
Topology Resolution, Redundant Links Handling
and Fast Convergence

in White Rabbit Network
version 0.1

Maciej Lipinski

8th December 2011

1 Introduction

I made some ”research”, the goal was to answer the following question:
Which protocol (if any) can we hack and HW-support so it ful�l ls our requirements regarding convergence time
for redundant topology?

Why do we need that at all? We want to send control messages (turn off LHC and stuff) from a Data Master to
all the devices connected to WR Network in a reliable way. This means that we need to make sure the messages sent
from Data Master are delivered to the Nodes. How can we do that:

� eliminating the loss of messages on the way due to Bit Error Rate (BER) - this is done by Forward Error
Correction (FEC)

� eliminating the break in the communication path between theData Master and Nodes due to element failure
(switch/link/port) - this is done by the means of network redundancy (having many alternative paths)

The above work �ne when the network is in ”stable” state. But they are quite useless (assuming that loosing
Control Messages is not an option) if we loose Control Message(s) during network convergence. In other words, when
a switch/link/port fails and there is a redundant componentavailable the network needs to converge fast enough to
loose no Control Messages.

Assuming that all the Control Messages are encoded with FEC into 4 Ethernet frames and we can loose any 2 of
these frames, the convergence time needs to be faster then the time it takes to transmit/receive single Ethernet Frame
(the failure might happen at any point of frame's reception). This means that the convergence time required is directly
proportional to the Ethernet Frame size. In particular, a Control Message of 500kB is encoded into 4 Ethernet Frames
of 300kB, it takes� 2.3us for 300kB to be transmitted/received. Thus, we need a convergence time in the range of
microseconds !!!

In our vision of using WR for controlling accelerators, the Control Messages are always broadcast from a Data
Master(s) (there can be more) within a group of devices de�ned by a VLAN. This means that having ultra-fast con-
vergence only for the Control traf�c (broadcast) would be suf�cient for our applications. This has the following
advantages:

� The most important: IT IS EASIER !!! this is because...

� The forwarding process is much simpler and faster for broadcast traf�c then for unicast/multicast: we just need
to verify per-VLAN port forwarding con�guration and port state (e.g. RSTP)

� the characteristic of the broadcast traf�c is favorable: wehave the frames in all the switches, so if a link fails
and we switch-over to another link connected to backup switch (within the same VLAN), regardless of the
forwarding decisions up the logic-spanning-tree, the frames are forwarded to the backup switch (in case of
unicast traf�c, the frames are forwarded to the broken link until the routing table entires are modi�ed)

But also disadvantages:

� It feels like a bad hack...

� What if we want to use WR for other application then we currently envision?

� If hacking/extending/HW-supporting a protocol for broadcast, why not put some more effort and do it once and
for all (traf�c)?

The basic Layer 2 Ethernet Network topology resolution protocol is Rapid Spanning Tree Protocol (RSTP). This
protocol is rapid compared to it's predecessor, but not fastenough for some real-time applications (and of course
WR). The best you can get of RSTP is sub-second convergence for some carefully chosen topologies. The need for
something better was recognized long ago and some improvements as well as new protocols are available. There are
also being prepared new solutions (protocols).

2

So, back to the beginning of this chapter: I had a look on RSTP and other alike protocols and solutions in order to:

� See what is currently available and how it works

� Verify whether there is anything performing any close to what we need

� Try to decide which is the best solution for us with regards to:

– performance (the faster the better),

– ”hackability” - how easy it is to HW-support it and/or modifyto achieve required performance and still
stay compatible to the solution being hacked,

– topology and other requirements, i.e.: the requirements ofa given solution need to �t into already existing
WR requirements (if a solution calls for ring a topology, it is rejected because we cannot allow such
topology),

� Ownership: if the solution is proprietary.... it's out.

The rest of the document has the following structure. I �rst describe the �rst-stage overview of technologies
(pre-selection) in which I was having a super�cial look at many solutions in order to choose something seemingly
suitable for further research. Then, I will present more detailed look into the chosen solutions. I was looking into the
way they work and how they could �t into WR. This means that I was also trying to apply them to a (prospective)
”would-be-topology” deployed at CERN for all the accelerators. I include pros and cons and estimated amount of
work/changes needed. During the process of reading, studying and doing nothing, I came with some modi�cations
to the current RTU and SWcore modules which would put some more �exibility, made GSI happier and could allow
software implementation of a couple of presented solutions(why to implement only one, we could try more and see
which is working better....).

When considering different solutions, we need to remember that WR Network is ”special”:

� In a ”normal” Ethernet network, broadcast traf�c is rare. Inother words, the unicast traf�c is supposed to be the
main contributor to the traf�c load. In WR, we are expecting broadcast traf�c to play the main contribution to
the traf�c load (Control Messages).

� In a ”normal” Ethernet, more and more important role is played by the horizontal traf�c (node-to-node) due to
visualization efforts. Therefore, most of the new topologyresolution solutions try to address the problems of
horizontal traf�c limitations introduced by STP. In WR, we are expecting the one-to-many (vertical) traf�c to
play main contribution (Data Master-to-allNodes).

Why is broadcast traf�c so different then unicast traf�c from the point of view of topology resolution? In case of
an active port/link failure (this is a simple case where the alternate/backup port for the active port is known and the
failure does not cause a total RSTP-wise recon�guration of the network) the following needs to happen:

� Broadcast:

– the alternate port needs to be unblocked

� Unicast

– the alternate port needs to be unblocked

– all the entries in the routing table which pointed to the failed port needs to be updated (this is many writes
and cannot be done instantly as the information about the alternative port for a given address is not available
instantly, it needs to be learned).

3

2 General overview of available stuff

Generally, there is a (Rapid) Spanning Tree protocol (whichis the most widely used redundant-network resolution
protocol) and other solutions which try to do a better job then (R)STP.

The improvements concern:

� Convergence speed

� Bandwidth usage (load balancing)

� Path optimization

Most of the solutions do not target at close-to-none frame loss during the convergence. This is because Layer Two
(L2) is abest effort transmission medium. Frame loss is inherent and foreseen inL2. What all solutions care about
are:

� loops prevention

� frame order preservation

� frame duplication preventions

Fast convergence make it more probable to have some loops, mis-ordered or duplicated frames.
The solutions that provide really lossless (fully reliable) frame delivery involve ring topology, i.e. High Availability

Seamless Redundancy (HRS).
All the solutions investigated by me can be divided into 4 categories:

� Spanning Tree Protocol based:

– Spanning Tree Protocol (STP)
– Rapid Spanning Tree Protocol (RSTP)
– enhanced Rapid Spanning Tree Protocol (eRSTP)

� Link Aggregation and extensions:

– Link Aggregation Control Protocol (LACP)
– EtherChannel
– Split Multi-Link Trunking (SMLT)
– Intelligent Resilient Framerowrk (IRF)
– Virtual Chassis (VC)
– Virtual Port Channels (vPC)
– Multi-Chassis Link Aggregation (MLAG)

� Link-state based

– Transparent Interconnect of Lots of Links (TRILL)
– FabricPath Forwarding/Switching System
– Virtual Cluster Switching (VCS)
– QFabric

� Ring topology based:

– Turbo Chain
– High availability Seamless Redundancy (HRS).
– Ethernet Ring Protection Switching (ERSP)

Some global comparison of all the solutions is provided in Table 2[which is not complete and does not �t into the
page when printing, I need to work on that]

4

Name Ownership VLAN-
enabled

performance topology comments

STP IEEE standard NO sucks, we know any this is not an option
MRSTP/RSTP IEEE standard YES sucks a bit less then STP any

eRSTP Ruggedcome
(proprietary)

? (1) fault recovery: ¡ 5ms per hop, (2) rings with
up to 80 switches

with ring-topology in mind just extended the possible number of
switches in the ring (from 31 to 80)

LACP IEEE standard YES ? only switch-to-switch (pair)
link aggregation

EtherChanel IETF upcoming
standard

YES recovery:< 1s only switch-to-switch (pair)
link aggregation

SMLT Nortel ehance-
ment to LACP
(upcoming
standard ???),
patented

YES best recovery:< 100ms (sub-second) triangle, mesh, square compatible with LACP, needs Inter-
Switch Trunk (that sucks a bit), the in-
tention is that some traf�c will suffer
no packet loss and the remaining traf-
�c will experience loss for less than one
second

IRF HP (propri-
etary)

? < 50ms daisy chain and ring topology if slave device fails� > fast conver-
gence, if master device fails� > elec-
tion needed, slow conv

VC Janiper (propri-
etary)

? ? ?

vPc Cisco (propri-
etary)

? ? ?

MLAG Arista (propri-
etary)

? ? ?

TRILL IETR upcom-
ing standard

YES based on link-state and using
methods from L3 (routers)

VCS Brocade (pro-
prietary)

? ? ? cool but how does it work?

FabricPath Cisco (propri-
etary)

? � 160 ms �at topology architecture ”suberset” of TRILL, allows to scale
link aggregations up to 16 chassis, in-
troduces additional encapsulation

QFabric Janiper (propri-
etary)

? up to 128 of the edge nodes as a single switch in
the �rst release, eventually 6,000 ports via 100+
physical switches,

creates single logic switch out of many
switches

TurboChain Moxa (propri-
etary)

? fault recovery: < 20 ms (at a full load of 250
switches)

three topology options-ring
coupling, dual-ring, and dual
homing

loose frames, not applicable (WHY?)

HRS IEC 61850
standard

? no Frame loss ring topology requires special Red Boxes and other
stuff

ERSP ITU-T recom-
mendation

? sub-50ms protection and recovery ring

5

3 Closing in - detailed description of the chose solutions

I will describe here the protocols which I found the most suitable for our application. I will try to de�ne their pros and
cons and what potential impact they bring to the current implementation of the switch (needed modi�cations).

3.1 Multiple/Rapid Spanning Tree Protocol (MSTP/RSTP)

Spanning Tree Protocol isthe protocol of loop resolution on Layer 2. It is the most widely used, the oldest thus the
most deeply explored.

Since the potential applications of White Rabbit will need to make (extensive) use of VLANs, using MSTP is a
must. The MSTP is not widely used and is said to be more complicated (true). However, it basis its operation on STP,
so still a lot of experience can be used.

Please, refer to out favorite book [5] for a detailed description.

3.2 Split Multi-Link Trunking (SMLT)

Link Aggregation Control Protocol (LACP) enables to aggregate links between two devices (switches) into a single
logic link. In other words, you have many redundant links butstill single points of failures (SPoFs): switches. Thus,
the main goal of LACP is load balancing, throughput increaseand enabling link redundancy. However, this does not
solve WR problems (eliminating single points of failure in the network). Fortunately, Cisco and other companies had
the same problem. Thus, multi-chassis extensions to LACP were created (i.e. SMLT, EtherChannel). Multi-chassis
extensions allow to connect aggregation of links to different devices (dual-homed connection). So, in other words
we can connect single switch (A) to two different switches (Band C) which are seen by the switch A as a single
logic device (D=B+C). However, this two switches (B and C) acting as single logic device (D) need to be connected
by (preferably multi-) link called Inter-Switch Trunk (IST). This link (IST) is mainly used to synchronize B and C
switches (exchange port states, inform of link failure, etc), it is used for ”normal” traf�c �ow as a last resort.

SMLT is Nortel solution which is patented but it's under the standardization effort. All the other similar solutions
are proprietary. The problem is that the newest RFC of SMLT [2] has expired. It seems that the standardization might
have been abandoned. Also, even if it is a standard one day, ifwe modify it, I suppose we can have problems.

SMLT highlights (bare facts):

� It allows the following topologies, which can be cascaded (see Figure 1):

– Triangle

– Square

– Mesh

� It requires Inter-Switch-Trunk, which is used for:

– exchange of switches' state and other information in order to synchronize two aggregated devices

– normal traf�c:

� unicast only if absolutely necessary,
� broadcast always.

� According to LACP, ports of both sides of the link have two different roles:

– Distributor - Accepts frames from the MAC client and submitsthem to one of the available physical
interfaces (through a frame multiplexer). It makes sure that no duplicate data is transmitted to the Collector.
Distributor decides on the algorithm used to distribute frames over available physical links (balance traf�c),
including blocking port.

6

– Collector - handles some LACP protocol frames (Marker Protocol), other frames are passed up to the MAC
client. Because the distribution's function ensures that any given conversation maps to a single physical
link, the Collector is free to gather frames from the underlying interfaces in any manner it chooses. What
is important, the Collector does not block ports (no frame discarding). If a port is to be blocked, it is
Distributor's role.

� Broadcast traf�c is sent only through one of the aggregationlinks.

� Both aggregate devices (B and C) are seen by the device (A) connected to them as a single logic device. This is
done by setting LACP device ID of B and C to the same value.

Figure 1: SMLT network topologies.

Advantages:

� At �rst glance it seems perfect for us:

– it allows to get rid of single point of failure

– works for all kinds of traf�c (unicast/multicast/broadcast)

– enables faster convergence

� It is compatible with LACP (so you can connect switches whichimplement only LACP and things will work,
this is because all the tricky work is done by the aggregationswitches (always a pair) and the (LACP) ”clients”
connected to aggregation switches see them as a single device.

Disadvantages:

� No recent activity on the standardization of SMLT.

� Patent on SMLT (even if it's standard, if we modify it, we can have problems)

� General problem regarding LACP:

My idea was to send (at least the broadcast) traf�c through all the links (active and non). The decision whether
the frame is to be received or dropped is always on the receiving port (it is called Collector in LACP). This idea
is absolutely in contrary with the LACP (and alike) solutions. In LACP, the Collector assumes that the traf�c
is correctly balanced between physical links by the Distributor. This enables to implement various distribution
algorithms on different aggregation ports – Collector doesnot need knowledge about the distribution algorithm.

The question is: is my idea of sending frames always through all links and dropping them on the reception worth
the effort. My reasoning:

– Assume we have two 1km �ber links, this translates into 5m- this is how long it takes for the data to travel
1km

– This is a simple scenario (Figure 2: standard Link Aggregation between a pair of switches.

– FEC-encoded fragment of 500kB control message is� 300kB, this translates into� 2.5m- this is how long
it takes to receive the data.

7

– It means that in 1km of �ber we can �t 2 fragments (frames) of control message.

– If a link failure happens and we instantly re-de�ne the forwarding masks (RTU@HW), the two fragments
which were in the failed link will not be retransmitted (at least this is how SWcore works currently) to the
backup port.

– We can even loose more fragments if the forwarding decision has already been taken for the not-yet-
transmitted frames

– For me this enough to justify the need to block ingress ports only.

� We have some idea of prospective WR CERN Control Network which is in [1]

– This network is not ultimate solution but...

– it's some kind of reference and it would be good if the proposed solution worked for this network.

I was trying to answer the question whether SMTL would work for this network. I have not found any example
of aggregation switch being shared between two aggregationgroups (horizontally). Finally I found this blog [3]
which seems to be explicitly saying ”No way !” for Cisco version of SMTL (and any other alike solution). This
means that we would need to introduce some extension to SMLT to allow this such a topology.

Figure 2: Collector and Distributor in LACP.

8

3.3 Transparent Interconnect of Lots of Links (TRILL)

This is a protocol put forward by the inventor of Spanning Tree Protocol/Algorithm. It is supposed to address the
problems of STP and alike:

� Redundant links being idle/blocked by the STP.

� Non-optimal path between network nodes (especially the once attached to different branches of the network).

� Bottleneck (throughput) limitations on the network core (if all the traf�c needs to go through the root)

� Latency

����������	
��
���

 �����
���

 �����

����������	
��

����������	
��

��

 �����
��

 �����

������	������

 �������

� � � �

��� !�

����	�
��
	�

�
�

�"��#���

 ���

��

 ���

�
�����	��
�
��	�����

��������	���� �	������	�����
� ���������	�
�$���	�%��%	�&�� �%����
� �%	�	
��

�#���$����'��(�)�*+�,+�-�-

Figure 3: How TRILL works (from [3]).

TRILL highlights (bare facts):

� This is basically a link-state routing protocol for layer 2.

� It de�nes BRouter (something between Bridge and Router)

� It adds encapsulations (Figure 4)

9

– TRILL header

– Outer Ethernet header

� How does it work for unicast traf�c (Figure 4):

– A node (A) connected to RBridge (SW3) send Ethernet Frame with MAC DST of another node (C) con-
nected to RBridge (SW4).

– RBridge (SW3) should learns that node (A) is connected to it.

– RBridge (SW3) should have in its table the nickname of the RBridge to which (C) is connected (it learns
it from received frames)

– The ”standard” Ethernet frame sent by Node (A) is encapsulated by RBridge (SW3) with TRILL header
(DST RBridge=SW4, SRCRBridge=SW3, CNT=x) and outer Ethernet Header (DSTMAC=MAC SW1,
SRC MAC=MAC SW3).

– Such a TRILL Frame gets to RBridge (SW1) which reads TRILL header (the outer Ethernet Header is
there in case there are standard switches between SW3 and SW1) and knows that the Ethernet frame is
destined for SW4 and that to reach SW4 it needs to send the TRILL Frame to the port 2.

– Before RBridge (SW1) sends the TRILL Frame it modi�es the TRILL and outer Ethernet headers accord-
ingly: , Et

� TRILL Header: DSTRBridge=SW4, SRCRBridge=SW3,CNT=x-1
� Outer Ethernet header: DSTMAC=MAC SW4, SRCMAC=MAC SW1

– The TRILL Frame reaches RBridge (SW4) which knows that it is the TRILL destination – it means that the
destination node is connected to one of its ports (could be through a standard Ethernet Switch). RBridge
(SW4) strips the TRILL Frame from it's outer header and TRILLHeader and sends a standard Ethernet
Frame (no modi�cations to the inner header) to port 1.

– The ”standard” Ethernet Frame is received by the node (C).

� How does it work for broadcast traf�c (Figure 4):

– A node (A) connected to RBridge (SW3) send broadcast Ethernet Frame

– All the RBridges calculate many spanning trees (nothing to do with STP, they have enough information to
do it without Spanning Tree Protocol). The algorithm enables for all the RBridges to calculate the same
spanning trees. The trees are identi�ed by the name (nickname) of the RBridge at its root.

– RBridge (SW3) chooses one spanning tree along whose branches the TRILL frame should be broadcast.

– The ”standard” Ethernet frame sent by Node (A) is encapsulated by RBridge (SW3) with TRILL header
(DST RBridge=[ident�er of the chosen spanning tree, e.g.:SW1],SRC RBridge=SW3, CNT=x) and outer
Ethernet Header (DSTMAC=MAC SW1, SRCMAC=MAC SW3).

– Such a TRILL Frame gets to RBridge (SW1) which reads TRILL header (the outer Ethernet Header is
there in case there are standard switches between SW3 and SW1) and knows that the Ethernet frame is
supposed to be broadcast within spanning tree identi�ed by SW1. It sends it along the spanning tree (to
port 2, the frame was received from port 1 so it is not sent to this port).

– Before RBridge (SW1) sends the TRILL Frame it modi�es the TRILL and outer Ethernet headers accord-
ingly: , Et

� TRILL Header: DSTRBridge=SW1, SRCRBridge=SW3,CNT=x-1
� Outer Ethernet header:DST MAC=MAC SW4, SRCMAC=MAC SW1

– The TRILL Frame reaches RBridge (SW4) which knows that it has”standard” LANS (nodes or switches)
on ports 1 and 2), so it needs to send to this port ”standard” Ethernet Frame. RBridge (SW4) strips
the TRILL Frame from it's outer header and TRILL Header and sends a standard Ethernet Frame (no
modi�cations to the inner header) to port 1 and 2.

10

Figure 4: TRILL Frame.

– The ”standard” Ethernet Frame is received by the nodes (C) and (D).

Advantages:

� This is a link-state routing protocol for layer 2.

� It seems to be a killer for all the STP-related and LACP-related algorithms.

� It is mentioned in many places asthe successoror STP.

� It saves memory of the routing tables of internal (in terms oftopology) switches – they don't have to know all
the MACs of all the nodes, just end-RBridges' nicknames, so...

� it makes the forwarding process faster (at least in theory).

� It should be great for unicast traf�c between nodes:

– It would decrease the delivery latency since the shortest path would be always chosen (in the case of STP
and LACP-like, the traf�c always goes to up the topology to the root)

– It would make faster the convergence Updating routing tablein case of a link/switch failure would be much
easier and faster!!!

Disadvantages

� It adds encapsulations:

– one of the important reasons for this is the hop count (usefulin case of loops), but the loops can be also
prevented in case of our FEC-ed traf�c with the message count

– It adds two headers: new Ethernet Header and TRILL header – this changes the reliability probabilistic
(yes, there is more chances that one of the headers get bit error and we have to drop entire frame)

� It requires immense changes in the switch:

– Endpoint: de/en-capsulation, HW TRILL and outer Ethernet header's modi�cation + CRC.

– RTU (SW and HW) : totally different forwarding algorithm

� It is very complicated..., uses other protocols

11

– Intermediate System to Intermediate System (IS-IS)

– Link State PDU (LSP)

– ESADI

– CLNP

� It allows temporary loops which are not deadly for the traf�cbecause there is a hop count in the TRILL header.
However, this can also introduce temporary increase in switch latency (the broadcast traf�c will not loop forever,
but even if it loops once, it needs to be queued ... latency increase)

� Some critics of TRIL copied from [4] (document evaluating TRILL technology, written by one of the switch
vendors):

Multicast scaling issues: While TRILL does reduce the Layer 2 unicast forwarding state in the network core, it
does not reduce the multicast forwarding state. Additionally, the control plane complexity associated with setting
up multicast trees is bound to present severe operational and troubleshooting challenges in real deployments.

Large broadcast domains: Since crossing VLANs is expensive in a TRILL solution, TRILL inherently pushes
a network designer to arti�cially increase the size of VLANs. This has two consequences: �rst, large VLANs
create �ooding issues that are hard to handle; second, this arti�cial in�ation diminishes the effectiveness of
VLANs as a mechanism for separating resources belonging to different applications, organizations, or tenants.
Security is a grave concern in TRILLbased architectures.

12

4 Conclusions

It is very important to remember that Layer 2 traf�c isbest effort and none of the existing protocols was created
considering a loss of a few Ethernet Frames as an offense. If so happens, it is normal. What is more important for
Layer 2 protocols is to preserve the paradigms of its traf�c:no duplication, no mis-ordering, no stray frames looping
inde�nitely.

Therefore, any of the existing or emerging protocols for Layer 2 will require modi�cation/extension to make sure
that close-to-none Ethernet Frames are lost (i.e. 2 fragments of FECed Control Message).

Link aggregation is de�nitely a step in our (good !) direction which provides some useful mechanisms (e.g.:
Marker protocol). However, the standard Link Aggregation protocol, as de�ned in IEEE 802.3ad (LACP), is limited
only to link redundancy and its extensions limit the topology. This means that choosing LACP extension (such as
SMLT, or alike) would require anyway loads of WR-custom additions (e.g. to allow desired topology and prevent
frame loss) and could be troublesome with respect to the ownership/patent issues.

Therefore, the ultimate choice is between

� Spanning Tree (MSTP) which could use some ideas/mechanizmsfrom LACP.

� TRILL.

� Something else I have no knowledge about.

TRILL is supposed to be a killer for all the shortcomings of the Spanning Tree Protocols (STP, RSTP, MSTP).
And it might be, but ”not providing close-to-none-frame-loss” during convergence is not Spanning Tree shortcoming
(however, convergence in order of seconds, is). This means that many ”tricks and hacks” that needs to be added to the
Spanning Tree implementation, would need to be added to TRILL as well. It seems that for the broadcast traf�c, there
would not be much difference between hacking RSTP and TRILL.

The difference is in the unicast traf�c. Since TRILL is routing-based, it should be much easier to provide fast
update of routing entries and de�ne multiple paths for unicast traf�c in order to increase the probability that close-to-
none unicast frames are lost.

However, there are many practical disadvantages of using TRILL:

� The standard is not yet there, some vendors are only prototyping switches speaking TRILL. I found this article
[4] which indicate that at least one vendor does not like the idea. Cisco offers FabricPath which is called a
”superset” of TRILL but it not inter-operable with the standard. This means that if we implement TRILL, we
might be compatible with a standard which is implemented by not many vendors and is immature (of course it
can change with time). Though, it must be clear that TRILL is,by design, inter-compatible with RSTP/MRSTP.

� It is a very complicated solution which uses many protocols

� It would require severe changes in RTU and Endpoint.

My inclination is to focus on our precious broadcast traf�c modifying what we already have implemented. This is a
”plan” I suggest

1. Focus on broadcast traf�c but keep in mind unicast.

2. Modify/add HDL (TRM, RTU, Endpoint, SWcore) for well-de�ned broadcast solution and some �exible solu-
tions to play with unicast.

3. Fully implement broadcast solution (keeping in mind unicast traf�c, so leaving �exibility to include later unicast)

4. If broadcast works, and we have time/resources, go for unicast. As already mentioned, all the broadcast solutions
should be valid for unicast traf�c, but unicast needs much more.

Below I present an overview of my ideas for Modi�cations to Spanning Tree (using some ideas from LACP) to
meet our nasty requirements.

13

4.1 Proposed solutions

4.1.1 Broadcast

� It uses information provided by standard RSTP as basis of itsoperation (ports' role), this information is provided
to hardware module supporting RSTP (Topology Resolution Module, TRM, see Sec 5.1.1).

� It needs two components

– WR-modi�ed RSTP daemon

– HW support, such as described in see Sec 5.1.1

� The information provided to HW (derived from ”standard” RSTP) is suf�cient to perform instant HW-supported
switch-over between redundant ports in case of link/switchfailure. The info includes:

– Information of pairs : active-backup links, this information is per-port per-VLAN.

– States and roles of the ports assigned by RSTP protocol.

� Figure 5 shows suggestion of a change in the place where the Ethernet Frames are discarded/forwarded on a
backup link. This change is not necessary for DataMaster-to-nodes traf�c, however can be useful

– if we also want reliable broadcast initiated by nodes, why would we need it ? we need it ...

– if we want to tweak WR into �eldbus by setting a VLAN between two nodes and use broadcast within this
VLAN for reliable communication between two nodes.

– if we extend WR solution for unicast.

� The WR solution imposes limitations of the topology

– No ring topology

– De�ned/con�gured (using proper paraeters) a priori root switch (root switches in case of MSTP)

� When link-down is detected (it could be due to link/switch failure), the backup port is unblocked (on ingress, in
HW) and the port on which link-down was detected is powered off.

– This is possible due to the a priori knowledge of port pairs (active-backup) provided by standard RSTP

– This is possible only if such information is provided, i.e. proper topology is required.

– It is handled by a special HDL module described in Section 5.1.1.

– The switch-over in hardware is just a speed-up of the decision which is taken in WR RSTP daemon, so
the daemon will update the information in the HDL module which will not change the forwarding masks
provided by the module to the RTU unit.

� Killing a link (which was detected to be down) has the following reasoning:

– prevents thrashing (right word?: frequent change of the port's state, a situation when it goes up and down
continuously) which can cause loops and other problems

– avoids a known problem: only one port of a link detects the link failure (should not be the case with single
SFP, though) – any port that detects link down, kills it so we are sure the other port also detects link down

– simple and solid solution :-)

� When link goes up again (or new switch is added), things become very complicated, to handle it properly
without loosing frames (and preventing loops), information and mechanisms provided by the standard RSTP are
not suf�cient. Below is a brief explanation of an idea how to handle it, see also Figure 6

14

– It might happen that the current path is ”longer” (it takes more time for frames to reach the switch) then
the new path (through the link that we want to activate). See Figure 6 (A): ”Shorter Path” might have just
been added this is why ”Longer Path” is active and ”Shorter Path” is backup.

– In such case, we cannot simply switch to the new link (block ”Longer Path” and unblock ”Shorter Path”)
as it could cause frame loss, see Figure 6 (A): Frames indicated by (1)).

– To prevent loss of frames in the ”Longer Path”, we use specialWR Markers. The switch which is con�g-
ured root should send periodically such Markers. See Figure6, purple frame.

– Based on Markers' reception (which can be timestamped), theWR RSTP daemon knows what is the
difference in the delays from Root Switch to the switch on which it is running.

– This knowledge shall be used during the recon�guration of ports (switching between old and new active
links)

– When the port on the ”Shorter Path” which needs to become active (stop blocking ingress frames) receives
WR Marker the following happens on that port:

� The Endpoint starts buffering the subsequent (received after WR Marker) frames
� PAUSE frame (Figure 6 (B): green frame) is sent out, the time indicated in the PAUSE frame (which

says how long the data should not be sent) can be provided based on the average time difference
between previous WR Markers reception.

– When the port on the ”Longer Path” (which is supposed to become backup) receives WR Marker, the other
port starts forwarding.

� The described above WR Marker mechanisms becomes more complicated if we consider the scenario for many
VLANs :-)

– We have many switches being roots (for a group of VLANs separate Spanning Tree is de�ned) and each
sends WR Markers

– We don't want to loose frames on none of the VLANs !!!

– WR RSTP daemon keeps track of the average difference WR Marker delays for each VLAN, based on this
information, it can provide HW with the indication which WR Marker (from which VLAN) shall be used
to perform the switch-over described above (and in Figure 6).

Figure 5: Port roles/states in (R/M)STP vs WR STP.

15

Figure 6: Markers in WR (idea borrowed from LACP).

Limitations of this solution

� Protects only traf�c in a single priority

� Gets really tricky with many VLANs but should work

� Many more that I'm not yet aware of.

4.1.2 Unicast

There are to possible ways of handling unicast traf�c:

� Solution 1: Easier, feasible and requires less changes in HDL/SW but has some limitations:

– It generates some useless traf�c

– The performance (in terms of frame loss) is worse then the Broadcast solution (loosing a few frames during
convergence is possible).

� Solution 2: Harder and not necessarily feasible, only for moderate unicast load.

There are the following additional challenges connected with unicast traf�c convergence (Figure 7):

1. Quick update of the routing table – all the entries which indicate a failed port need to be changed instantly (this
is an implementation challenge)

2. Proper update of the routing table on the switches which are directly connected to the failed link, so that the
incoming frames are forwarded to the new port on instead (this is design/protocol/algorithmic challenge)

16

Figure 7: Changes in Routing Tables caused by link failure.

3. Proper update of the routing tables on the switches which are not directly connected to the link which failed
(this is design/protocol/algorithmic challenge)

Solution 1:

� This would require adding a special FAILEDPORTS mask to the RTU@HW:

– This mask would override forwarding decision.

– Entires found in Routing Table for the masked ports would be regarded as not found and the frame being
forwarded would be broadcast to all the ports (within VLAN).

– This would generate additional traf�c but would speed up Routing Table convergence.

� FAILED PORTS mask:

– on the switch connected directly to the failed port, such mask would be generated by the Topology Reso-
lution Module and passed directly to RTU@HW

– the switch connected directly to the failed port would need to broadcast information about a need to gen-
erate such a mask to the other switches

� This solution does not prevent from loosing frames

– it takes time to distribute and generate the mask on all the switches

– the frames in the failed link and on the output queues to the failed link would be lost

� This solution (implemented along with broadcast solution in Section 4.1.1) substantially decreases the conver-
gence time for the unicast traf�c compared to the standard solutions.

Solution 2:

� In order to prevent frames from being lost, we need to send unicast traf�c through many paths (Figure 8):

– Yes, it generates a lot of additional traf�c but it's sometimes useful.

– We can use multicast Routing Table entries to achieve that (entries with mask with more then single port
de�ned as forwarding)

� We need to overcome the following challenges:

17

1. How do we learn the multi-cast entries (requires different solutions for the switches directly connected to
a link and these indirectly connected) ?

2. How do we distinguish between a change in the location of a node and addition/removal of backup path?

� Learning of the multi-cast entries on the switches directlyconnected to the redundant link could be accomplished
by constantly learning on the discarding ports of the ”backup link”

� Learning of the multi-cast entries on the switches indirectly connected to the redundant link would need to be
done by means of a special protocol/frames.

� we could use the idea of FAILEDMASK (presented in solution 1) without worries that it takestime to distribute
the information among switches (in the meantime we will justforward frames to a failed port).

� I don't know how to solve challenge 2

Figure 8: Changes in Routing Tables caused by link failure ifwe use multi-path solution (with multicast RTU entries).

18

5 Suggested modi�cations

The proposed changes can be done independently.

5.1 RTU 1: Topology Resolution Module (TRM)

While investigating all the protocols I noticed that our routing algorithm (RTU's engine) does not allow to implement a
proper/standard (R)STP. Currently, a port which is disabled drops incoming (ingress) frames. However, a disabled port
will output frames if forwarded from other ports, which is undesirable behavior in a standard (R)STP. Even though,
such a behavior will be probably desired in the modi�ed (WR)STP, it would be good if we have the standard option
running correctly. It is also not possible to disable/enable ports on per-VLAN basis, which is necessary for MSTP.

I suggest adding a module dedicated to topology resolution algorithm (TRA. It could enable avoiding (minimizing
a least) further changes in RTU@HW due to TRA implementation. This module would also speak with STP software:

� Interface with RTU@HW:

– VLAN ID (RTU � > TRA)

– Ingress port ID (RTU� > TRM)

– Reception Port Mask (TRM� > RTU)

– Transmission Port Mask (TRM� > RTU)

� Interface with CPU (WB) - it will depend on TRA implementation, for MSTP

– Port state and role per-port per-VLAN

– Port pairs (active-alternate)

– TRA con�guration (to-be-decided)

� Interface with Endpoints

– Port state: up/down (Endpoint� > TRM)

– Link power: on/off (TRM� > Endpoint)

– Dedicated Frames (Endpoint� > TRM)

– Send PAUSE (TRM-¿Endpoint)

– Hold/buffer data (TRM-¿Endpoint)

The data (reception/transmission masks) from the TopologyResolution Module (TRM) would be used to decide
whether to pass or discard an incoming frame based on the chosen Topology Resolution Algorithm (e.g. MSTP):

� It could be used at the beginning of the forwarding decision process (reception mask):

– in Match Engine or

– in Port (especially if we move there decision about broadcast frames to the per-port process, see Sec-
tion 5.3)

� It could be used at the end of the forwarding decision process(transmission mask, to prevent forwarding frames
to STP-blocked ports).

19

5.1.1 Topology Resolution Module for WR-modi�ed MSTP

� It would have a table containing for each port for each FID parameters �lled in by MSTP@SW:

– port role

– port state

– haspairedport

– pairedport id

� it would have knowledge of current states of the ports but also much more, it could actually manage the ports:

– Once a port down is detected, it would make sure the link is really down by killing its power

– After some timeout (enough for MSTP@SW to recon�gure) it would try to re-vive the port, but in a way
which does not change MSTP@SW con�guration.

– If the ”broken” port turns out to be functional, it would re-vive it permanently

– It could also manage the actual port-state/role-recon�guration (we cannot just change role of the ports
without loosing frames... so the idea is that MSTP@SW makes request to change the role/state, but it is
done progressively by this module in the way that prevents loss of frames

� As much ”thinking” (algorithms) as possible should be delegated to the SW (not to make this module too
complicated).

� This module would be enough to ful�ll our requirements for broadcast traf�c but would not be enough for
unicast. This is because unicast needs additionally a way tomodify (in a very fast way) the routing table and
(maybe) to make the traf�c travel simultaneously via more then one alternative path. However, any solution for
the unicast traf�c would be anadditional to the TRM.

5.2 RTU 2: Time triggered port con�guration

Adding the STP-related per-VLAN port blocking (sec 5.1) does not make the currently available in RTU per-port
con�guration useless. It could be useful anyway for global port disabling/enabling (regardless of TRA). It could be
also extended to time-triggered port disable/enable. It could work like this:

� The per-port register layout and functionality would stay as it is. The current passall (enable) would be used
for non-time-triggered con�guration (global for all VLANsfor a given port).

� New per-RTU registers would be added (bit number= port id) :

– Enable ports (write)

– Disable ports (write)

– Status (read)

– UTC.

� The per-RTU settings would, at a given UTC time, override theper-port setting of passall.

� This means that time-triggered setting is non-blocking: wecan schedule it in advance and perform con�guration
changes between the time of scheduling and the trigger-time.

The above means that RTU needs to be UTC-aware (we need UTC input).

20

5.3 RTU 3: Speed up of broadcast forwarding

RTU@HW modi�cations to speed-up the process of forwarding broadcast traf�c would require delegating some of
the forwarding-decision work to RTUPORTs. At the moment, a broadcast MAC address is a static entry in the RTU
hash table. This allows for a great �exibility but it means that broadcast traf�c is forwarded exactly the same way as
any unicast Ethernet Frame, i.e:

1. A RTU PORT receives the request (SRC MAC, DST MAC, VID, HASVID, PRIO, HAS PRIO).

2. All the ports attempt to write its request to INFIFO, the access is granted by a Round Robbin arbiter.

3. A single RTU Engine (wrswrtu match.vhd) handles all the requests. It reads out the INFIFO and deals with
each request in turn:

(a) Reads con�guration registers (from WB interface module)

(b) Reads VLAN table (from WB interface module)

(c) request transmission/reception mask from Topology Resolution Module

(d) Calculates HASH (out of DST MAC and FID)

(e) Requests to the Lookup engine (rtulookup engine.vhd) a search in hash table of the SRC MAC.

(f) Learns the SRC MAC, if necessary

(g) Requests to the Lookup engine (rtulookup engine.vhd) a search in hash table of the DST MAC.

(h) Learns the DST MAC, if necessary

(i) Prepares output ports mask

4. Once the forwarding decision is ready (portmask, drop, prio), it is returned to the RTUPORT which is waiting
for it.

Sacri�cing some �exibility (which will be rarely used, i.e.�ltering broadcast frames by their source MAC) and
FPGA resources, we could distribute forwarding process forthe broadcast frames (destination MAC address of 0xF...F)
to be done per port. In other words, once the request is received by per-port request reception process in RTU, it would
be handled instantly if it's destined to broadcast address,otherwise it would be queued to be handled by RTU Engine.

Problems connected with moving broadcast forwarding process to each port:

� we need some kind of multi-access to VLAN tab in order to know port mask and FID for a given VLAN. One
solution is to mirror the VLAN tab and have all the ports access it based on Round Robbin arbiter (so the max
delay isport number� cycles, but usually, broadcast comes only from single port, so it will be fast).

� We loss per-SRCMAC �ltering of the incoming broadcast Ethernet Frames

� There is a problem with learning SRCMAC addresses - the addresses are enqueued onto a single FIFOby the
RTU engine. There are two solutions to this problem:

– implement multi-access to learning UFIFO.

– implement per-port fast forwarding decision but send the request to the main forwarding Engine anyway....
we could even drop the frame being already forwarded if the fast forwarding decision and ”standard”
forwarding decision are different... however, if the frameis small, it could be already gone... unless we
wait with sending the last word of the frame if such situationhappens, but this is not nice for determinism....

� Aging vector is not updated, not nice to not know the address of the guy who is spaming everyone with broadcast
(the solution to this problem should be the same with the previous one – SRCMAC learning).

The new forwarding process would work like this (changes in bold):

1. A RTU PORT receives the request (SRC MAC, DST MAC, VID, HASVID, PRIO, HAS PRIO).

21

2. Per-port RTU PORT process checks the SRC MAC, if it's broadcast, it performs routing by its own:

(a) Reads con�guration registers (from WB interface module)

(b) request transmission/reception mask from Topology Resolution Module

(c) Reads VLAN table (from WB interface module)

(d) Prepares output ports mask

Per-port RTU PORT process returns the decision (if it was broadcast it can�nish now or go to standard
routing procedure)

3. All the ports attempt to write its request to INFIFO, the access is granted by a Round Robbin arbiter.

4. A single RTU Engine (wrswrtu match.vhd) handles all the requests. It reads out the INFIFO and deals with
each request in turn:

(a) Reads con�guration registers (from WB interface module)

(b) Reads VLAN table (from WB interface module)

(c) Calculates HASH (out of DST MAC and FID)

(d) Requests to the Lookup engine (rtulookup engine.vhd) a search in hash table of the SRC MAC.

(e) Learns the SRC MAC, if necessary

(f) Requests to the Lookup engine (rtulookup engine.vhd) a search in hash table of the DST MAC.

(g) Learns the DST MAC, if necessary

(h) Prepares output ports mask

5. Once the forwarding decision is ready (portmask, drop, prio), it is returned to the RTUPORT which is waiting
for it (or not if it was broadcast)

5.4 SWcore 1: Cut-through

NOTE: This solution requires a small chagne to RTU@HW: a bit indicating whether the frame is broadcast or not.
SWcore modi�cations needed to make it Cut-through:

� INPUT BLOCK (there is one block per port):

– Now, the block sends information to the TRANSFERARBITER about received Ethernet Frame as soon
as the entire frame is successfully received. The information includes: �rst page address, frame size,
priority,output port mask.

– It should be modi�ed to send the information to the TRANSFERARBITER as soon as the �rst page is
successfully written to the MULTIPORTMEMORY

– Indicate whether the Frame is broadcast or not (broadcastbit).

� LINKED LIST

– Currently the LINKEDLIST assumes that the entire frame is in the memory when it reads subsequent
page addresses. The content of the list's memory is either the address of the next page, or the indicator of
the end of the frame.

– It would have to be modi�ed to enable waiting for the next pageto be fully written to. In other words,
if we have cut-through it might happen that the reading process (OUTPUTBLOCK) is faster then the
writing process (INPUTBLOCK). In such case, we need to be able to pause reading untilentire new page
is written. This could be done in the LINKEDLIST when requesting next page of the frame.

22

� TRANSFERARBITER

– Need to add one bit indicating whether the frame is broadcast(or not)

� OUTPUT BLOCK

– Need to enable different output queue for broadcast (using the new info bit)

References

[1] Discussion On A White Rabbit based CERN Control and Timing Network, 2011, Jean-Claude Bau, Maciej Lipin-
ski, October 2011, http://www.ohwr.org/attachments/880/wrCernControlAndTiming.v1.1.pdf.

[2] IEEE Std 1588-2008Split Multi-link Trunking (SMLT), 2008, http://tools.ietf.org/html/draft-lapuh-network-smlt-
08.

[3] Brad Hedlund Setting the stage for TRILL, rethinking data center switching, May, 2010,
http://bradhedlund.com/2010/05/07/setting-the-stage-for-trill/

[4] White Paper (Juniper Networks)TRILL in the Data Center : Look Before You Leap, Understanding Fundamental
Issues with TRILL May 2011, http://www.juniper.net/us/en/local/pdf/whitepapers/2000408-en.pdf

[5] Rich Seifert, Jim EdwardsThe All-New Switch Book,

23

