State of the art and requirements for the new WRS-4

Maciej Lipinski
CERN

New WRS-4 Workshop
2020-06-26
Setting requirements for the WRS-4

1. Analyse input from WR community (wr-dev list and 10th Workshop)
2. Discuss with CERN IT the main features of L2 Ethernet switches at CERN
3. Analyse and compare features of popular switches & time providers, focus:
 a. Power supply
 b. Fans
 c. Physical interfaces
 d. Price
4. Estimate future needs in terms of FPGA resources
Basic principles for setting the requirements

- Allow open source (minimise vendor-locking)
- Use standards if/when possible
- Address inputs from WR community
- Adjust to current trends for L2 switches (and time providers)
- Be modular/extensible
- Provide drop-in replacement for WRS-3
 (min 18 x 1Gb ports, RJ45 management, 10MHz and 1PPS in/out)
- Ensure reasonable price
Main areas of requirements

● **Hardware features and interfaces (excluding main board)**
 ○ Data ports
 ○ Management I/Fs
 ○ Clocking I/Fs
 ○ Power supply
 ○ Fans
 ○ Enclosure
 ○ Extension interfaces

● **Main board (PCB)**
 ○ CPU
 ○ FPGA
 ○ Clocking circuitry

● **Gateware**

● **Software**

- **Power supplies / fans in a device can be:**
 - **redundant**: there is hot-spare component (N+1), if one components fails, the spare allows to maintain operation of the device
 - **hot-swappable**: in case of redundant components, it is possible to replace one component during operation of the device
 - **standard**: the connector/manage/diagnostics are standardized and so the components can be purchased from different vendors
Input from WR community - highlights
Details in section 2 in “WRS-4 Main Board” and section 3 in “Study on hardware features”

- **Hardware features and interfaces (excluding main board)**
 - Data ports: min 18 ports, ideally more, 1 & 10Gb, min 2 ports with 10Gb
 - Management I/Fs:
 - Clocking I/Fs:
 - Power supply:
 - Fans:
 - Enclosure:
 - Extension I/F:

- **Main board (PCB)**
 - CPU:
 - FPGA:
 - Clocking circuitry:

- **Gateware**
- **Software**
Input from WR community - highlights
Details in section 2 in “WRS-4 Main Board” and section 3 in “Study on hardware features”

● Hardware features and interfaces (excluding main board)
 ○ Data ports: min 18 ports, ideally more, 1 & 10Gb, min 2 ports with 10Gb
 ○ Management I/Fs: SFP & Ethernet RJ45, UART RJ45, mini USB type B, RS232, power button, OLED/LCD, location LED
 ○ Clocking I/Fs:
 ○ Power supply:
 ○ Fans:
 ○ Enclosure:
 ○ Extension I/F:

● Main board (PCB)
 ○ CPU:
 ○ FPGA:
 ○ Clocking circuitry:

● Gateware
● Software
Input from WR community - highlights

Details in section 2 in “WRS-4 Main Board” and section 3 in “Study on hardware features”

- **Hardware features and interfaces (excluding main board)**
 - **Data ports:** min 18 ports, ideally more, 1 & 10Gb, min 2 ports with 10Gb
 - **Management I/Fs:** SFP & Ethernet RJ45, UART RJ45, mini USB type B, RS232, power button, OLED/LCD, location LED
 - **Clocking I/Fs:** 1PPS in/out, 10MHz in/out, AUX in/out, Abscal out
 - **Power supply:**
 - **Fans:**
 - **Enclosure:**
 - **Extension I/F:**

- **Main board (PCB)**
 - **CPU:**
 - **FPGA:**
 - **Clocking circuitry:**

- **Gateware**
- **Software**
Input from WR community - highlights
Details in section 2 in “WRS-4 Main Board” and section 3 in “Study on hardware features”

● Hardware features and interfaces (excluding main board)
 ○ Data ports: min 18 ports, ideally more, 1 & 10Gb, min 2 ports with 10Gb
 ○ Management I/Fs: SFP & Ethernet RJ45, UART RJ45, mini USB type B, RS232, power button, OLED/LCD, location LED
 ○ Clocking I/Fs: 1PPS in/out, 10MHz in/out, AUX in/out, Abscal out
 ○ Power supply: redundant, hot-swappable (optional), sufficient current for DWDM, optimal air flow direction, standard
 ○ Fans:
 ○ Enclosure:
 ○ Extension I/F:

● Main board (PCB)
 ○ CPU:
 ○ FPGA:
 ○ Clocking circuitry:

● Gateware
● Software
Input from WR community - highlights

Details in section 2 in “WRS-4 Main Board” and section 3 in “Study on hardware features”

- **Hardware features and interfaces (excluding main board)**
 - **Data ports:** min 18 ports, ideally more, 1 & 10Gb, min 2 ports with 10Gb
 - **Management I/Fs:** SFP & Ethernet RJ45, UART RJ45, mini USB type B, RS232, power button, OLED/LCD, location LED
 - **Clocking I/Fs:** 1PPS in/out, 10MHz in/out, AUX in/out, Abscal out
 - **Power supply:** redundant, hot-swappable (optional), sufficient current for DWDM, optimal air flow direction, standard
 - **Fans:** redundant, hot-swappable, changeable air-flow, advanced control.diag, consider fanless
 - **Enclosure:**
 - **Extension I/F:**

- **Main board (PCB)**
 - **CPU:**
 - **FPGA:**
 - **Clocking circuitry:**

- **Gateware**

- **Software**
Input from WR community - highlights

Details in section 2 in “WRS-4 Main Board” and section 3 in “Study on hardware features”

- **Hardware features and interfaces (excluding main board)**
 - **Data ports:** min 18 ports, ideally more, 1 & 10Gb, min 2 ports with 10Gb
 - **Management I/Fs:** SFP & Ethernet RJ45, UART RJ45, mini USB type B, RS232, power button, OLED/LCD, location LED
 - **Clocking I/Fs:** 1PPS in/out, 10MHz in/out, AUX in/out, Abscal out
 - **Power supply:** redundant, hot-swappable (optional), sufficient current for DWDM, optimal air flow direction, standard
 - **Fans:** redundant, hot-swappable, changeable air-flow, advanced control/diag, consider fanless
 - **Enclosure:** 1U rack size
 - **Extension I/F:**

- **Main board (PCB)**
 - **CPU:**
 - **FPGA:**
 - **Clocking circuitry:**

- **Gateware**

- **Software**
Input from WR community - highlights

Details in section 2 in “WRS-4 Main Board” and section 3 in “Study on hardware features”

- **Hardware features and interfaces (excluding main board)**
 - **Data ports:** min 18 ports, ideally more, 1 & 10Gb, min 2 ports with 10Gb
 - **Management I/Fs:** SFP & Ethernet RJ45, UART RJ45, mini USB type B, RS232, power button, OLED/LCD, location LED
 - **Clocking I/Fs:** 1PPS in/out, 10MHz in/out, AUX in/out, Abscal out
 - **Power supply:** redundant, hot-swappable (optional), sufficient current for DWDM, optimal air flow direction, standard
 - **Fans:** redundant, hot-swappable, changeable air-flow, advanced control/diag, consider fanless
 - **Enclosure:** 1U rack size
 - **Extension I/F:** internal connector for extension module (e.g. oscillator board, DDS board for LpGBT)

- **Main board (PCB)**
 - **CPU:**
 - **FPGA:**
 - **Clocking circuitry:**

- **Gateware**

- **Software**

- **LpGBT:**
 - Project called “Low Power GigaBit Transceiver”
 - provides LpGBT ASIC - a radiation tolerant serializer/deserializer ASIC
 - provides LpGBT FPGA - FPGA cores for the non-rad-tol back-end counterpart of the ASIC
 - offers a set of encoding/decoding schemas for transfer of high-bandwidth data
 - allows transferring reference frequency (clock signal)

The new WR switch could be used as the no-rad-tol back-end for distribution of data and clock reference to the radiation areas.
Input from WR community - highlights

Details in section 2 in “WRS-4 Main Board” and section 3 in “Study on hardware features”

● Hardware features and interfaces (excluding main board)
 ○ Data ports: min 18 ports, ideally more, 1 & 10Gb, min 2 ports with 10Gb
 ○ Management I/Fs: SFP & Ethernet RJ45, UART RJ45, mini USB type B, RS232, power button, OLED/LCD, location LED
 ○ Clocking I/Fs: 1PPS in/out, 10MHz in/out, AUX in/out, Abscal out
 ○ Power supply: redundant, hot-swappable (optional), sufficient current for DWDM, optimal air flow direction, standard
 ○ Fans: redundant, hot-swappable, changeable air-flow, advanced control/diag, consider fanless
 ○ Enclosure: 1U rack size
 ○ Extension I/F: internal connector for extension module (e.g. oscillator board, DDS board for lpGBT)

● Main board (PCB)
 ○ CPU: at least ARM dual core with 1.2GHz with DDR4, QSPI, SD, eMMC
 ○ FPGA:
 ○ Clocking circuitry:

● Gateware
● Software
Input from WR community - highlights

Details in section 2 in “WRS-4 Main Board” and section 3 in “Study on hardware features”

- **Hardware features and interfaces (excluding main board)**
 - Data ports: min 18 ports, ideally more, 1 & 10Gb, min 2 ports with 10Gb
 - Management I/Fs: SFP & Ethernet RJ45, UART RJ45, mini USB type B, RS232, power button, OLED/LCD, location LED
 - Clocking I/Fs: 1PPS in/out, 10MHz in/out, AUX in/out, Abscal out
 - Power supply: redundant, hot-swappable (optional), sufficient current for DWDM, optimal air flow direction, standard
 - Fans: redundant, hot-swappable, changeable air-flow, advanced control/diag, consider fanless
 - Enclosure: 1U rack size
 - Extension I/F: internal connector for extension module (e.g. oscillator board, DDS board for lpGBT)

- **Main board (PCB)**
 - CPU: at least ARM dual core with 1.2GHz with DDR4, QSPI, SD, eMMC
 - FPGA: overdimension wrt. resources

- **Gateware**
- **Software**
Input from WR community - highlights

Details in section 2 in “WRS-4 Main Board” and section 3 in “Study on hardware features”

● Hardware features and interfaces (excluding main board)
 ○ Data ports: min 18 ports, ideally more, 1 & 10Gb, min 2 ports with 10Gb
 ○ Management I/Fs: SFP & Ethernet RJ45, UART RJ45, mini USB type B, RS232, power button, OLED/LCD, location LED
 ○ Clocking I/Fs: 1PPS in/out, 10MHz in/out, AUX in/out, Abscal out
 ○ Power supply: redundant, hot-swappable (optional), sufficient current for DWDM, optimal air flow direction, standard
 ○ Fans: redundant, hot-swappable, changeable air-flow, advanced control/diag, consider fanless
 ○ Enclosure: 1U rack size
 ○ Extension I/F: internal connector for extension module (e.g. oscillator board, DDS board for lpGBT)

● Main board (PCB)
 ○ CPU: at least ARM dual core with 1.2GHz with DDR4, QSPI, SD, eMMC
 ○ FPGA: overdimension wrt. resources,
 ○ Clocking circuitry: VCXOs with low phase, allow extensions, include LJD board improvements, 10 & 5 MHz inputs to GM

● Gateware

● Software
Features of L2 switches and time providers

Details in section 2 in "Study on hardware features"

Power Supply:
- **Redundancy**: all switches
- **Rear location**: all switches
- **Hot-swappable**: majority of switches
- **Internal fan**: majority of switches, airflow direction inline with enclosure fan
- **Standard**: none of switches

Fans:
Only few switches were fanless. For the switches with fans:
- **Redundancy**: all switches 2 or more fans
- **Fixed**: few switches, fans located in the right part of the device
- **Hot-swappable**: majority of switches, located in the rear of the device
- **Airflow direction**: all allow different direction as a function of part number chosen
- **Standard**: none of switches
Features of L2 switches and time providers
Details in section 2 in “Study on hardware features”

Interfaces:

- Female USB type A - very popular for firmware or configuration update
- Ethernet RJ45 - the most popular for serial communication
- Mini USB and USB C - also used for serial communication
- Ethernet RJ45 port - the most common for management
- SFP port - also used for management
- Reset button - commonly in the front panel interfaces.
- Power on/off button - not present
- LCD screen - not present in switches, present in time providers
- Timing connectors - in few switches, different types (SMA, SMB, BNC)
Discussion with CERN IT

Notes available here

- There is no standard for power supplies/fans/management interfaces
- The power supplies are bought for a given vendor and for a given model
- Standardized power supplies are available for servers
- For most of the removable fans, one can choose the direction of airflow
- For non-removable fans, typically the airflow is front-to-side or side-to-side
- For cooling PHYs/SFPs in front panel, the best airflow is front-to-back
- Most common airflow in data centers: front to back
- Management interfaces:
 - Serial communication: miniUSB or RJ45, RS232 connector is not used in new switches (only old)
 - USB: in many switches, there is a USB connector used to update firmware (upgrade or recovery)
- Most switches have small reset button in front, no power reset
Choice of FPGA

- Considered Xilinx Zynq/Kintex and Intel Arria 10
- Worked closely with Avnet (Xilinx) and Intel for almost 1 year (March 2019 to February 2020)
- With the help of CERN procurement, we negotiated very competitive prices from both

<table>
<thead>
<tr>
<th>Xilinx Zynq Ultrascale+</th>
<th>Intel Arria 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Extensive experience at CERN/HT & 7Sols</td>
<td>- Little experience</td>
</tr>
<tr>
<td>- Cortex-A53 is 64bit – no potential problems with end of Linux support for 32bit</td>
<td>- Cortex-A9 is 32bit – potential problems with end of Linux support for 32bit</td>
</tr>
<tr>
<td>- Support offered</td>
<td>- Support offered</td>
</tr>
<tr>
<td>- LpGBT core was tested on Kintex Ultrascale (GTH)</td>
<td></td>
</tr>
<tr>
<td>- Better price</td>
<td></td>
</tr>
</tbody>
</table>

Final choice: **Xilinx Zynq Ultrascale+ XCZU17EG-1FFVC1760E** at a lower price* than the Virtex-6 XC6VLX240T used in the current WRS-3

*The final step
Estimation of required FPGA resources

1. Estimation of resources needed for 18-port 10GbE switch (see WRS-v4-resource-utilization.pdf):
 a. HDL of WRS-3 was ported to the candidate FPGA: Xilinx Ultrascale+
 b. All redundancy features (not in release) were instantiated/enabled
 c. 10GbE PHYs were generated and data-paths extended accordingly
 d. Result: 210k LUT, 198k FF, 517 BRAM (post-implementation report)

2. Criteria for new FPGA choice:
 The above worst case scenario should take less than 70% of FPGA resources (ideally 50-60%).

3. Estimated required resources:
 350k LUTs, 600k FFs and 860 BRAM blocks and minimum 18 ports (min 10GbE)
Summary

- Inputs described in this presentation were used to prepare two documents:
 - “Study on the new hardware features for the WRS-4”
 - “Study on the WRS-4 main board (Hardware Architecture)”
- The documents will be presented in the next two presentations
Summary

- Inputs described in this presentation were used to prepare two documents:
 - “Study on the new hardware features for the WRS-4”
 - “Study on the WRS-4 main board (Hardware Architecture)”
- The documents will be presented in the next two presentations

Questions?