SPEC7 & HPSEC
When Low Phase Noise matters

11th WR online workshop, October 6-8, 2021
SPEC7[1]

[1] https://ohwr.org/project/spec7/wikis/home

photograph: Gino Hoft
SPEC7 Features

• Zynq-7000 XC7Z035 FPGA

• Processing System (PS)

 - Dual-Core ARM
 - 2-lane PCIe Gen2 (1GB/s)
 - Ethernet 10/100/1000 Mbps
 - USB2.0 (type-A)
 - mini USB (type B) => Dual UART (PS/PL) interface
 - micro SD slot
 - 512 Mb QSPI (boot and configure PL)
 - 2x 1GB DDR3
 - EUI-48 (PS MAC)

• Programmable Logic (PL)

 - WR Low Phase Noise VCXO’s and DAC
 - 10 MHz 1 ppm TCXO (IEEE1588 v2.1 J.5.6.1)
 - SFP cage
 - FMC (LPC connected)
 - EUI-48 (WR MAC)
 - 64 Kb EEPROM
 - Bulls-Eye connector
 - 2x Fan interface (FMC & FPGA)
SPEC7 PL configuration[2]

1. Tandem PROM (from QSPI)
 stage 1: spec7_tandem_boot
 stage 2: spec7_ref_design

2. UBoot => load bitfile to DDR from:
 USB
 Ethernet
 microSD-Card
 QSPI

 OR

 PCIe write bitfile

3. UBoot
 Configure PL from DDR
 Update QSPI from DDR

 …and of course also PL configuration via JTAG.

SPEC7 Tandem Boot from QSPI

Table 3-72: Tandem PROM Bitstream Load Steps

<table>
<thead>
<tr>
<th>Specification</th>
<th>PCIe</th>
<th>Size</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>spec7_tandem_boot</td>
<td>memory BAR0</td>
<td>1MB</td>
<td>Reserve the memory space for enumeration < 100 ms</td>
</tr>
<tr>
<td>(pcie_7x) 1st stage</td>
<td>memory BAR2</td>
<td>64KB</td>
<td></td>
</tr>
<tr>
<td></td>
<td>memory BAR4</td>
<td>16MB</td>
<td></td>
</tr>
<tr>
<td>spec7_ref_design</td>
<td>XDMA AXI Lite Master</td>
<td>1MB</td>
<td>WR Load DPRAM, WR UART, UART to UBOOT</td>
</tr>
<tr>
<td>(XDMA) 2nd stage</td>
<td>XDMA AXI-Stream</td>
<td>64KB</td>
<td>DMA</td>
</tr>
<tr>
<td></td>
<td>XDMA DMA Bypass</td>
<td>16MB</td>
<td>Load bitfile to DDR</td>
</tr>
</tbody>
</table>

Low Phase Noise: PCB Layout!

- Implement “island of silence” (GND plane cutouts)

Low Phase Noise
WR VCXOs:
125.000 MHz

PLL

124.992 MHZ
Low Phase Noise: Use SMPS with integrated MOSFET & Inductors

- Keep high current loops as small as possible to minimize EMI

1V35, 1V35, 1V8, 2V5@4Amp
12V => 3V3@10Amp
Low Phase Noise: FPGA Core
Supply VCCINT via low noise LDO

VCCINT 1V0@4Amp Via LDO

1V35 PreCore
Low Phase Noise:
Use differential Signaling

VCXOs single ended LVCMOS
Abracon:
ABLNO-V125.000MHZ

VCXOs differential LVPECL
Crystek:
CVPD-922-125.000

Mix products 7.6 KHz DMTD @ -90dBm
SPEC7 Phase Noise:

10 MHz Phase Noise (*)

-106 [dBc/Hz] @ 10Hz

Connected to another SPEC7(**)

(*) 10 MHz generated on FPGA; no re-clocking
(**) SPEC7 in mode master running on clean external 125MHz clock
SPEC7 WR node

Default use

- On board VCXOs

 Crystek CVPD-922

Phase Noise @ 100 MHz:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Phase Noise (dBc/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz</td>
<td>-85 Typical</td>
</tr>
<tr>
<td>100 Hz</td>
<td>-115 Typical</td>
</tr>
<tr>
<td>1 kHz</td>
<td>-145 Typical</td>
</tr>
<tr>
<td>10 kHz</td>
<td>-155 Typical</td>
</tr>
<tr>
<td>100 kHz</td>
<td>-160 Typical</td>
</tr>
<tr>
<td>1 MHz</td>
<td>-162 Typical</td>
</tr>
<tr>
<td>10 MHz</td>
<td>-162 Typical</td>
</tr>
</tbody>
</table>

(*) Phase noise figure is 20 dB higher when comparing 100 MHz oscillator with a 10MHz oscillator.
SPEC7 WR node

Default use

- On board VCXOs
 - Crystek CVPD-922

Phase Noise @ 100 MHz: (*)

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Phase Noise (dBc/Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 Hz</td>
<td>-85 Typical</td>
</tr>
<tr>
<td>100 Hz</td>
<td>-115 Typical</td>
</tr>
<tr>
<td>1 kHz</td>
<td>-145 Typical</td>
</tr>
<tr>
<td>10 kHz</td>
<td>-155 Typical</td>
</tr>
<tr>
<td>100 kHz</td>
<td>-160 Typical</td>
</tr>
<tr>
<td>1 MHz</td>
<td>-162 Typical</td>
</tr>
<tr>
<td>10 MHz</td>
<td>-162 Typical</td>
</tr>
</tbody>
</table>

(*) Phase noise figure is 20 dB higher when comparing 100 MHz oscillator with a 10MHz oscillator.
SPEC7 WR node
Using External High Precision Ultra Stable OCXO

- Morion MV336
SPEC7 WR node
Using External High Precision Ultra Stable OCXO

- Don’t waste the excellent Phase Noise figure!
- Let WR control the phase of the 10 MHz OCXO

- Currently the 10 MHz OCXO has 25 arbitrary phase positions w.r.t. 125 MHz WR Clk
- **Need a hardware handle to PPSI to** shift 10MHz OCXO until phase aligned with *THE* 1 WR RefClk phase position.
HPSEC7[4] High Precision Secondary External Clock

- High Precision Ultra Stable Oscillator (Morion MV336)
- FMC to DAC LVDS
- SPEC7
- Timing signals

[4] https://ohwr.org/project/hpsec.wikis/home
HPSEC Features[4]

- Ultra Stable 10MHz Oven Controlled Crystal Oscillator (OCXO)
 - Morion MV336
 - Separate 24V input for UPS
 - 3x 10 MHz outputs
 - 1x 100 MHz output
 - 1x Arbitrary frequency output
 - 1x input for 1GHz external timescale
 - re-clocking FlipFlops

HPSEC Phase Noise:

Phase Noise 10 MHz (*)

-135 [dBc/Hz] @ 10Hz
Connected to WR LowJitter switch

(*) 10 MHz from OCXO (no re-clocking!)
Funding information and Acknowledgements:

• This project 17IND14 WRITE has received funding from the EMPIR programme co-financed by the Participating States and from the European Union's Horizon 2020 research and innovation programme.

• People involved:

 - Guido Visser, Peter Jansweijer: hardware design
 - Charles Ietswaard: PCB layout
 - Pascal Bos: PCIe interface, PS booting and driver software design
 - Nayib Boukadida: Absolute Calibration
 - Ton Damen: Driver software
 - Kenny Lam: Heatsink design
 - Wim Gotink, Gino Hoft: Mechanical design

 - Mamta Ramendra Shukla, Juan David Gonzalez Cobas: PCIe interface, PS booting and driver software design
 - Grzegorz Daniluk, Tomasz Wlostowski: wrpc-v5 support

 - Javier David Garcia Lasheras: PCIe interface, PS booting and driver software design
Soon: SPEC7 v3 with improved heatsink

(*) This picture is still SPEC7 version 2; version 3 with heatsink is being produced.

Low Phase Noise: Use SMPS with integrated MOSFET & Inductors

PRODUCT DISCONTINUANCE NOTIFICATION
PDN 2133

due to Intel decision to exit the Enpirion power business.

Apparently Intel is an unreliable partner!
Summary

• Low phase noise possible with careful design

• We need a PPSI handle to shift external OCXO until it is aligned with the proper 125MHz WR Phase Aligned Reference clock.

• Fundamental discussion on lifecycle of components
Thank you
Backup Slides
HPSEC MDEV:

Modified Allan Deviation (Mod $\sigma_y(t)$)

- Goal $1 \times 10^{-13} @ 100s$
- $5.6 \times 10^{-15} @ 100s$

<table>
<thead>
<tr>
<th>Tau</th>
<th>Sigma(Tau)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td>1.73E-12</td>
</tr>
<tr>
<td>2s</td>
<td>4.16E-13</td>
</tr>
<tr>
<td>4s</td>
<td>1.6E-13</td>
</tr>
<tr>
<td>8s</td>
<td>1.8E-14</td>
</tr>
<tr>
<td>16s</td>
<td>4.51E-14</td>
</tr>
<tr>
<td>32s</td>
<td>2.19E-14</td>
</tr>
<tr>
<td>64s</td>
<td>1.19E-14</td>
</tr>
<tr>
<td>100s</td>
<td>2.57E-14</td>
</tr>
<tr>
<td>200s</td>
<td>5.53E-15</td>
</tr>
<tr>
<td>400s</td>
<td>1.18E-15</td>
</tr>
<tr>
<td>700s</td>
<td>1.5E-15</td>
</tr>
<tr>
<td>1000s</td>
<td>6.9E-16</td>
</tr>
<tr>
<td>1500s</td>
<td>5.48E-16</td>
</tr>
<tr>
<td>2000s</td>
<td>2.65E-16</td>
</tr>
<tr>
<td>4000s</td>
<td>1.53E-16</td>
</tr>
<tr>
<td>8000s</td>
<td>8.1E-17</td>
</tr>
<tr>
<td>10000s</td>
<td>7.08E-17</td>
</tr>
<tr>
<td>20000s</td>
<td>5.26E-17</td>
</tr>
<tr>
<td>40000s</td>
<td>4.11E-17</td>
</tr>
<tr>
<td>80000s</td>
<td>2.09E-17</td>
</tr>
<tr>
<td>100000s</td>
<td>1.86E-17</td>
</tr>
<tr>
<td>200000s</td>
<td>2.51E-17</td>
</tr>
</tbody>
</table>

Trace: 10 MHz HPSEC
Notes: OEXO REF On WR JS 3W
Input Freq: 10 MHz
ENBW: 50 Hz
MDEV at 100s: 5.53E-15
Duration: 14 d
Elapsed: 13d 19h 57m 19s
Acquired: 11950303 pts
Instrument: Microchip 53100A

11th WR online workshop
Peter Jansweijer, Guido Visser

October 6-8, 2021.