: 0/1 PS_PACKETHEADER [5] 0x02AABB…

PS_HEADERPROTOCOL [sid] segment segment …

Explanation This parameter will inform the Xena tester how to interpret the packet header byte

sequence specified with PS_PACKETHEADER.

This is mainly for information purposes, and the stream will transmit the packet

header bytes even if no protocol segments are specified. The Xena tester however

support calculation of certain field values in hardware, such as the IP, TCP and UDP

length and checksum fields. This allow the use of hardware modifiers for these

protocol segments. In order for this function to work the Xena tester needs to know

the type of each segment that precedes the segment where the hardware

calculation is to be performed.

Refer to this page​ for more details on hardware-based calculation of protocol fields.

sid: integer, the sub-index value of the stream definition.

segment: coded integer, a number specifying a built-in protocol segment:

● ETHERNET (14 bytes)

● VLAN (4 bytes)

● ARP (28 bytes)

● IP (20 bytes)

● IPV6 (40 bytes)

● UDP (8 bytes)

● TCP (20 bytes)

● LLC (3 bytes)

● SNAP (5 bytes)

● GTP (20 bytes)

● ICMP (8 bytes)

● RTP (12 bytes)

● RTCP (4 bytes)

● STP (35 bytes)

● SCTP (12 bytes)

● MACCTRL (4 bytes)

● MPLS (4 bytes)

● PBBTAG (4 bytes)

● FCOE (14 bytes)

● FC (24 bytes)

● FCOETAIL > > (4 bytes)

94

https://xenanetworks.com/usermanuals/hardware-based-field-calculations/

● IGMP0 (12 bytes)

● IGMP1 (16 bytes)

● -n (n bytes raw segment)

Summary set and get, stream index, value types: B*

Example, set: 0/1 PS_HEADERPROTOCOL [5] ETHERNET -4 IP UDP

PS_INSERTFCS [sid] onoff

Explanation Whether a valid frame checksum is added to the packets of a stream.

sid: integer, the sub-index value of the stream definition.

onoff: coded integer, whether frame checksums are inserted: OFF, ON

Summary set and get, stream index, value type: B

Example, set or

get:

0/1 PS_INSERTFCS [5] ON

PS_ARPREQUEST [sid] macaddress

Explanation Generates an outgoing ARP request on the test port.

The packet header for the stream must contain an IP protocol segment, and the

destination IP address is used in the ARP request. If there is a gateway IP address

specified for the port and it is on a different subnet than the destination IP address

in the packet header, then the gateway IP address is used instead.

The framing of the ARP request matches the packet header, including any VLAN

protocol segments.

This script parameter does not generate an immediate result, but waits until an ARP

reply is received on the test port. If no reply is received within 500 milliseconds, it

returns <FAILED>.

macaddress: hex bytes, specifying the six bytes of the MAC address.

Summary get only, value type: HHHHHH

95

Example, set: 0/3 PS_ARPREQUEST [5] 0x001122776655

PS_PINGREQUEST [sid] delay ttl

Explanation Generates an outgoing ping request using the ICMP protocol on the test port.

The packet header for the stream must contain an IP protocol segment, with valid

source and destination IP addresses.

The framing of the ping request matches the packet header, including any VLAN

protocol segments, and the destination MAC address must also be valid, possibly

containing a value obtained with PS_ARPREQUEST.

This script parameter does not generate an immediate result, but waits until a ping

reply is received on the test port. If no reply is received within 2000 milliseconds, it

returns <FAILED>.

delay: integer, the number of milliseconds for the ping reply to arrive. ttl: byte, the

time-to-live value in the ping reply packet.

Summary get only, value type: I,B

Example, set: 0/3 PS_PINGREQUEST [5] 12 128

Modifiers

PS_MODIFIERCOUNT [sid] count

Explanation The number of standard 16-bit modifiers active on the packet header of a stream.

Each modifier is specified using ​PS_MODIFIER​.

sid: integer, the sub-index value of the stream definition.

count: integer, the number of modifiers for the stream.

Summary set and get, stream index, value type: I

Example, set or

get:

0/1 PS_MODIFIERCOUNT [5] 1

96

PS_MODIFIER [sid,mid] pos mask act rep

Explanation A packet modifier for a stream header. The headers of each packet transmitted for

the stream will be varied according to the modifier specification.

This parameter requires two sub-indices, one for the stream and one for the

modifier.

A modifier is positioned at a fixed place in the header, selects a number of

consecutive bits starting from that position, and applies an action to those bits in

each packet. Packets can be repeated so that a certain number of identical packets

are transmitted before applying the next modification.

sid: integer, the sub-index value of the stream definition.

mid: integer, the sub-index value of the modifier.

pos: integer, the byte position from the start of the packet.

mask: four hex bytes, the mask specifying which bits to affect.

act: coded integer, which action to perform on the affected bits:

● INC (increment)

● DEC (decrement)

● RANDOM (random)

rep: integer, how many times to repeat each packet.

Summary set and get, stream index, modifier index, value types: I,HHHH,I,I

Example, set or

get:

0/1 PS_MODIFIER [5,0] 6 0x0FC00000 RANDOM 1

PS_MODIFIERRANGE [sid,mid] min step max

Explanation Range specification for a packet modifier for a stream header, specifying which

values the modifier should take on.

This applies only to incrementing and decrementing modifiers; random modifiers

always produce every possible bit pattern.

The range is specified as a three values: mix, step, and max, where max must be

equal to min plus a multiple of step. Note that when “decrement” is specified in

PS_MODIFIER as the action, the value sequence will begin with the max value

97

instead of the min value and decrement from there: {max, max-1, max-2, …., min,

max, max-1…}.

sid: integer, the sub-index value of the stream definition.

mid: integer, the sub-index value of the modifier.

min: integer, the minimum modifier value.

step: integer, the increment between modifier values.

max: integer, the maximum modifier value.

Summary set and get, stream index, modifier index, value types: I,I,I

Example, set

and get:

0/1 PS_MODIFIERRANGE [5,0] 100 10 200

PS_MODIFIEREXTCNT [sid] count

Explanation The number of extended 24-bit modifiers active on the packet header of a stream.

Each modifier is specified using ​PS_MODIFIEREXT​.

Notes: The extended modifier feature works for 40G/100G ports only.

This feature requires Xena server version 375 or higher.

sid: integer, the sub-index value of the stream definition.

count: integer, the number of modifiers for the stream.

Summary set and get, stream index, value type: I

Example, set: 0/1 PS_MODIFIERCOUNT [5] 1

PS_MODIFIEREXT [sid,mid] pos mask act rep

Explanation An extended packet modifier for a stream header. The headers of each packet

transmitted for the stream will be varied according to the modifier specification.

The modifier acts on 24 bits and takes up the space for two 16-bit modifiers to do

this.

98

This parameter requires two sub-indices, one for the stream and one for the

modifier.

A modifier is positioned at a fixed place in the header, selects a number of

consecutive bits starting from that position, and applies an action to those bits in

each packet. Packets can be repeated so that a certain number of identical packets

are transmitted before applying the next modification.

Notes: The extended modifier feature works for 40G/100G ports only.

This feature requires Xena server version 375 or higher.

sid: integer, the sub-index value of the stream definition.

mid: integer, the sub-index value of the modifier.

pos: integer, the byte position from the start of the packet. Cannot be < 1 !

mask: four hex bytes, the mask specifying which bits to affect.

act: coded integer, which action to perform on the affected bits:

● INC (increment) – Note: This is the only value supported for now.

rep: integer, how many times to repeat each packet. Note: For now the only value

supported is 1.

Summary set and get, stream index, modifier index, value types: I,HHHHHHHH,I,I

Example, set or

get:

0/1 PS_MODIFIER [5,0] 6 0xFFFFFF00 INC1

PS_MODIFIEREXTRANGE [sid,mid] min step max

Explanation Range specification for an extended packet modifier for a stream header, specifying

which values the modifier should take on.

This applies only to incrementing and decrementing modifiers; random modifiers

always produce every possible bit pattern.

The range is specified as a three values: mix, step, and max, where max must be

equal to min plus a multiple of step. Note that when “decrement” is specified in

PS_MODIFIEREXT as the action, the value sequence will begin with the max value

instead of the min value and decrement from there: {max, max-1, max-2, …., min,

max, max-1…}.

99

sid: integer, the sub-index value of the stream definition.

mid: integer, the sub-index value of the modifier.

min: iinteger, the minimum modifier value.

step: integer, the increment between modifier values.

max: integer, the maximum modifier value.

rep: integer, how many times to repeat each packet. Note: For now the only value

supported is 1.

Summary set and get, stream index, modifier index, value types: I,I,I

Example, set or

get:

0/1 PS_MODIFIEREXTRANGE [5,0] 100 10 200

Packet Size and Payload

PS_PACKETLENGTH [sid] type min max

Explanation The length distribution of the packets transmitted for a stream.

The length of the packets transmitted for a stream can be varied from packet to

packet, according to a choice of distributions within a specified min..max range.

The length of each packet is reflected in the size of the payload portion of the

packet, whereas the header has constant length.

Length variation complements, and is independent of, the content variation

produced by header modifiers.

sid: integer, the sub-index value of the stream definition.

type: coded integer, the kind of distribution:

● FIXED (all packets have min size)

● INCREMENTING (incrementing from min to max)

● BUTTERFLY (min, max, min+1, max-1, min+2, max-2, etc)

● RANDOM (random between min and max)

● MIX (a mixture of sizes between 56 and 1518, average 464 bytes)

min: integer, lower limit on the packet length.

100

max: integer, upper limit on the packet length.

Summary set and get, stream index, value types: I,I,I

Example, set or

get:

0/1 PS_PACKETLENGTH [5] BUTTERFLY 100 1500

PS_PAYLOAD [sid] type hexdata

Explanation The payload content of the packets transmitted for a stream.

The payload portion of a packet starts after the header and continues up until the

test payload or the frame checksum. The payload may vary in length, and is filled

with either an incrementing sequence of byte values, or a repeated multi-byte

pattern.

Length variation complements, and is independent of, the content variation

produced by header modifiers.

sid: integer, the sub-index value of the stream definition.

type: coded integer, the kind of payload content:

● PATTERN (a pattern is repeated up through the packet)

● INCREMENTING (bytes are incremented up through the packet)

● PRBS (bytes are randomized from packet to packet)

● RANDOM (a random generated pattern)

hexdata: hex bytes, a pattern of bytes to be repeated. The maximum length of the pattern is

18 bytes. Only used if ​type​ is set to PATTERN.

Summary set and get, stream index, value types: B,H*

Example, set or

get:

0/1 PS_PAYLOAD [5] PATTERN 0xAABB00FFEE

PS_EXTPAYLOAD [sid] hexdata

Explanation This parameter controls the​ ​extended payload feature​. The PS_PAYLOAD parameter

described above only allow the user to specify an 18 byte pattern (when

PS_PAYLOAD is set to PATTERN). The PS_EXTPAYLOAD parameter allow the

101

http://www.xenanetworks.com/xenamanager-2g-user-manual/resource-properties/stream-properties/extended-payload-feature/
http://www.xenanetworks.com/xenamanager-2g-user-manual/resource-properties/stream-properties/extended-payload-feature/

definition of a much larger (up to MTU) payload buffer for each stream. The

extended payload will be inserted immediately after the end of the protocol

segment area.

The feature require that the ​P_PAYLOADMODE​ parameter on the parent port has

been set to ​EXTPL​. This enables the feature for ​all streams​ on this port.

sid: integer, the sub-index value of the stream definition.

hexdata: hex bytes, a pattern of bytes to be repeated.

Summary set and get, stream index, value types: H*

Example, set or

get:

0/1 PS_EXTPAYLOAD [5] 0x00112233445566778899AABBCCDDEEFF

PS_CDFOFFSET [sid] offset

Explanation This parameter is part of the​ ​Custom Data Field​ (CDF) feature. The CDF offset for

the stream is the location in the stream data packets where the various CDF data

will be inserted. All fields for a given stream uses the same offset value.

The default value is zero (0) which means that the CDF data will be inserted at the

very start of the packet, thus overwriting the packet protocol headers. If you want

the CDF data to start immediately after the end of the packet protocol headers you

will have to set the CDF field offset manually.

The feature require that the ​P_PAYLOADMODE​ parameter on the parent port has

been set to ​CDF​. This enables the feature for ​all streams​ on this port.

sid: integer, the sub-index value of the stream definition.

offset: integer, the location where the CDF data will be inserted.

Summary set and get, stream index, value types: I

Example, set or

get:

0/1 PS_CDFOFFSET [5] 14

102

http://www.xenanetworks.com/xenamanager-2g-user-manual/resource-properties/stream-properties/custom-data-field-feature/
http://www.xenanetworks.com/xenamanager-2g-user-manual/resource-properties/stream-properties/custom-data-field-feature/

PS_CDFCOUNT [sid] count

Explanation This parameter is part of the​ ​Custom Data Field​ (CDF) feature. It controls the

number of data fields available for each stream. You can set a different number of

fields for each stream.

Changing the field count value to a larger value will leave all existing fields intact.

Changing the field count value to a smaller value will remove all existing fields with

an index larger than or equal to the new count.

The feature require that the ​P_PAYLOADMODE​ parameter on the parent port has

been set to ​CDF​. This enables the feature for ​all streams​ on this port.

The feature require that the ​P_PAYLOADMODE​ parameter on the parent port has

been set to ​CDF​. This enables the feature for ​all streams​ on this port.

sid: integer, the sub-index value of the stream definition.

count: integer, the number of CDF data fields to allocate for the stream.

Summary set and get, stream index, value types: I

Example, set or

get:

0/1 PS_CDFCOUNT [5] 4

PS_CDFDATA [sid, cid] hexdata

Explanation This parameter is part of the​ ​Custom Data Field​ (CDF) feature. It controls the actual

field data for a single field. It is possible to define fields with different data lengths

for each stream.

If the length of a data field exceeds (packet length – CDF offset) defined for the

stream the field data will be truncated when transmitted.

The feature require that the ​P_PAYLOADMODE​ parameter on the parent port has

been set to ​CDF​. This enables the feature for ​all streams​ on this port.

sid: integer, the sub-index value of the stream definition.

cid: integer, the sub-index value for the data field.

hexdata: hex bytes, a pattern of bytes to be used.

103

http://www.xenanetworks.com/xenamanager-2g-user-manual/resource-properties/stream-properties/custom-data-field-feature/
http://www.xenanetworks.com/xenamanager-2g-user-manual/resource-properties/stream-properties/custom-data-field-feature/
http://www.xenanetworks.com/xenamanager-2g-user-manual/resource-properties/stream-properties/custom-data-field-feature/
http://www.xenanetworks.com/xenamanager-2g-user-manual/resource-properties/stream-properties/custom-data-field-feature/

Summary set and get, stream index, value types: H*

Example, set or

get:

0/1 PS_CDFDATA [5] 0x1122334455667788

104

Error Injection

PS_INJECTFCSERR [sid]

Explanation Force a frame checksum error in one of the packets currently being transmitted

from a stream. This can aid in analysing the error-detection functionality of the

system under test. Traffic must be on for the port, and the stream must be enabled.

sid: integer, the sub-index value of the stream definition.

Summary set only, stream index.

Example, set: 0/1 PS_INJECTFCSERR [5]

PS_INJECTSEQERR [sid]

Explanation Force a sequence error by skipping a test payload sequence number in one of the

packets currently being transmitted from a stream. This can aid in analyzing the

error-detection functionality of the system under test. Traffic must be on for the

port, and the stream must be enabled and include test payloads.

sid: integer, the sub-index value of the stream definition.

Summary set only, stream index.

Example, set: 0/1 PS_INJECSEQSERR [5]

PS_INJECTMISERR [sid]

Explanation Force a misorder error by swapping the test payload sequence numbers in two of

the packets currently being transmitted from a stream. This can aid in analysing the

error-detection functionality of the system under test. Traffic must be on for the

port, and the stream must be enabled and include test payloads.

sid: integer, the sub-index value of the stream definition.

Summary set only, stream index.

105

Example, set: 0/1 PS_INJECTMISERR [5]

PS_INJECTPLDERR [sid]

Explanation Force a payload integrity error in one of the packets currently being transmitted

from a stream.

Payload integrity validation is only available for incrementing payloads, and the

error is created by changing a byte from the incrementing sequence. The packet

will have a correct frame checksum, but the receiving Xena chassis will detect the

invalid

payload based on information in the test payload. Traffic must be on for the port,

and the stream must be enabled and include test payloads.

sid: integer, the sub-index value of the stream definition.

Summary set only, stream index.

Example, set: 0/1 PS_INJECTPLDERR [5]

PS_INJECTTPLDERR [sid]

Explanation Force a test payload error in one of the packets currently being transmitted from a

stream.

This means that the test payload will not be recognized at the receiving port, so it

will be counted as a no- test-payload packet, and there will be a lost packet for the

stream. Traffic must be on for the port, and the stream must be enabled and

include test payloads.

sid: integer, the sub-index value of the stream definition.

Summary set only, stream index.

Example, set: 0/1 PS_INJECTTPLDERR [5]

106

Filter Scripting Parameters

The filter and term parameters correspond to the FILTER TERMS and FILTER DEFINITION panels of the

Manager, and deal with configuration of the basic terms and conditions active on the received traffic of a

port.

The filter and term parameter names all have the form ​PM_<xxx>​, ​PL_<xxx>​ and ​PF_<xxx>​, and require

both a module index and a port index, as well as a sub-index identifying a particular match term, length

term, or filter.

The match terms and length terms provide basic true/false indications for each packet received on the port,

and each filter specifies a compound Boolean condition on these true/false values to determine if the filter

as a whole is true/false.

While a filter is enabled, neither its condition nor the definition of each match term or length term used by

the condition can be changed.

PM_INDICES mid mid …

Explanation The full list of which match terms are defined for a port. These are the sub-index

values that are used for the parameters defining the content-based matching of

packets received for the port.

Setting the value of this parameter creates a new empty match term for each value

that is not already in use, and deletes each match term that is not mentioned in the

list. The same can be accomplished onematch-term-at-a-time using the

PM_CREATE and PM_DELETE commands.

mid: integer, the sub-index of a match term definition for the port.

Summary set and get, value types: I*

Example, set or

get:

0/1 PM_INDICES 1 3

PM_CREATE ​[mid]

Explanation Creates an empty match term definition with the specified sub-index value.

107

mid: integer, the sub-index value of the match term definition to create.

Summary set only, match term index.

Example, set: 0/1 PM_CREATE [3]

PM_DELETE ​[mid]

Explanation Deletes the match term definition with the specified sub-index value. A macth term

cannot be deleted while it is used in the condition of any filter for the port.

mid: integer, the sub-index value of the match term definition to delete.

Summary set only, match term index.

Example, set: 0/1 PM_DELETE [3]

PM_PROTOCOL ​[mid] segment segment …

Explanation The protocol segments assumed on the packets received on the port.

This is mainly for information purposes, and helps you identify which portion of the

packet header is being matched. The actual value definition the match position is

specified with PM_POSITION.

mid: integer, the sub-index value of the match term definition.

segment: coded integer, a number specifying a built-in protocol segment: Uses the same

coded values as the PS_HEADERPROTOCOLparameter.

Summary set and get, match term index, value types: B*

Example, set or

get:

0/1 PM_PROTOCOL [3] ETHERNET VLAN

108

PM_POSITION ​[mid] byteoffset

Explanation The position within each received packet where content matching begins for the

port.

mid: integer, the sub-index value of the match term definition.

byteoffset: integer, offset from the start of the packet bytes.

Summary set and get, match term index, value types: I

Example, set: 0/1 PM_POSITION [3] 14

PM_MATCH [mid] mask value

Explanation The value that must be found at the match term position for packets received on

the port. The mask can make certain bit positions don’t-care.

mid: integer, the sub-index value of the match term definition.

mask: eight hex bytes, which bits are significant in the match operation.

value: eight hex bytes, the value that must be found for the match term to be true.

Summary set and get, match term index, value types: HHHHHHHH,HHHHHHHH

Example, set: 0/1 PM_MATCH [3] 0x0FFF000000000000 0x0123000000000000

PM_CONFIG ​[mid]?

Explanation Multi-parameter query, obtaining all the parameters for a specific match term.

mid: integer, the sub-index value of the match term definition.

Summary get only, match term index.

109

Example, set: 0/1 PM_PROTOCOL [3] ETHERNET VLAN 0/1 PM_POSITION [3] 14 0/1 PM_MATCH

[3] 0x0FFF000000000000 0x0123000000000000

PM_FULLCONFIG ​?

Explanation

Multi-parameter query, obtaining all parameters for all match terms defined on a

port.

Summary get only.

Example, get:

0/1 0/1 PM_INDICES PM_PROTOCOL 1 3 [1] ETHERNET IP UD
P

.

.

0/1 0/1 PM_PROTOCOL
PM_POSITION

[3] [3] ETHERNET 14 VLAN

0/1 PM_MATCH [3] 0x0FFF000000000000 0x0123000000000000

PL_INDICES ​lid lid …

Explanation The full list of which length terms are defined for a port. These are the sub-index

values that are used for the parameters defining the length-based matching of

packets received for the port. Setting the value of this parameter creates a new

empty length term for each value that is not already in use, and deletes each length

term that is not mentioned in the list.

The same can be accomplished one- length-term-at-a-time using the PL_CREATE

and PL_DELETE commands.

lid: integer, the sub-index of a length term definition for the port.

Summary set and get, value types: I*

110

Example, set or

get:

0/1 PL_INDICES 0

PL_CREATE ​[lid]

Explanation Creates an empty length term definition with the specified sub-index value.

lid: integer, the sub-index value of the length term definition to create.

Summary set only, length term index.

Example, set: 0/1 PL_CREATE [0]

PL_DELETE [lid]

Explanation Deletes the length term definition with the specified sub-index value. A length term

cannot be deleted while it is used in the condition of any filter for the port.

lid: integer, the sub-index value of the length term definition to delete.

Summary set only, length term index.

Example, set: 0/1 PL_DELETE [0]

PL_LENGTH ​[lid] type size

Explanation The specification for a length-based check that is applied on the packets received

on the port.

lid: integer, the sub-index value of the length term definition.

type: coded integer, whether to test for shorter-than or longer-than:

AT_MOST (packet length must be less-than-or-equal to specified size)

AT_LEAST (packet length must be greater-than-or-equal to specified size)

szie: integer, the value to compare the packet length against.

111

Summary set and get, length term index, value types: I,I

Example, set or

get:

0/1 PL_LENGTH [0] AT_MOST 100

PL_FULLCONFIG ​?

Explanation Multi-parameter query, obtaining all parameters for all length terms defined on a

port.

Summary get only.

Example, get: ● 0/1 PL_INDICES 0

● 0/1 PL_LENGTH [0] AT_MOST 100

PF_INDICES ​fid fid …

Explanation The full list of which filters are defined for a port. These are the sub-index values

that are used for the parameters defining the compound conditions on the

match/length terms operating on the packets received for the port.

Setting the value of this parameter creates a new empty filter for each value that is

not already in use, and deletes each filter that is not mentioned in the list. The

same can be accomplished one-filter-at-a-time using the PF_CREATE and

PF_DELETE commands.

fid: integer, the sub-index of a filter definition for the port.

Summary set and get, value types: I*

Example, set or

get:

0/1 PF_INDICES 0 3

PF_CREATE ​[fid]

Explanation Creates an empty filter definition with the specified sub-index value.

112

fid: integer, the sub-index value of the filter definition to create.

Summary set only, filter index.

Example, set or

get:

0/1 PF_CREATE [3]

PF_DELETE ​[fid]

Explanation Deletes the filter definition with the specified sub-index value.

fid: integer, the sub-index value of the filter definition to delete.

Summary set only, filter index.

Example, set: 0/1 PF_DELETE [3]

PF_ENABLE ​[fid] onoff

Explanation Whether a filter is currently active on a port.

While a filter is enabled its condition cannot be changed, nor can any match term

or length terms used by it.

fid: integer, the sub-index value of the filter definition.

onoff: coded integer, whether the filter is enabled: OFF ON

Summary set and get, filter index, value types: B

Example, set or

get:

0/1 PF_ENABLE [3] OFF

PF_COMMENT ​[fid] comment

Explanation The description of a filter.

113

fid: integer, the sub-index value of the filter definition.

comment: string, containing the description of the filter.

Summary set and get, filter index, value types: S

Example, set or

get:

0/1 PF_COMMENT [3] ”Filter for …”

PF_CONDITION ​[fid] terms terms …

Explanation The boolean condition on the terms specifying when the filter is satisfied. The

condition uses a cannonical and-or–not expression on the match terms and length

terms.

The condition is specified using a number of compound terms, each encoded as an

integer value specifying an abitrary set of the match terms and length terms

defined for the port. Each match/length term has a specific power-of-two value,

and the set is encoded as the sum of the values for the contained terms:

Value for match term [mid] = 2 ^ mid Value for length term [lid] = 2 ^ (lid+16)

A compound term is true if all the match terms and length terms contained in it are

true. This supports the and-part of the condition.

If some compound term is satisfied, the condition as a whole is true. This is the

or-part of the condition.

The first few compound terms at the even positions (second, fourth, …) are

inverted, and all the contained match terms and length terms must be false at the

same time that the those of the preceding compound term are true. This is the

not-part of the condition.

In practice, the simplest way to generate these encodings is to use the Manager,

which supports Boolean expressions using the operators &, |, and ~, and simply

query the chassis for the resulting script-level definition.

fid: integer, the sub-index value of the filter definition. terms: integer, encoding a

compound term which is a set of the match terms and length terms.

Summary set and get, filter index, value types: I*

114

Example, set or

get:

0/1 PF_CONDITION [3]

PF_CONFIG ​[fid]?

Explanation Multi-parameter query, obtaining all the parameters for a specific filter.

fid: integer, the sub-index value of the filter definition.

Summary get only, filter index.

Example, get: 0/1 PF_COMMENT [3] ”Filter for …” 0/1 PF_CONDITION [3] 0/1 PF_ENABLE [3] OFF

PF_CONFIG ​[fid]?

Explanation Multi-parameter query, obtaining all parameters for all filters defined on a port.

Summary get only.

Example, get: 0/1 PF_INDICES 0 3 0/1 PF_COMMENT [0] ”Filter for …” . . 0/1 PF_COMMENT [3]

”Filter for …” 0/1 PF_CONDITION [3] 0/1 PF_ENABLE [3] OFF

115

Capture Scripting Parameters

The capture parameters correspond to the Capture panel of the XenaManager, and deal with configuration

of the capture criteria and inspection of the captured data from a port.

Whether the port is enabled for capturing packets is specified by the P_CAPTURE parameter. Captured

packets are indexed starting from 0, and are stored in a buffer that is cleared before capture starts. While

on, the capture configuration parameters cannot be changed.

The capture parameter names all have the form ​PC_<xxx>​ and require both a module index and a port

index. The per-packet parameters also use a sub-index identifying a particular packet in the capture buffer.

PC_TRIGGER start filter1 stop filter2

Explanation The criteria for when to start and stop the capture process for a port.

Even when capture is enabled with P_CAPTURE, the actual capturing of packets can

be delayed until a particular start criteria is met by a received packet. Likewise, a

stop criteria can be specified, based on a received packet. If no explicit stop criteria

is specified, capture stops when the internal buffer runs full. In buffer overflow

situations, if there is an explicit stop criteria, then the latest packets will be retained

(and the early ones discarded), and otherwise the earliest packets are retained (and

the later ones discarded).

Summary set and get, value types: I,I,I,I

Parameters start:​ coded integer, the criteria for starting the actual packet capture:

● ON (start immediately when capture is started)

● FCSERR (start when receiving a packet containing a frame checksum error)

● FILTER (start when receiving a packet satisfying a filter condition)

● PLDERR (start when receiving a packet containing a packet payload error)

filter1:​ integer, the index of a particular filter for the start criteria.

stop:​ coded integer, the criteria for stopping the actual packet capture:

● FULL (continue until the capture buffer runs full)

● FCSERR (continue until receiving a packet with a frame checksum error)

● FILTER (continue until receiving a packet satisfying a filter condition)

● PLDERR (continue until receiving a packet with a packet payload error)

● USERSTOP* (continue until the user stops the capture manually)

filter2:​ integer, the index of a particular filter for the stop criteria.

*keyword can be replaced by 4 if not supported.

116

Example, get: 0/1 PC_TRIGGER FILTER 3 FULL 0

0/1 PC_TRIGGER ON 0 FULL 0

*0/1 PC_TRIGGER ON 0 4 0 (PC_TRIGGER ON 0 USERSTOP 0)

PC_KEEP which index bytes

Explanation Which packets to keep once the start criteria has been triggered for a port. Also

how big a portion of each packet to retain, saving space for more packets in the

capture buffer.

Summary set and get, value types: I,I,I

Parameters which​: coded integer, which general kind of packets to keep:

● ALL (keep all packets between the start and stop trigger)

● FCSERR (keep only those packets with frame checksum errors)

● NOTPLD (keep only those packets without a test payload)

● TPLD (keep only those packets with a test payload and specific id)

● FILTER (keep only those packets satisfying a specific filter condition)

● PLDERR (Keep only those packets with payload errors)

index​: integer, test payload id or filter index for which packets to keep.

bytes​: integer, how many bytes to keep in the buffer for of each packet. The value

-1 means no limit on packet size.

Example 0/1 PC_KEEP TPLD 17 30

PC_STATS status packets starttime

Explanation Obtains the number of packets currently in the capture buffer for a port. The count

is reset to zero when capture is turned on.

Summary get only, value types: L,L,L

Parameters status​: long integer, 1 if capture has been stopped because of overflow, 0 if still

running.

packets​: long integer, the number of packets in the buffer.

starttime​: long integer, time when capture was started, in nano-seconds since

2010-01-01.

117

Example 0/1 PC_STATS 0 987 3453543453

PC_PACKET [cid] hexdata

Explanation Obtains the raw bytes of a captured packet for a port.

The packet data may be truncated if the PC_KEEP parameter specified a limit on the

number of bytes kept.

Summary get only, capture packet index, value types: H*

Parameters cid: ​integer, the sub-index value of the captured packet. hexdata: hex bytes, the

raw bytes kept for the packet.

Example 0/1 PC_PACKET [986] 0x00AA00CC…

PC_EXTRA [cid] time latency ifg length

Explanation Obtains extra information about a captured packet for a port. The information

comprises time of capture, latency, inter-frame gap, and original packet length.

Latency is only valid for packets with test payloads and where the originating port is

on the same module and therefore has the same clock.

Summary get, capture packet index, value types: L,L,L,I

Parameters cid: ​integer, the sub-index value of the captured packet.

time: ​long integer, time when packet was captured, in nano-seconds since

2010-01-01.

latency: ​long integer, the number of nano-seconds since packet was transmitted.

ifg: ​long integer, the number of byte-times since previous packet.

length:​ integer, the real length of the packet on the wire.

Example 0/1 PC_EXTRA [986] 30000000 40000 100 555

PC_INFO [cid]?

118

Explanation Multi-parameter query, obtaining all the information for a particular captured

packet for a port.

Summary get only, capture packet index.

Parameters cid:​ integer, the sub-index value of the captured packet.

Example 0/1 PC_PACKET [986] 0x00AA00CC… 0/1 PC_EXTRA [986] 30000000 40000 100 555

PC_FULLCONFIG ?

Explanation Multi-parameter query, obtaining all parameters of the capture configuration for a

port. This does not include any captured data itself.

Summary get only.

Parameters None

Example 0/1 PC_TRIGGER FILTER 3 FULL 0 0/1 PC_KEEP TPLD 17 30

119

Statistics Scripting Parameters

The statistics parameters correspond to the Transmit Statistics and Receive Statistics panels of the

XenaManager, and provide quantitative information about the transmitted and received packets on a port.

The statistics parameter names all have the form ​PT_<xxx>​ and ​PR_<xxx>​ and require both a module index

and a port index. Those parameters dealing with a specific transmitted stream also have a sub-index, and

so have the parameters dealing with a specific received test payload id and a specific filter.

All bit-and byte-level statistics are at layer-2, so they include the full Ethernet frame, and exclude the

inter-frame gap and preamble.

PT_TOTAL bps pps bytes packets

Explanation Obtains statistics concerning all the packets transmitted on a port.

Parameters bps​: long integer, number of bits transmitted in the last second.

pps​: long integer, number of packets transmitted in the last second.

bytes​: long integer, number of bytes transmitted since statistics were cleared.

packets​: long integer, number of packets transmitted since statistics were cleared.

Summary get only, value types: L,L,L,L

Example, get: 0/0 PT_TOTAL 8000000000 15000000 12345678987654 123456789876

PT_NOTPLD bps pps bytes packets

Explanation Obtains statistics concerning the packets without a test payload transmitted on a

port.

Parameters bps: long integer, number of bits transmitted in the last second.

pps: long integer, number of packets transmitted in the last second.

bytes: long integer, number of bytes transmitted since statistics were cleared.

packets: long integer, number of packets transmitted since statistics were cleared.

Summary get only, value types: L,L,L,L

120

Example, get: 0/0 PT_NOTPLD 800000 1000 1234567 12345

The statistics parameters correspond to the Transmit Statistics and Receive Statistics panels of the

XenaManager, and provide quantitative information about the transmitted and received packets on a port.

The statistics parameter names all have the form ​PT_<xxx>​ and ​PR_<xxx>​ and require both a module index

and a port index. Those parameters dealing with a specific transmitted stream also have a sub-index, and

so have the parameters dealing with a specific received test payload id and a specific filter.

All bit-and byte-level statistics are at layer-2, so they include the full Ethernet frame, and exclude the

inter-frame gap and preamble.

PT_TOTAL bps pps bytes packets

Explanation Obtains statistics concerning all the packets transmitted on a port.

Parameters bps​: long integer, number of bits transmitted in the last second.

pps​: long integer, number of packets transmitted in the last second.

bytes​: long integer, number of bytes transmitted since statistics were cleared.

packets​: long integer, number of packets transmitted since statistics were cleared.

Summary get only, value types: L,L,L,L

Example, get: 0/0 PT_TOTAL 8000000000 15000000 12345678987654 123456789876

PT_NOTPLD bps pps bytes packets

Explanation Obtains statistics concerning the packets without a test payload transmitted on a

port.

Parameters bps: long integer, number of bits transmitted in the last second.

pps: long integer, number of packets transmitted in the last second.

bytes: long integer, number of bytes transmitted since statistics were cleared.

packets: long integer, number of packets transmitted since statistics were cleared.

Summary get only, value types: L,L,L,L

121

Example, get: 0/0 PT_NOTPLD 800000 1000 1234567 12345

PT_EXTRA arptxreq arptxrsp pingtxreq pingtxrsp fcs seq mis pld tpld train igmp

Explanation Obtains additional statistics for packets transmitted on a port.

Parameters arptxreq: long integer, number of ARP requests transmitted

arptxrsp: long integer, number of ARP responses transmitted

pingtxreq: long integer, number of PING requests transmitted

pingtxrsp: long integer, number of PING responses transmitted

fcs: long integer, number of FCS errors injected

seq: long integer, number of sequence mismatch errors injected

mis: long integer, number of packet misordering errors injected

pld: long integer, number of payload errors injected

tpld: long integer, number of payload integrity errors injected

train: long integer, number of MAC learning (training) packets transmitted

igmp: long integer, number of IGMP JOIN packets transmitted

Summary get only, value types: L*

Example, get: 0/0 PT_EXTRA 1 0 2 3 0 0 0 1 0 4 1

PT_STREAM [sid] bps pps bytes packets

Explanation Obtains statistics concerning the packets of a specific stream transmitted on a port.

Parameters sid: integer, the sub-index value of the stream definition.

bps: long integer, number of bits transmitted in the last second.

pps: long integer, number of packets transmitted in the last second. bytes: long

integer, number of bytes transmitted since statistics were cleared.

packets: long integer, number of packets transmitted since statistics were cleared.

Summary get only, stream index, value types: L,L,L,L

Example, get: 0/0 PT_STREAM [5] 800000000 1500000 1234567898765 12345678987

122

PT_ALL ?

Explanation Multi-parameter query, obtaining all the transmit statistics for a port.

Summary get only.

Example, get: ● 0/0 PT_TOTAL 8000000000 15000000 12345678987654 123456789876

● 0/0 PT_NOTPLD 800000 1000 1234567 12345 0/0 PT_STREAM [0]

800000000 1500000 1234567898765 12345678987 0/0 PT_STREAM [1]

700000000 1300000 1134567898765 11345678987 0/0 PT_STREAM [5]

600000000 1100000 1034567898765 10345678987

PT_CLEAR

Explanation Clear all the transmit statistics for a port. The byte and packet counts will restart at

zero.

Summary set only.

Example, set: 0/0 PT_CLEAR

PR_TOTAL bps pps bytes packets

Explanation Obtains statistics concerning all the packets received on a port.

Parameters bps​: long integer, number of bits received in the last second.

pps​: long integer, number of packets received in the last second.

bytes​: long integer, number of bytes received since statistics were cleared.

packets​: long integer, number of packets received since statistics were cleared.

Summary get only, value types: L,L,L,L

Example, get: 0/0 PR_TOTAL 8000000000 15000000 12345678987654 123456789876

123

PR_NOTPLD bps pps bytes packets

Explanation Obtains statistics concerning the packets without a test payload received on a port.

Parameters bps:​ long integer, number of bits received in the last second.

pps:​ long integer, number of packets received in the last second.

bytes:​ long integer, number of bytes received since statistics were cleared.

packets:​ long integer, number of packets received since statistics were cleared.

Summary get only, value types: L,L,L,L

Example, get: 0/0 PR_NOTPLD 800000 1000 1234567 12345

PR_EXTRA fcserrors pauseframes arprequests arpreplies pingrequest pingreplies gapcount gapduration

Explanation Obtains statistics concerning special packets received on a port since receive

statistics were cleared.

Parameters fcserrors: long integer, number of packets with frame checksum errors.

pauseframes: long integer, number of Ethernet pause frames.

arprequests: long integer, number of ARP request packets received.

arpreplies: long integer, number of ARP reply packets received.

pingrequests: long integer, number of PING request packets received.

pingreplies: long integer, number of PING reply packets received.

gapcount: long integer, number of gap monitor gaps encountered.

gapduration: long integer, combined duration of gap monitor gaps encountered,

microseconds​.

Summary get only, value types: L*

Example, get: 0/0 PR_EXTRA 0 0 0 0 0 2 532

PR_TPLDS tid tid …

Explanation Obtain the set of test payload IDs observed among the received packets since

receive statistics were cleared. Traffic statistics for these test payload streams will

124

have non-zero byte and packet count. tid: integer, identifier of test payload with

non-zero packet count.

Summary get only, value types: I*

Example, get: 0/0 PR_TPLDS 17 77

PR_TPLDTRAFFIC [tid] bps pps byt pac

Explanation Obtains traffic statistics concerning the packets with a particular test payload id

received on a port.

Parameters tid:​ integer, the identifier of the test payload.

bps:​ long integer, number of bits received in the last second.

pps​: long integer, number of packets received in the last second.

byt:​ long integer, number of bytes received since statistics were cleared.

pac:​ long integer, number of packets received since statistics were cleared.

Summary get only, test payload id, value types: L,L,L,L

Example, get: 0/0 PR_TPLDTRAFFIC [17] 80000000 150000 123456789876 1234567898

PR_TPLDERRORS [tid] dummy seq mis pld

Explanation Obtains statistics concerning errors in the packets with a particular test payload id

received on a port.

The error information is derived from analysing the various fields contained in the

embedded test payloads of the received packets, independent of which chassis and

port may have originated the packets.

Note that packet-lost statistics involve both a transmitting port and a receiving

port, and in particular knowing which port originated the packets with a particular

test payload identifier. This information requires knowledge of the global test

environment, and is not supported at the port-level.

Parameters Index Values

125

tid:​ integer, the identifier of the test payload

Data Values

dummy:​ long integer, not used

seq:​ long integer, number of non-incrementing-sequence-number events.

mis:​ long integer, number of swapped-sequence-number misorder events.

pld:​ long integer, number of packets with non-incrementing payload content.

Summary get only, test payload id, value types: L,L,L,L

Example, get: 0/0 PR_TPLDERRORS [17] 0 1 0 0

PR_TPLDLATENCY [tid] min avg max avg1sec min1sec max1sec

Explanation Obtains statistics concerning the latency experienced by the packets with a

particular test payload id received on a port. The values are adjusted by the

port-level P_LATENCYOFFSET value.

A special value of -1 is returned if latency numbers are not applicable.

Latency is only meaningful when the clocks of the transmitter and receiver are

synchronized. This requires the two ports to be on the same test module, and it

requires knowledge of the global test environment to ensure that packets are in

fact routed between these ports.

Parameters tid:​ integer, the identifier of the test payload

min:​ long integer, nanoseconds, minimum latency for test payload stream

avg:​ long integer, nanoseconds, average latency for test payload stream

max:​ long integer, nanoseconds, maximum latency for test payload stream

avg1sec:​ long integer, nanoseconds, average latency over last 1-second period

min1sec*: ​long integer, nanoseconds, minimum latency during last 1-second period

max1sec*:​ long integer, nanoseconds, maximum latency during last 1-second

period

Summary get only, test payload id, value types: L,L,L,L

Example, get: 0/0 PR_TPLDLATENCY [17] 2400 2900 3700 2800

126

*Note, the last two values were added in Release 57.0.

PR_TPLDJITTER ​[tid] min avg max avg1sec min1sec max1sec

Explanation Obtains statistics concerning the jitter experienced by the packets with a particular

test payload id received on a port. The values are the difference in packet-to-packet

latency, and the minimum will usually be zero.

A special value of -1 is returned if jitter numbers are not applicable. They are only

available for TID values 0..31.

Parameters tid:​ integer, the identifier of the test payload

min:​ long integer, nanoseconds, minimum jitter for test payload stream

avg:​ long integer, nanoseconds, average jitter for test payload stream

max:​ long integer, nanoseconds, maximum jitter for test payload stream

avg1sec:​ long integer, nanoseconds, average jitter over last 1-second period

min1sec*:​ long integer, nanoseconds, minimum jitter during last 1-second period

max1sec*:​ long integer, nanoseconds, maximum jitter during last 1-second period

Summary get only, test payload id, value types: L,L,L,L

Example, get: 0/0 PR_TPLDJITTER [17] 0 1234 2900 1345

*Note, the last two values were added in Release 57.0.

PR_FILTER ​[fid] bps pps bytes packets

Explanation Obtains statistics concerning the packets satisfying the condition of a particular

filter for a port.

Parameters fid:​ integer, the sub-index of the filter definition.

bps:​ long integer, number of bits received in the last second.

pps:​ long integer, number of packets received in the last second.

bytes:​ long integer, number of bytes received since statistics were cleared.

packets:​ long integer, number of packets received since statistics were cleared.

Summary get only, filter index, value types: L,L,L,L

127

Example, get: 0/0 PR_FILTER [3] 80000000 150000 123456789876 1234567898

PR_PFCSTATS ​packets priocount-array

Explanation Obtains statistics about received PFC packets on a port.

Parameters packets:​ long integer. The total number of PFC packets received since statistics

were cleared.

quanta-array: ​ Array of long integers, one for each priority level (0 – 7). The valid

PFC quanta received on the port for that priority level since statistics were cleared.

Summary get only, filter index, value types: L,L,L,L

Example, get: 0/0 PR_PFCSTATS 10 0 0 0 0 0 0 0 0

PR_ALL ​?

Explanation Multi-parameter query, obtaining all the receive statistics for a port.

Summary get only.

Example, get: 0/0 PR_TOTAL 8000000000 15000000 12345678987654 123456789876 0/0

PR_NOTPLD 800000 1000 1234567 12345 0/0 PR_EXTRA 0 123 0 0 0 0 0 0/0

PR_TPLDS 17 77 0/0 PR_TPLDTRAFFIC [17] 80000000 150000 123456789876

1234567898 0/0 PR_TPLDERRORS [17] 0 1 0 0 0/0 PR_TPLDLATENCY [17] 2400 2900

3700 0/0 PR_TPLDTRAFFIC [77] 80000000 150000 123456789876 1234567898 . .

0/0 PR_FILTER [3] 80000000 150000 123456789876 1234567898

PR_ALLERRORS ?

Explanation Multi-parameter query, obtaining all the test payload id error statistics for a port.

Summary get only.

128

Example, get: 0/0 PR_TPLDS 17 77 0/0 PR_TPLDERRORS [17] 0 1 0 0 0/0 PR_TPLDERRORS [77] 2 3

0 7

PR_CALIBRATE

Explanation Calibrate the latency calculation for packets received on a port. The lowest

detected latency value (across all TIDs) will be set as the new base.

Summary set only.

Example, set: 0/1 PR_CALIBRATE

PR_CLEAR

Explanation Clear all the receive statistics for a port. The byte and packet counts will restart at

zero.

Summary set only.

Example, set: 0/0 PR_CLEAR

PR_PFCSTATS ?

Explanation Query the RX PFC counter and PFC quanta for each CoS

Summary get only, value type: L*

Example, set or

get:

0/1 PR_PFCSTATS 0 0 0 0 0 0 0 0 0

PT_EXTRA arptxreq arptxrsp pingtxreq pingtxrsp fcs seq mis pld tpld train igmp

Explanation Obtains additional statistics for packets transmitted on a port.

129

Parameters arptxreq: long integer, number of ARP requests transmitted

arptxrsp: long integer, number of ARP responses transmitted

pingtxreq: long integer, number of PING requests transmitted

pingtxrsp: long integer, number of PING responses transmitted

fcs: long integer, number of FCS errors injected

seq: long integer, number of sequence mismatch errors injected

mis: long integer, number of packet misordering errors injected

pld: long integer, number of payload errors injected

tpld: long integer, number of payload integrity errors injected

train: long integer, number of MAC learning (training) packets transmitted

igmp: long integer, number of IGMP JOIN packets transmitted

Summary get only, value types: L*

Example, get: 0/0 PT_EXTRA 1 0 2 3 0 0 0 1 0 4 1

PT_STREAM [sid] bps pps bytes packets

Explanation Obtains statistics concerning the packets of a specific stream transmitted on a port.

Parameters sid: integer, the sub-index value of the stream definition.

bps: long integer, number of bits transmitted in the last second.

pps: long integer, number of packets transmitted in the last second. bytes: long

integer, number of bytes transmitted since statistics were cleared.

packets: long integer, number of packets transmitted since statistics were cleared.

Summary get only, stream index, value types: L,L,L,L

Example, get: 0/0 PT_STREAM [5] 800000000 1500000 1234567898765 12345678987

PT_ALL ?

Explanation Multi-parameter query, obtaining all the transmit statistics for a port.

Summary get only.

Example, get: ● 0/0 PT_TOTAL 8000000000 15000000 12345678987654 123456789876

130

● 0/0 PT_NOTPLD 800000 1000 1234567 12345 0/0 PT_STREAM [0]

800000000 1500000 1234567898765 12345678987 0/0 PT_STREAM [1]

700000000 1300000 1134567898765 11345678987 0/0 PT_STREAM [5]

600000000 1100000 1034567898765 10345678987

PT_CLEAR

Explanation Clear all the transmit statistics for a port. The byte and packet counts will restart at

zero.

Summary set only.

Example, set: 0/0 PT_CLEAR

PR_TOTAL bps pps bytes packets

Explanation Obtains statistics concerning all the packets received on a port.

Parameters bps​: long integer, number of bits received in the last second.

pps​: long integer, number of packets received in the last second.

bytes​: long integer, number of bytes received since statistics were cleared.

packets​: long integer, number of packets received since statistics were cleared.

Summary get only, value types: L,L,L,L

Example, get: 0/0 PR_TOTAL 8000000000 15000000 12345678987654 123456789876

PR_NOTPLD bps pps bytes packets

Explanation Obtains statistics concerning the packets without a test payload received on a port.

Parameters bps:​ long integer, number of bits received in the last second.

pps:​ long integer, number of packets received in the last second.

bytes:​ long integer, number of bytes received since statistics were cleared.

packets:​ long integer, number of packets received since statistics were cleared.

131

Summary get only, value types: L,L,L,L

Example, get: 0/0 PR_NOTPLD 800000 1000 1234567 12345

PR_EXTRA miscstats…

Explanation Obtains statistics concerning special packets received on a port since receive

statistics were cleared.

Parameters fcserrors: long integer, number of packets with frame checksum errors.

pauseframes: long integer, number of Ethernet pause frames.

arprequests: long integer, number of ARP request packets received.

arpreplies: long integer, number of ARP reply packets received.

pingrequests: long integer, number of PING request packets received.

pingreplies: long integer, number of PING reply packets received.

gapcount: long integer, number of gap monitor gaps encountered.

gapduration: long integer, combined duration of gap monitor gaps encountered,

microseconds.

Summary get only, value types: L*

Example, get: 0/0 PR_EXTRA 0 1230000

PR_TPLDS ​tid tid …

Explanation Obtain the set of test payload ids observed among the received packets since

receive statistics were cleared. Traffic statistics for these test payload streams will

have non-zero byte and packet count. tid: integer, identifier of test payload with

non-zero packet count.

Summary get only, value types: I*

Example, get: 0/0 PR_TPLDS 17 77

132

PR_TPLDTRAFFIC [tid] bps pps byt pac

Explanation Obtains traffic statistics concerning the packets with a particular test payload id

received on a port.

Parameters tid:​ integer, the identifier of the test payload.

bps:​ long integer, number of bits received in the last second.

pps​: long integer, number of packets received in the last second.

byt:​ long integer, number of bytes received since statistics were cleared.

pac:​ long integer, number of packets received since statistics were cleared.

Summary get only, test payload id, value types: L,L,L,L

Example, get: 0/0 PR_TPLDTRAFFIC [17] 80000000 150000 123456789876 1234567898

PR_TPLDERRORS [tid] dummy seq mis pld

Explanation Obtains statistics concerning errors in the packets with a particular test payload id

received on a port.

The error information is derived from analysing the various fields contained in the

embedded test payloads of the received packets, independent of which chassis and

port may have originated the packets.

Note that packet-lost statistics involve both a transmitting port and a receiving

port, and in particular knowing which port originated the packets with a particular

test payload identifier. This information requires knowledge of the global test

environment, and is not supported at the port-level.

Parameters Index Values

tid:​ integer, the identifier of the test payload

Data Values

dummy:​ long integer, not used

seq:​ long integer, number of non-incrementing-sequence-number events.

mis:​ long integer, number of swapped-sequence-number misorder events.

pld:​ long integer, number of packets with non-incrementing payload content.

Summary get only, test payload id, value types: L,L,L,L

133

Example, get: 0/0 PR_TPLDERRORS [17] 0 1 0 0

PR_TPLDLATENCY [tid] min avg max avg1sec min1sec max1sec

Explanation Obtains statistics concerning the latency experienced by the packets with a

particular test payload id received on a port. The values are adjusted by the

port-level P_LATENCYOFFSET value.

A special value of -1 is returned if latency numbers are not applicable.

Latency is only meaningful when the clocks of the transmitter and receiver are

synchronized. This requires the two ports to be on the same test module, and it

requires knowledge of the global test environment to ensure that packets are in

fact routed between these ports.

Parameters tid:​ integer, the identifier of the test payload

min:​ long integer, nanoseconds, minimum latency for test payload stream

avg:​ long integer, nanoseconds, average latency for test payload stream

max:​ long integer, nanoseconds, maximum latency for test payload stream

avg1sec:​ long integer, nanoseconds, average latency over last 1-second period

min1sec*: ​long integer, nanoseconds, minimum latency during last 1-second period

max1sec*:​ long integer, nanoseconds, maximum latency during last 1-second

period

Summary get only, test payload id, value types: L,L,L,L

Example, get: 0/0 PR_TPLDLATENCY [17] 2400 2900 3700 2800

*Note, the last two values were added in Release 57.0.

PR_TPLDJITTER ​[tid] min avg max avg1sec min1sec max1sec

Explanation Obtains statistics concerning the jitter experienced by the packets with a particular

test payload id received on a port. The values are the difference in packet-to-packet

latency, and the minimum will usually be zero.

134

A special value of -1 is returned if jitter numbers are not applicable. They are only

available for TID values 0..31.

Parameters tid:​ integer, the identifier of the test payload

min:​ long integer, nanoseconds, minimum jitter for test payload stream

avg:​ long integer, nanoseconds, average jitter for test payload stream

max:​ long integer, nanoseconds, maximum jitter for test payload stream

avg1sec:​ long integer, nanoseconds, average jitter over last 1-second period

min1sec*:​ long integer, nanoseconds, minimum jitter during last 1-second period

max1sec*:​ long integer, nanoseconds, maximum jitter during last 1-second period

Summary get only, test payload id, value types: L,L,L,L

Example, get: 0/0 PR_TPLDJITTER [17] 0 1234 2900 1345

*Note, the last two values were added in Release 57.0.

PR_FILTER ​[fid] bps pps bytes packets

Explanation Obtains statistics concerning the packets satisfying the condition of a particular

filter for a port.

Parameters fid:​ integer, the sub-index of the filter definition.

bps:​ long integer, number of bits received in the last second.

pps:​ long integer, number of packets received in the last second.

bytes:​ long integer, number of bytes received since statistics were cleared.

packets:​ long integer, number of packets received since statistics were cleared.

Summary get only, filter index, value types: L,L,L,L

Example, get: 0/0 PR_FILTER [3] 80000000 150000 123456789876 1234567898

PR_PFCSTATS ​packets priocount-array

Explanation Obtains statistics about received PFC packets on a port.

135

Parameters packets:​ long integer. The total number of PFC packets received since statistics

were cleared.

quanta-array: ​ Array of long integers, one for each priority level (0 – 7). The valid

PFC quanta received on the port for that priority level since statistics were cleared.

Summary get only, filter index, value types: L,L,L,L

Example, get: 0/0 PR_PFCSTATS 10 0 0 0 0 0 0 0 0

PR_ALL ​?

Explanation Multi-parameter query, obtaining all the receive statistics for a port.

Summary get only.

Example, get: 0/0 PR_TOTAL 8000000000 15000000 12345678987654 123456789876 0/0

PR_NOTPLD 800000 1000 1234567 12345 0/0 PR_EXTRA 0 123 0 0 0 0 0 0/0

PR_TPLDS 17 77 0/0 PR_TPLDTRAFFIC [17] 80000000 150000 123456789876

1234567898 0/0 PR_TPLDERRORS [17] 0 1 0 0 0/0 PR_TPLDLATENCY [17] 2400 2900

3700 0/0 PR_TPLDTRAFFIC [77] 80000000 150000 123456789876 1234567898 . .

0/0 PR_FILTER [3] 80000000 150000 123456789876 1234567898

PR_ALLERRORS ?

Explanation Multi-parameter query, obtaining all the test payload id error statistics for a port.

Summary get only.

Example, get: 0/0 PR_TPLDS 17 77 0/0 PR_TPLDERRORS [17] 0 1 0 0 0/0 PR_TPLDERRORS [77] 2 3

0 7

PR_CALIBRATE

Explanation Calibrate the latency calculation for packets received on a port. The lowest

detected latency value (across all TIDs) will be set as the new base.

Summary set only.

136

Example, set: 0/1 PR_CALIBRATE

PR_CLEAR

Explanation Clear all the receive statistics for a port. The byte and packet counts will restart at

zero.

Summary set only.

Example, set: 0/0 PR_CLEAR

PR_PFCSTATS ?

Explanation Query the RX PFC counter and PFC quanta for each CoS

Summary get only, value type: L*

Example, set or

get:

0/1 PR_PFCSTATS 0 0 0 0 0 0 0 0 0

137

Dataset (Histogram) Scripting Parameters

The dataset (aka histogram) parameters correspond to the Histogram panel of the XenaManager, and deal

with configuration of data collection and retrieval of samples from a port.

The dataset parameter names all have the form ​PD_<xxx>​ and require both a module index and a port

index, as well as a sub-index identifying a particular dataset.

A dataset has a number of ‘buckets’ and counts the packets transmitted or received on a port, possibly

limited to those with a particular test payload id. The packet length, inter-frame gap preceding it, or its

latency is measured, and the bucket whose range contains this value is incremented.

While a dataset is actively collecting samples its parameters cannot be changed.

PD_CREATE [did]

Explanation Creates a dataset definition with the specified sub-index value.

Parameters did:​ integer, the sub-index value of the dataset definition to create.

Summary set only, dataset index.

Example, set: 0/1 PD_CREATE [0]

PD_ENABLE [did] onoff

Explanation Whether a dataset is currently active on a port.

When turned on, all the bucket counts are cleared to zero. Subsequently each

packet matching the dataset source criteria is counted into one of the buckets.

138

While a dataset is enabled its parameters cannot be changed. did: integer, the

sub-index value of the dataset definition.

Parameters onoff:​ coded integer, whether the dataset is enabled: OFF ON

Summary set and get, dataset index, value types: B

Example, set or

get:

0/1 PD_ENABLE [0] ON

PD_SOURCE [did] type which id

Explanation The source criteria specifying what is counted, and for which packets, by a dataset

of a port.

Parameters did:​ integer, the sub-index value of the dataset definition.

type: ​ coded integer, specifying what is counted and for which packets:

● TXIFG (inter-frame gap of transmitted packets, measured in bytes)

● TXLEN (length of transmitted packets, measured in bytes)

● RXIFG (inter-frame gap of received packets, measured in bytes)

● RXLEN (length of received packets, measured in bytes)

● RXLAT (latency of received packets, measured in nanoseconds)

which​: coded integer, specifying a further detail on which packets to count: ALL (all

packets specified by the type) TPLD (only those packets with a particular test

payload) FILTER (only those packets satisfying a particular filter)

id:​ integer, test payload id or filter id for wanted packets.

Summary set and get, dataset index, value types: I,I,I

Example, set or

get:

0/1 PD_SOURCE [0] RXLEN TPLD 17

139

PD_RANGE [did] start step count

Explanation The bucket ranges used for classifying the packets counted by a dataset of a port.

The packets are either counted by length, measured in bytes, by inter-frame gap to

the preceding packet, also measured in bytes, or by latency in transmission

measured in nanoseconds.

There are a fixed number of buckets, each middle bucket covering a fixed-size

range of values which is a power of two. The first and last buckets count all the

packets that don’t fit within the ranges of the midlle buckets. The buckets are

placed at a certain offset by specifying the first value that should be counted by the

first middle bucket.

Parameters did:​ integer, the sub-index value of the dataset definition.

start:​ integer, first value going into the second bucket.

step: ​ the span of each middle bucket:

● 1,2,4,8,16,32,64,128,256,512 (bytes, non-latency datasets)

● 16,32,64,128,…,1048576, 2097152 (nanoseconds, latency datasets)

count:​ integer, the total number of buckets

Summary set and get, dataset index, value types: I,I,I

Example, get: 0/1 PD_RANGE [0] 100 8 256

PD_SAMPLES [did] value value …

Explanation The current set of counts collected by a dataset for a port.

There is one value for each bucket, but any trailing zeros are left out. The list is

empty if all counts are zero.

Parameters did:​ integer, the sub-index value of the dataset definition.

value: ​ long integer, the number of packets counted for a bucket.

Summary get only, dataset index, value types: L*

140

Example, get: 0/1 PD_SAMPLES[0]342567809534 756767654 3124532463 687

PD_CONFIG [did] ?

Explanation Multi-parameter query, obtaining all the parameters for a specific dataset.

Parameters did:​ integer, the sub-index value of the dataset definition.

Summary get only, dataset index.

Example, get: ● 0/1 PD_ENABLE [0] ON

● 0/1 PD_SOURCE [0] RXLEN 17

● 0/1 PD_RANGE [0]100 8 256

PD_FULLCONFIG ?

Explanation Multi-parameter query, obtaining all parameters for all datasets defined on a port

Summary get only.

Example, get: ● 0/1 PD_INDICES 0 1

● 0/1 PD_ENABLE [0] ON

● 0/1 PD_SOURCE [0] RXLEN TPLD 17

● 0/1 PD_RANGE [0] 100 8 256

● .

● .

● 0/1 PD_RANGE [1] 0 4 256

141

PD_ALL ?

Explanation Multi-parameter query, obtaining all the samples for all datasets defined for a port.

Summary get only.

Example, get: ● 0/1 PD_SAMPLES [0] 342567809534 756767654 3124532463 687

● 0/1 PD_SAMPLES [1] 2567809534 6767654 24532463 7 9 13

142

40/100G Port Scripting Parameters

The 40/100G port parameters provide configuration and status for the CAUI physical coding sub-layer used

by 40G and 100G ports.

The data is broken down into a number of lower-speed lanes. For 40G there are 4 lanes of 10 Gbps each.

For 100G there are 20 lanes of 5 Gbps each. Within each lane the data is broken down into 66-bit

code-words.

During transport the lanes may be swapped and skewed with respect to each other. To deal with this each

lane contains marker words with a virtual lane index. The parameters are index with a physical lane index

which corresponds to a fixed numbering of the underlying fibers or wavelengths.

The lanes can also be put into PRBS mode where they transmit a bit pattern used for diagnosing fiber-level

problems, and the receiving side can lock to these patterns.

Errors can be injected both at the CAUI level and at the bit level.

The 40/100G parameter names all have the form PP_xxx and require a module index and a port index, and

most also require a physical lane index.

PP_TXLANECONFIG ​[pid] virtlane skew

Explanation The virtual lane index and artificial skew for data transmitted on a specified physical

lane.

Parameters pid: ​integer, the lane sub-index

virtlane: ​ the logical lane number.

skew: ​ integer, the inserted skew on the lane, in bit units.

Summary set and get, lane index, value types: I,I

Example, set or

get:

0/1 PP_TXLANECONFIG [19] 17 0

143

PP_TXLANEINJECT ​[pid] type

Explanation Inject a particular kind of CAUI error into a specific physical lane.

Parameters type: coded byte, specifying what kind of error to inject:

● HEADERERROR (error in the 2-bit header of a code-word)

● ALIGNERROR (error in the special alignment code-word)

● BIP8ERROR (error in the BIP8 checksum of the alignment code-word).

Summary set only, lane index, value type: B

Example, set: 0/1 PP_TXLANEINJECT [19] ALIGNERROR

PP_TXPRBSCONFIG ​[pid] dummy onoff errors

Explanation The PRBS configuration for a particular lane. When PRBS is enabled for any lane

then the overall link is compromised and drops out of sync.

Parameters pid:​ integer, the lane sub-index.

dummy: integer, not used.

onoff:​ coded integer, whether this lane is transmitting PRBS data – PRBSOFF

PRBSON

errors: ​ coded integer, whether bit-level errors are injected into this lane –

ERRORSOFF ERRORSON

Summary set and get, lane index, value types: I,B,B

Example, set or

get:

0/1 PP_TXPRBSCONFIG [19] 0 ON OFF

PP_TXERRORRATE ​rate

Explanation The rate of continuous bit-level error injection. Errors are injected evenly across the

lanes where injection is enabled.

Parameters rate: ​ long integer, the number of bits between each error. 0, no error injection.

144

Summary set and get, value type: L

Example, set or

get:

0/1 PP_TXERRORRATE 1000000000

PP_TXINJECTONE

Explanation Inject a single bit-level error into one of the lanes where injection is enabled.

Summary set only.

Example, set: 0/1 PP_TXINJECTONE

PP_RXLANELOCK ​[pid] headerlock alignlock

Explanation Whether the receiver has achieved header lock and alignment lock on the data

received on a specified physical lane.

Parameters pid: ​integer, the lane sub-index.

headerlock: ​coded byte, whether this lane has achieved header lock.

HEADEROFF

HEADERON

alignlock:​ coded byte, whether this lane has achieved alignment lock.

ALIGNOFF

ALIGNON

Summary get only, lane index, value types: B,B

Example, get: 0/1 PP_RXLANELOCK [19] HEADERON ALIGNON

145

PP_RXLANESTATUS ​[pid] virtlane skew

Explanation The virtual lane index and actual skew for data received on a specified physical

lane. This is only meaningful when the lane is in header lock and alignment lock.

Parameters pid:​ integer, the lane sub-index. virtlane: integer, the logical lane number. skew:

integer, the measured skew on the lane, in bit units.

Summary get only, lane index, value types: I,I

Example, get: 0/1 PP_RXLANESTATUS [19] 17 66

PP_RXLANEERRORS ​[pid] header align bip8

Explanation Statistics about errors detected at the physical coding sub-layer on the data

received on a specified physical lane.

Parameters pid:​ integer, the lane sub-index.

header:​ long integer, the number of header errors.

align​ ​long integer, the number of alignment errors.

bip8:​ long integer, the number of bip8 errors.

Summary get only, lane index, value types: L,L,L

Example, get: 0/1 PP_RXLANEERRORS [19] 0 0 5

PP_RXPRBSSTATUS ​[pid] bytes errors lock

Explanation Statistics about PRBS pattern detection on the data received on a specified physical

lane.

146

Parameters pid:​ integer, the lane sub-index. bytes: long integer, the number of bytes received

while in PRBS lock.

errors: ​ long integer, the number of errors detected while in PRBS lock.

lock:​ coded byte, whether this lane is in PRBS lock.

PRBSOFF

PRBSON

Summary get only, lane index, value types: L,L,B

Example, get: 0/1 PP_RXPRBSSTATUS [19] 1000000000 3 ON

PP_RXLASERPOWER ​nanowatts…

Explanation Reading of the optical power level of the received signal. There is one value for

each laser/wavelength, and the number of these depends on the kind of CFP

transceiver used. The list is empty if the CFP transceiver does not support optical

power read-out.

Parameters nanowatts: ​ integer, received signal level, in nanowatts. 0, when no signal.

Summary get only, value types: I*

Example, get: 0/1 PP_RXLASERPOWER 1000123 1123000 999000 1000987

PP_RXCLEAR

Explanation Clear all the 40/100G receive statistics for a port.

Summary set only.

Example, set: 0/1 PP_RXCLEAR

147

PP_CONFIG ​?

Explanation Multi-parameter query, obtaining all the 40/100G parameters for a port.

Summary get only.

Example, get: 0/1 PP_TXLANECONFIG [0] 1 0 0/1 PP_TXPRBSCONFIG [0] 0 ON OFF 0/1

PP_TXLANECONFIG [1] 0 0 . . 0/1 PP_TXERRORRATE 1000000000

PP_ALL ​?

Explanation Multi-parameter query, obtaining all the 40/100G statistics for a port.

Summary get only.

Example, get: 0/1 PP_RXLANELOCK [0] HEADERON ALIGNON 0/1 PP_RXLANESTATUS [0] 17 66 0/1

PP_RXLANEERRORS [0] 0 0 5 0/1 PP_RXPRBSSTATUS [0] 1000000000 1 ON . . 0/1

PP_RXPRBSSTATUS [19] 1000000000 3 ON

PP_ALLERRORS ​?

Explanation Multi-parameter query, obtaining all the 40/100G PRBS error statistics for a port.

Summary get only.

Example, get:

0/1 PP_RXPRBSSTATUS [0] 1000000000 1 ON

0/1 PP_RXPRBSSTATUS [1] 1000000000 6 ON

148

.

.

0/1 PP_RXPRBSSTATUS [19] 1000000000 3 ON

PP_EYEMEASURE ​[serdes] status dummy

Explanation Exclusive to CFP4 and QSFP28 interfaces on M1CFP4QSFP28CXP. Start/stop a new

BER eye-measure on a 25G serdes. Use “get” to see the status of the data gathering

process.

Parameters serdes:​ integer, the serdes sub-index (0..3).

status:​ ​byte, STOP (0), START (1), GATHERING (2).

dummy:​ byte, reserved for future expansion.

Summary set/get, serdes index, value types: B, B*

Example, get: 0/1 PP_EYEMEASURE [1] GATHERING 0

Note: Added in Release 57.3

PP_EYERESOLUTION ​[serdes] xres yres

Explanation Exclusive to CFP4 and QSFP28 interfaces on M1CFP4QSFP28CXP. Set or get the

resolution used for the next BER eye-measurement.

Parameters serdes:​ integer, the serdes sub-index (0..3).

xres:​ ​integer, number of columns, must be between 9 and 65 and be in the form

2^n+1

yres:​ integer, number of columns, must be between 7 and 255 and be in the form

2^n-1

Summary set/get, serdes index, value types: I, I

149

Example, get: 0/1 PP_EYERESOLUTION [1] 65 63

Note: Added in Release 57.3

PP_EYEINFO ​[serdes] value0, value1…. valueN

Explanation Exclusive to CFP4 and QSFP28 interfaces on M1CFP4QSFP28CXP. Read out BER

eye-measurement information such as the vertical and horizontal bathtub

information. on a 25G serdes. This must be called after “PP_EYEMEASURE” has run

to return valid results. Use “get” to see the status of the data gathering process.

Parameters serdes:​ integer, the serdes sub-index (0..3).

value 0..N:​ ​integers, see table of returned values below

List of returned values:

Name Value and unit
(if any)

Type Group

0 Width_mUI 0..1000 (mUI) Int Horizont. Bathtubcurve

1 Height_mV 0..1000 (mV) Int Vertical Bathtubcurve

2 HSlope left (Q/UI) *100 signed int Horizont. Bathtubcurve

3 HSlope right (Q/UI) *100 Signed int Horizont. Bathtubcurve

4 Y-intercept left (Q) * 100 Signed int Horizont. Bathtubcurve

5 Y-intercept
right

(Q) * 100 Signed int Horizont. Bathtubcurve

6 R-squared fit
left

Int * 100 int Horizont. Bathtubcurve

7 R-squared fit
right

Int * 100 int Horizont. Bathtubcurve

8 Est RJrms left (mUI) * 1000 Int Horizont. Bathtubcurve

9 Est RJrms right (mUI) * 1000 Int Horizont. Bathtubcurve

10 Est DJpp (mUI) * 1000 Int Horizont. Bathtubcurve

150

11 VSlope bottom (mV/Q) *100 signed int Vertical Bathtubcurve

12 VSlope top (mV/Q) *100 Signed int Vertical Bathtubcurve

13 X-intercept
bottom

(Q) *100 Signed int Vertical Bathtubcurve

14 X-intercept top (Q) *100 Signed int Vertical Bathtubcurve

15 R-squared fit
bottom

Int * 100 int Vertical Bathtubcurve

16 R-squared fit
top

Int * 100 int Vertical Bathtubcurve

17 Est RJrms
bottom

(mV) * 1000 Int Vertical Bathtubcurve

18 Est RJrms top (mV) * 1000 Int Vertical Bathtubcurve

Summary get, serdes index, value types: I*

Example, get: 0/1 PP_EYEINFO [0] 500 332 1969 -1843 951 691 87 98 50792 54253 142271 2296

-2270 1040 988 100 100 22964 22700

Note: Added in Release 57.3

PP_EYEREAD ​[serdes,column] xres yres valid_cols values*

Explanation Exclusive to CFP4 and QSFP28 interfaces on M1CFP4QSFP28CXP. Read a single

column of a measured BER eye on a 25G serdes. Every readout also returns the

resolution (x,y) and the number of valid columns (used to facilitate reading out the

eye while it is being measured). Note that the columns of the eye-data will be

measured in the order: xres-1, xres-2, xres-3…..0. The values show the number of

bit errors measured out of a total of 1M bits at each of the individual sampling

points (x=timeaxis, y = 0/1 threshold).

Parameters serdes:​ integer, the serdes sub-index (0..3).

column: ​ ​integer, the column sub-index (0..255)

xres:​ integer, reserved for future expansion.

151

Summary set/get, serdes index, value types: B, B*

Example, get: 0/1 PP_EYEREAD [1,4] 9 7 9 501254 456321 65 0 187 18704 450387

Note: Added in Release 57.3

PP_PHYTXEQ ​[serdes] preemph attn postemph

Explanation Exclusive to CFP4 and QSFP28 interfaces on M1CFP4QSFP28CXP. Control and

monitor the equalizer settings of the on-board PHY in the transmission direction

(towards the transceiver cage).

Parameters serdes:​ integer, the serdes sub-index (0..3).

preemph:​ ​integer, preemphasis, (-7..15). Default = 0 = neutral

attn:​ integer, attenuation (0..31). Default = 0 = full power

postemph:​ integer, postemphasis (-31..31). Default = 0 = neutral

The absolute values of the three equalizer parameters (pre, attn and post) must be

<= 32. So {-7 10 15} is OK, but {-8 10 15} is invalid and will be rejected by the server

Summary set/get, serdes index, value types: B, B*

Example, get: 0/1 PP_PHYTXEQ [1] -1 10 12

Note: Added in Release 57.3

PP_PHYRETUNE ​[serdes] dummy

Explanation Exclusive to CFP4 and QSFP28 interfaces on M1CFP4QSFP28CXP. Trigger a new

retuning of the receive equalizer on the PHY for one of the 25G serdes. Useful if e.g.

a direct attached copper cable or loop transceiver does not go into sync after

insertion. Note that the retuning will cause disruption of the traffic on all serdes.

Parameters serdes:​ integer, the serdes sub-index (0..3).

dummy:​ ​byte, reserved for future improvements

152

Note: In R.57.3, PHYRETUNE will retune ALL serdes, not just the one selected.

Summary set, serdes index, value types: B

Example, set: 0/1 PP_PHYRETUNE [1] 1

Note: Added in Release 57.3

PP_PHYAUTOTUNE ​[serdes] onoff

Explanation Exclusive to CFP4 and QSFP28 interfaces on M1CFP4QSFP28CXP. Enable or disable

the automatic receive PHY retuning (see PP_PHYRETUNE), which is performed on

the 25G interfaces as soon as a signal is detected by the transceiver. Useful if a bad

signal causes the PHY to continuously retune or if for some other reason it is

preferable to use manual retuning (PP_PHYRETUNE).

Parameters serdes:​ integer, the serdes sub-index (0..3).

onoff:​ ​byte, enable (1) or disable (0) automatic receive PHY retuning. Default is

enabled (1)

Note: In R.57.3, PHYAUTOTUNE affects ALL serdes, not just the one selected.

Summary set/get, serdes index, value types: B

Example, set: 0/1 PP_PHYAUTOTUNE [0] 1

Note: Added in Release 57.3

153

