Introduction to White Rabbit

Greg Daniluk

CERN

SKA meeting on High Precision Timing and Frequency Transfer
12 March 2020
Outline

1. Introduction
2. Technology
3. Equipment
4. Standardisation
5. Ongoing Work
6. Summary
What is White Rabbit?

- CERN and GSI initiative for control & timing
What is White Rabbit?

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
What is White Rabbit?

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
What is White Rabbit?

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
What is White Rabbit?

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation
 - Deterministic data transfer
What is White Rabbit?

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation
 - Deterministic data transfer
What is White Rabbit?

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation
 - Deterministic data transfer
- Initial specs: links ≤ 10 km & ≤ 2000 nodes
What is White Rabbit?

- CERN and GSI initiative for control & timing
- Based on well-established standards
 - Ethernet (IEEE 802.3)
 - Bridged Local Area Network (IEEE 802.1Q)
 - Precision Time Protocol (IEEE 1588)
- Extends standards to provide
 - Sub-ns synchronisation
 - Deterministic data transfer
- Initial specs: links ≤ 10 km & ≤ 2000 nodes
- Open Source and commercially available
Many users worldwide, including metrology labs...

- CERN and GSI
Many users worldwide, including metrology labs...

- CERN and GSI
- The Large High Altitude Air Shower Observatory
Many users worldwide, including metrology labs...

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
Many users worldwide, including metrology labs...

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
Many users worldwide, including metrology labs...

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- MIKES: Finish National Time Lab
Many users worldwide, including metrology labs...

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)
Many users worldwide, including metrology labs...

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)
- ESA: European Space Agency for Galileo
Many users worldwide, including metrology labs...

- CERN and GSI
- The Large High Altitude Air Shower Observatory
- KM3NET: Cubic Kilometre Neutrino Telescope
- German Stock Exchange
- Mikes: Finish National Time Lab
- National Time Labs in Netherlands (VSL), France (LNE-SYRTE), USA (NIST), UK (NPL) and Italy (INRIM)
- ESA: European Space Agency for Galileo

See user page: http://www.ohwr.org/projects/white-rabbit/wiki/WRUUsers
Outline

1. Introduction
2. Technology
3. Equipment
4. Standardisation
5. Ongoing Work
6. Summary
White Rabbit technology - sub-ns synchronisation

Based on

- Gigabit Ethernet over fibre
- IEEE 1588 Precision Time Protocol
White Rabbit technology - sub-ns synchronisation

Based on
- Gigabit Ethernet over fibre
- IEEE 1588 Precision Time Protocol

Enhanced with
- Layer 1 syntonisation
- Digital Dual Mixer Time Difference (DDMTD)
- Link delay model
Ethernet network in a nutshell

Ethernet Switch

PC 1
MAC: 00-1B-C5-00-00-01

PC 2
MAC: 00-1B-C5-00-00-02

PC 3
MAC: 00-1B-C5-00-00-03

D: 00-1B-C5-00-00-02
S: 00-1B-C5-00-00-01
Ethernet network in a nutshell

1. PC1 → PC2
2. Ethernet Switch
3. MAC: 00-1B-C5-00-00-01
4. D: 00-1B-C5-00-00-
5. S: 00-1B-C5-00-00-01
6. MAC: 00-1B-C5-00-00-02
7. MAC: 00-1B-C5-00-00-03
8. PC1 → PC2
9. PC 1: MAC: 00-1B-C5-00-00-01
10. PC 2: MAC: 00-1B-C5-00-00-02
11. PC 3: MAC: 00-1B-C5-00-00-03
Ethernet network in a nutshell

Ethernet Switch

PC1 → PC3

PC1
MAC: 00-1B-C5-00-00-01

PC2
MAC: 00-1B-C5-00-00-02

PC3
MAC: 00-1B-C5-00-00-03

D: 00-1B-C5-00-00-03
S: 00-1B-C5-00-00-01
Ethernet network in a nutshell

Diagram

- **PC 1**: MAC: 00-1B-C5-00-00-01
- **PC 2**: MAC: 00-1B-C5-00-00-02
- **PC 3**: MAC: 00-1B-C5-00-00-03

Ethernet Switch

- Ports 1 to 8

Example Traffic Route

- **Source (S)**: 00-1B-C5-00-00-01
- **Destination (D)**: 00-1B-C5-00-00-02

Greg Daniluk

Introduction to White Rabbit
Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: \(\delta_{ms} = \frac{(t_4 - t_1) - (t_3 - t_2)}{2} \)
 - offset from master: \(OFM = t_2 - (t_1 + \delta_{ms}) \)
Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: \(\delta_{ms} = \frac{(t_4 - t_1) - (t_3 - t_2)}{2} \)
 - offset from master: \(OFM = t_2 - (t_1 + \delta_{ms}) \)
- Hierarchical network
Precision Time Protocol (IEEE 1588)

- Frame-based synchronisation protocol
- Simple calculations:
 - link delay: $\delta_{ms} = \frac{(t_4-t_1)-(t_3-t_2)}{2}$
 - offset from master: $OFM = t_2 - (t_1 + \delta_{ms})$
- Hierarchical network
- Shortcomings:
 - devices have free-running oscillators
 - frequency drift compensation vs. message exchange traffic
 - assumes symmetry of medium
 - timestamps resolution
Layer 1 Syntonisation

- Clock is encoded in the Ethernet carrier and recovered by the receiver chip
- All network devices use the same physical layer clock
- Clock loopback allows phase detection to enhance precision of timestamps
Precise phase measurements in FPGA

WR parameters:
- \(\text{clk}_{\text{in}} = 62.5 \text{ MHz} \)
- \(\text{clk}_{\text{DDMTD}} = 62.496185 \text{ MHz} \) (N=14)
- \(\text{clk}_{\text{out}} = 3.814 \text{ kHz} \)

Theoretical resolution of 0.977 ps
Link delay model

- Correction of RTT for asymmetries
Link delay model

- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion

Sources of asymmetry:

- Fiber (single strand)
 - $\lambda_M = 1490\text{nm}$
 - $\lambda_S = 1310\text{nm}$

Equations:

- RTT = $(t_4 - t_1) - (t_3 - t_2)$

Calibration procedure to find fixed delays and α:

- $\delta_{ms} = 1 + \alpha^2 + \alpha (\text{RTT} - \sum \Delta - \sum \epsilon)$

- $\text{OFM} = t_2 - (t_1 + \delta_{ms} + \Delta_{txm} + \Delta_{rxs} + \epsilon_S)$
Link delay model

- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion
- Link delay model:
 - Fixed delays – FPGA, PCB, SFP
 - Variable delays – fiber:
 \[\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - 1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}} \]
 - Calibration procedure to find fixed delays and \(\alpha \)
Link delay model

- Correction of RTT for asymmetries
- Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion
- Link delay model:
 - **Fixed delays** – FPGA, PCB, SFP
 - **Variable delays** – fiber:
 \[
 \alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} - 1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}
 \]
 - Calibration procedure to find fixed delays and \(\alpha \)
 - Accurate offset from master (OFM):
 \[
 \delta_{ms} = \frac{1+\alpha}{2+\alpha} \left(RTT - \sum \Delta - \sum \epsilon \right)
 \]
 \[
 OFM = t_2 - (t_1 + \delta_{ms} + \Delta_{txm} + \Delta_{rxs} + \epsilon_S)
 \]
Out-of-the-box performance

Stable oscillator

Cesium beam clock

10 MHz 1 PPS

WR Switch (master)

5 km

Oscilloscope

CH1 CH2 CH3 CH4

1 PPS

WR Switch (slave 1)

5 km

WR Switch (slave 2)

5 km

WR Switch (slave 3)
Out-of-the-box performance

Histogram of offsets between master and each slave

Master (CH1)

Slave 1 (CH2)
mean = 161.86 ps
sdev = 5.45 ps

Slave 2 (CH3)
mean = 24.67 ps
sdev = 5.30 ps

Slave 3 (CH4)
mean = -135.25 ps
sdev = 6.14 ps
Management of WR networks: monitoring & config

- White Rabbit is an extension of Ethernet
White Rabbit is an extension of Ethernet

It can be managed using standard protocols and tools:
- Simple Network Management Protocol (SNMP)
- Syslog
- Link Layer Discovery Protocol (LLDP)
- Kerberos-based authentication
White Rabbit is an extension of Ethernet

It can be managed using standard protocols and tools:
- Simple Network Management Protocol (SNMP)
- Syslog
- Link Layer Discovery Protocol (LLDP)
- Kerberos-based authentication

It can be debugged using standard tools:
- Wireshark
- Tcpdump
- Professional Ethernet testers
Outline

1. Introduction
2. Technology
3. Equipment
4. Standardisation
5. Ongoing Work
6. Summary
Typical WR network
WR Switch

- Central element of WR network
- 18 port gigabit Ethernet switch with WR features
- Default optical transceivers: up to 10km, single-mode fiber
- Fully open, commercially available from 4 companies
WR Switch: hardware block diagram

- **Xilinx Virtex6 FPGA**
- **ARM CPU**
- **64MB DDR2**
- **256MB NAND**
- **8MB boot flash**
- **Power supply 12V DC 80W**
- **Cooling FANs**
- **Debug ports**
- **18 SFP cages**
- **Power supply 12V DC 80W**
- **10 MHz in/out**
- **1-PPS in/out**
- **Management ports**
- **Front panel**
- **Back panel**

Greg Daniluk
Introduction to White Rabbit
18/28
WR Node: carriers + mezzanines

- All carrier cards are equipped with a White Rabbit port
- All carrier cards instantiate WR PTP Core
- Mezzanines can use the accurate clock signal and timecode (synchronous sampling clock, trigger time tag, ...)

Greg Daniluk
Introduction to White Rabbit
19/28
WR PTP Core

WR Node Device

WR Node IP Core

Example WR Node Design

SPEC

FPGA

user core

WHISPONE

time

EtherBone

WR PTP core

SFP

Network

FMC-base CARD

WR PTP Core

external oscillators

CLK_FER

CLK_FEM

adjust

EEPROM

PC

source

sink

MAC I/F

pipelined WB Slave I/F

1-PPS Timecode

frequency

timing I/F

control/status pins

Greg Daniluk

Introduction to White Rabbit

20/28
Open and commercially available off-the-shelf

Companies selling White Rabbit:
www.ohwr.org/projects/white-rabbit/wiki/wrcompanies
Outline

1. Introduction
2. Technology
3. Equipment
4. Standardisation
5. Ongoing Work
6. Summary

Greg Daniluk

Introduction to White Rabbit
WR standardisation in IEEE 1588

- IEEE 1588 revision started in 2013 & targeted "...support for synchronisation to better than 1 nanosecond"
- Working Group with 5 sub-committees
- High Accuracy sub-committee
 - Focus on White Rabbit
 - Experts from industry and academia
 - Division of WR into self-contained parts
 - Definition of Optional Features and PTP Profile that allow WR-like implementation and WR performance
- Revised IEEE 1588 approved on 7 Nov 2019
Outline

1. Introduction
2. Technology
3. Equipment
4. Standardisation
5. Ongoing Work
6. Summary
Ongoing work

- Improve accuracy (<10 ps) and jitter (<100 fs)
- New WR Switch hardware
- White Rabbit over 10 Gb Ethernet
- WR PTP Core support for new FPGA families
- Support for building WR applications
Summary

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box
- Open with commercial support
- Standard-based and standard-extending
- Included in the revised IEEE 1588
Summary

- Ethernet-based synchronization
- <1 ns accuracy and <10 ps precision out-of-the-box
- Open with commercial support
- Standard-based and standard-extending
- Included in the revised IEEE 1588

- A versatile solution for general control and data acquisition
- Showcase of technology transfer
Thank you!

WR Project page: http://www.ohwr.org/projects/white-rabbit/wiki
Applications
WR applications in science and beyond

- Time & frequency transfer
- Time-based control
- Precise timestamping
- Trigger distribution
- Fixed-latency data transfer
- Radio-frequency transfer
Time & frequency transfer

- Widely used/evaluated by National Time Labs (5 countries)
- Evaluated by Deutsche Telecom

High Accuracy Time Dissemination
4. Application of Time Transfer Methods and Network Sync Level

ISPCS keynote *Highly Accurate Time Dissemination & Network Synchronisation*, Helmut Imlau, Deutsche Telekom
Time-based control
Time-based control

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Hh:mm:ss:nanoseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID = 1</td>
<td>00:00:10:0000000000</td>
</tr>
<tr>
<td>ID = 2</td>
<td>00:00:10:0000000010</td>
</tr>
<tr>
<td>ID = 3</td>
<td>00:00:10:0000001000</td>
</tr>
</tbody>
</table>

Control Message (CM)
Time-based control

Event ID and Time Information

<table>
<thead>
<tr>
<th>Event ID</th>
<th>Hh:mm:ss:nanoseconds</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID = 1</td>
<td>00:00:10:0000000000</td>
</tr>
<tr>
<td>ID = 2</td>
<td>00:00:10:000000010</td>
</tr>
<tr>
<td>ID = 3</td>
<td>00:00:10:000000100</td>
</tr>
</tbody>
</table>

Control Message (CM)

- **Data Master (Controller)**
- **Magnet SPS**
- **Actuator**
- **Magnet in PS**
- **Sensor**

Timeline

- **Send CM**
 - 00:00:09:999000000

- **Receive CM**
 - 00:00:10:0000000000

- **Execute Events**
 - 00:00:10:000000100

Event Sequence

1. **Tip**
2. **Pause**
3. **Stop Measure**
Time-based control

Event ID	**Hh:mm:ss:nanoseconds**
ID = 1 | 00:00:10:0000000000
ID = 2 | 00:00:10:0000000100
ID = 3 | 00:00:10:0000001000

Control Message (CM)

![Diagram of time-based control](image)
Time-based control - example application

- GSI Helmholtz Centre for Heavy Ion Research in Germany
GSI Helmholtz Centre for Heavy Ion Research in Germany
1-5 ns accuracy and 10 ps precision
Time-based control - example application

- GSI Helmholtz Centre for Heavy Ion Research in Germany
- 1-5 ns accuracy and 10 ps precision
- WR network at GSI:
 - Operational since June 2018: 134 nodes & 32 switches
 - Final: 2000 WR nodes & 300 switches in 5 layers
Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)
Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)
- The most widely used WR application

![Time-to-digital converter (TDC)](image)

![Digitizer](image)
Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos - CNGS
Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)
- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos - CNGS
 - Types of particles - ProtoDUNE
Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)

- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos - CNGS
 - Types of particles - ProtoDUNE
 - Cosmic ray and neutrino detection
Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)

- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos - CNGS
 - Types of particles - ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)

- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos - CNGS
 - Types of particles - ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope
Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)

- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos - CNGS
 - Types of particles - ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope
 - Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy
Precise timestamping

- Association of time with
 - an event
 - a sample (measured value)

- The most widely used WR application
 - Time-of-flight measurement
 - Speed of neutrinos - CNGS
 - Types of particles - ProtoDUNE
 - Cosmic ray and neutrino detection
 - Large High Altitude Air Shower Observatory
 - Cubic Kilometre Neutrino Telescope
 - Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy
 - High Frequency Trade monitoring
 - German Stock Exchange
Trigger distribution

- Trigger pulse
 - Time-to-Digital Converter (TDC)
 - TAI Timestamp: 12:34:56 + 111.5 ns
 - TAI time
 - White Rabbit network
 - Fixed delay (e.g., 300 us)
 - Output timestamp: 12:34:56 + 300,111.5 ns
 - 300 us
 - Programmable pulse generator
 - trigger pulse
 - trigger pulse
Trigger distribution - example applications

LHC trigger distribution to measure beam instabilities - since 2016

OB Observation instrument (OB)
Trigger distribution - example applications

LHC trigger distribution to measure beam instabilities - since 2016

WRTD - White Rabbit Trigger Distribution- to be used for CERN’s Open Analog Signals Information System (OASIS)
Fixed-latency data transfer

Diagram Description:

- **User** sends a word to the FPGA.
- **Timestamp data & transmit** is processed by the FPGA.
- **MAC** processes the data.
- **Ethernet Frame** with **Header** is transmitted with delay **t_{Tx}**.
- **Receive data & delay** is processed in the FPGA.
- **User** receives the word with delay **t_{Rx}**.
- The fixed latency is **$(t_{Tx} + \Delta) - t_{Rx}$**.

Note:

- **t_{Tx}** is the transmit time.
- **t_{Rx}** is the receive time.
- **Δ** represents the fixed latency delay between the transmit and receive times.
Fixed-latency data transfer- example application

Distribution of magnetic field in CERN accelerators

Accelerating RF cavity

$f_{\text{rev}}(t)$

Bending magnet

$B(t)$

Magnets power converter

$I(t)$
Radio-frequency transfer

Feedback frequency (equal to RF input when locked)

RF input

Phase detector → PI control → DDS

Encode packets

125 MHz reference
TAI time

White Rabbit network

Decode packets
Apply control words

125 MHz reference
TAI time

DDS tune

RF output
Radio-frequency transfer

Feedback frequency (equal to RF input when locked)

RF input -> Phase detector -> PI control -> DDS

Encode packets

125 MHz reference TAI time

Address counter -> Waveform lookup table -> Digital to analog converter

Direct digital synthesis (DDS)

Master

White Rabbit network

125 MHz reference TAI time

Decoder packets
Apply control words

DDS

RF output
Radio-frequency transfer - example application

- RF over WR at European Synchrotron Radiation Facility (ESRF)
 - A prototype tested in operation: <10 ps jitter

- RF over WR at CERN
 - A prototype: <100 fs jitter and <10 ps reproducibility over reboots