

[image: C:\Material Proyectos\Empresa -Nueva Version\Imagen Corporativa\logo-750x438-transparent.png]Document: Starting-kit tests
Version: v1.0			Date: 29/04/2019
Requirements
Hardware
· 2x SPECs boards
· 2x FMC-DIOs 5CH TTL A
· 2x SFPs LC
· AXGE-1254-0531 (blue)
· AXGE-3454-0531 (violet)
· 1x LC-LC cable (2m)
· 5x LEMO cable (2m)
· 2x PC Ubuntu 16.04 installed (one of them to run tests)
· 1x PC Ubuntu 18.04 installed

[image:]
Figure 1: Configuration with three PCs
[image:]
Figure 2: Configuration with two PCs
Python and modules
To execute the tests, it is necessary to install Python and some modules. You need to run the following commands:
· sudo apt-get install python3
· sudo apt-get install python3-pip
· sudo python3 -m pip install paramiko
· sudo python3 -m pip install configparser
New user
It is necessary to create a new user with root permissions, so you should execute the next command:
· adduser “username”
After to create the user you need add the next lines to the file /etc/sudoers:
“username” ALL=(ALL:ALL) ALL
[bookmark: _GoBack]“username” ALL=NOPASSWD:ALL
Load drivers
The drivers must be loaded on both computers. To load the drivers, you should execute the next python file and enter de username and password:
· ./loadDriver.py “hostname1 or IP”
· ./loadDriver.py “hostname2 or IP”
Tests
Configuration file
The tests need a configuration file to work because execute some commands by SSH, this file is called “configuration.cfg” and it has all the necessary parameters such as:
· hostname1: Is the name or IP of the computer 1
· username1: Username of the computer 1
· password1: Password of PC1(not necessary if you share RSA public key)
· busIdSpec1: Is the ID of the PCIe slot given by your motherboard of the computer 1 and you can get it executing the following: lspci | grep CERN
· interfaceName1: Is the name of the spec interface on the computer 1
· ipWR1: IP that you want to set to spec interface on the computer 1
· hostname2: Is the name or IP of the computer 2
· username2: Username of the computer 2
· password2: Password of PC2(not necessary if you share RSA public key)
· busIdSpec2: Is the ID of the PCIe slot given by your motherboard of the computer 2
· interfaceName2: Is the name of the spec interface on the computer 2
· ipWR2: IP that you want to set to spec interface on the computer 2

For reasons of security, you can leave the passwords fields empty and to create the SSH keys sharing the public key doing the following:
 Create the SSH keys in the client computer:
· ssh-keygen -t rsa
Copy the public key in the remote computer:
· ssh-copy-id user@123.45.69.56
In some cases, you may have this error on the client computer “sign_and_send_pubkey: signing failed: agent refused operation”. Run the command ssh-add on the client computer and will add the SSH key to the agent.
[image:]
Figure 3: Configuration file
Test NIC
Verify the correct operation of the Network Interface Core. This test configures the IPs on both computers and measure the maximum bandwidth between them using the tool iperf. You can execute the test by doing this.
· ./testNIC.py
[image:]
Figure 4: Example of NIC test
Test White Rabbit
This test configures the board with the purple SFP as master and the other board as slave. After configuring the modes, check that the slave board is in THACK_PHASE. To run this test, you should execute the following:
· ./testWR.py
[image:]
Figure 5: Example of WR test
Test DIO
Test DIO, is a test to verify the inputs and outputs of the boards by pulse generation and comparing timestamps on both boards. The result of each channel is independent. You should run this test by doing the following:
· ./testDIO.py
[image:]
Figure 6: Example DIO test
Test Advanced DIO
The test advanced DIO, verify the correct reception and sending of packages, this test used the tools wr-dio-agent and wr-dio-ruler to generate pulse on a remote board. To run this test, you should just execute:
· ./testAdvDIO.py
[image:]
Figure 7: Example test Advanced DIO

4

image3.png
1 [config]
2 hostName1 172.17.5.196
3 userNamel test

4 password1

5 busIdSpeci = ©x01

6 interfaceNamel wre

7fphR1 = 192.168.2.100

8 hostName2 = 172.17.5.242
9 userName2 = test

16 password2

11 busTdSpec2 = 0x01

12 1pWR2 = 192.168.2.200
13 interfaceName2 = wro

image4.png
’$./testNIC.py
Executing NIC test

Configuration ip interface: ok in host: 172.17.5.196
Configuration ip interface: ok in host: 172.17.5.242

Client connecting to 192.168.2.260, TCP port 5001
TCP window size: 85.0 KByte (default)

[3] local 192.168.2.100 port 42004 connected with 192.168.2.200 port 5001
[ID] Interval Transfer Bandwidth
[3] 0.6- 4.1 sec 12.8 MBytes 26.4 Mbits/sec

Test iperf: ok
Test NIC: successful

image5.png
’$./testuR.py
Executing WR test
Put mode slave : ok, host: 172.17.5.242

Put mode master : ok, host: 172.17.5.196
Track Phase: ok
est WR: successful

image6.png
’$./testDIO0.py
Executing DIO test

Channel © : ok in host: 172.1]
Channel 1 : ok in host: 172.1]

7.5.196 and host: 172.17.5.242
7.5.
Channel 2 : ok in host: 172.17.5.
7.5.
7.5.

and host: 172.17.5.242
and host: 172.17.5.242
and host: 172.17.5.242
196 and host: 172.17.5.242

196
196
196
196

Channel 3 : ok in host: 172.1:
Channel 4 : ok in host: 172.1:
Test DIO: successful

image7.png
’$./testAdvDIO. py
Executing advanced DIO test
Test advanced DIO: successful

image1.png
wr0

PC2

Ubuntu 18.04

Ethernet switch

PC3

Tests

Ubuntu 16.04

image2.png
PC2

wr0 Ubuntu 16.04 wr0 Ubuntu 18.04

Ethernet switch <—j

image8.png
SENEN

Solutions

