Real-Time Distribution of Magnetic Field Measurements Over White-Rabbit

9th White Rabbit Workshop, Amsterdam, March, 2016

A. Beaumont1,2, D. Oberson1, D. Giloteaux1, M. Buzio1, M. Colciago1
M. Roda1

1CERN, European Organization for Nuclear Research, Geneva, Switzerland
2EPFL, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

March 2016
1 Introduction
- CERN Accelerators
- Magnets in Accelerators
- Real-Time Magnetic Field Measurements
- B-Train

2 The New PS B-Train
- B-Train upgrade
- B-Train Firmware Architecture
 - Hardware
 - Software

3 PS B-Train over White-Rabbit
- White-Rabbit
- General Architecture/Wiring
- VHDL Streamers
- B & I Frames
- Tests
Outline

1 Introduction
 - CERN Accelerators
 - Magnets in Accelerators
 - Real-Time Magnetic Field Measurements
 - B-Train

2 The New PS B-Train
 - B-Train upgrade
 - B-Train Firmware Architecture
 - Hardware
 - Software

3 PS B-Train over White-Rabbit
 - White-Rabbit
 - General Architecture/Wiring
 - VHDL Streamers
 - B & I Frames
 - Tests
CERN Accelerators Chain

European Laboratory for Particle Physics

- LHC (Large Hadron Collider) - 27 km
- SPS (Super Proton Synchrotron)
- ATLAS
- CMS
- LHCb
- PS (Proton Synchrotron)
- PSB
- Linac 2 (Protons)
- Linac 3 (up to 75%)
CERN Accelerators Chain

- European Laboratory for Particle Physics
- Established in 1954 @ Geneva, Switzerland
CERN Accelerators Chain

- European Laboratory for Particle Physics
- Established in 1954 @ Geneva, Switzerland
- 24 Member states
CERN Accelerators Chain

- European Laboratory for Particle Physics
- Established in 1954 @ Geneva, Switzerland
- 24 Member states
- Sequence of accelerators
CERN Accelerators Chain

- European Laboratory for Particle Physics
- Established in 1954 @ Geneva, Switzerland
- 24 Member states
- Sequence of accelerators
- 2 beams circulating in opposite directions in LHC
CERN Accelerators Chain

- European Laboratory for Particle Physics
- Established in 1954 @ Geneva, Switzerland
- 24 Member states
- Sequence of accelerators
- 2 beams circulating in opposite directions in LHC
- 4 main experiments
Outline

1. Introduction
 - CERN Accelerators
 - Magnets in Accelerators
 - Real-Time Magnetic Field Measurements
 - B-Train

2. The New PS B-Train
 - B-Train upgrade
 - B-Train Firmware Architecture
 - Hardware
 - Software

3. PS B-Train over White-Rabbit
 - White-Rabbit
 - General Architecture/Wiring
 - VHDL Streamers
 - B & I Frames
 - Tests
Magnets in Accelerators

Why??

The roll of the magnets in the accelerators is to guide the beam throughout the whole ring.
Magnets in Accelerators

Why??

The roll of the magnets in the accelerators is to guide the beam throughout the whole ring.

- Dipoles to bend the beam;
Magnets in Accelerators

Why??

The roll of the magnets in the accelerators is to guide the beam throughout the whole ring.

- Dipoles to bend the beam;
- Quadrupoles to focus it;
Magnets in Accelerators

Why??

The roll of the magnets in the accelerators is to guide the beam throughout the whole ring.

- Dipoles to bend the beam;
- Quadrupoles to focus it;
- Sextupoles to correct chromaticity.
Outline

1. Introduction
 - CERN Accelerators
 - Magnets in Accelerators
 - Real-Time Magnetic Field Measurements
 - B-Train

2. The New PS B-Train
 - B-Train upgrade
 - B-Train Firmware Architecture
 - Hardware
 - Software

3. PS B-Train over White-Rabbit
 - White-Rabbit
 - General Architecture/Wiring
 - VHDL Streamers
 - B & I Frames
 - Tests
Why??

Precise knowledge in real time of the magnetic field in the reference magnet is important for longitudinal and transversal beam control.
Real-Time Magnetic Field Measurements

Why??

Precise knowledge in real time of the magnetic field in the reference magnet is important for longitudinal and transversal beam control.

- Power supplies, RF cavities, and beam control use this input as feedback in the control loop.
Real-Time Magnetic Field Measurements

Why??

Precise knowledge in real time of the magnetic field in the reference magnet is important for longitudinal and transversal beam control.

- Power supplies, RF cavities, and beam control use this input as feedback in the control loop.
- Measurements are carried out in a reference magnet placed in series with the accelerator magnets chain.
Real-Time Magnetic Field Measurements

Why??

Precise knowledge in real time of the magnetic field in the reference magnet is important for longitudinal and transversal beam control.

- Power supplies, RF cavities, and beam control use this input as feedback in the control loop.
- Measurements are carried out in a reference magnet placed in series with the accelerator magnets chain.
- Typically, this measurement is obtained by means of, either high-performance magnetic measurements systems or mathematical models.
Outline

1. Introduction
 - CERN Accelerators
 - Magnets in Accelerators
 - Real-Time Magnetic Field Measurements
 - B-Train

2. The New PS B-Train
 - B-Train upgrade
 - B-Train Firmware Architecture
 - Hardware
 - Software

3. PS B-Train over White-Rabbit
 - White-Rabbit
 - General Architecture/Wiring
 - VHDL Streamers
 - B & I Frames
 - Tests
What are B-Train systems

B-train:
Real-time measurement of local or integral field in a reference dipole, used to infer $\int Bdl$ over the whole machine.
What are B-Train systems

B-train:
Real-time measurement of local or integral field in a reference dipole, used to infer $\int Bdl$ over the whole machine.

Motivation:
The field produced by a given current is not always predictable to the required accuracy (10^{-4}) with a mathematical model (synthetic or simulated B-train), due to: iron hysteresis, eddy currents, temperature effects, ageing, DCCT accuracy, etc.
What are B-Train systems

B-train:
Real-time measurement of local or integral field in a reference dipole, used to infer \(\int B dl \) over the whole machine.

Motivation:
The field produced by a given current is not always predictable to the required accuracy \((10^{-4}) \) with a mathematical model (synthetic or simulated B-train), due to: iron hysteresis, eddy currents, temperature effects, ageing, DCCT accuracy, etc.

Markets:
- **Particle accelerators:** 6 B-Trains at CERN.
- **Medical applications:** Cancer treatment using proton accelerators.
Why a train??

The field value is distributed on a dual digital serial channel, where one pulse represents a given increment/decrement (step = 0.1G in general).
Why a train??

The field value is distributed on a dual digital serial channel, where one pulse represents a given increment/decrement (step = 0.1G in general).

\[B(t) = B_{\text{marker}}(t_1) + \int_{t_1}^{t} \dot{B} \, dt \]

\[\text{calibration error} = \frac{\int_{t_1}^{t_2} \dot{B} \, dt}{B_{\text{marker}}(t_2) - B_{\text{marker}}(t_1)} \]

Coil measurement

\[\dot{B} = -\frac{V_{\text{coil}}}{A_{\text{coil}}} \]
Outline

1. Introduction
 - CERN Accelerators
 - Magnets in Accelerators
 - Real-Time Magnetic Field Measurements
 - B-Train

2. The New PS B-Train
 - B-Train upgrade
 - B-Train Firmware Architecture
 - Hardware
 - Software

3. PS B-Train over White-Rabbit
 - White-Rabbit
 - General Architecture/Wiring
 - VHDL Streamers
 - B & I Frames
 - Tests
The **old B-Trains** have been working for nearly 60 years now.
The old B-Trains have been working for nearly 60 years now.

24V pulses leads to limitations in frequency, @500KHz; Noise interferences and therefore system failures.
B-Train system upgrade

Motivation

The old B-Trains have been working for nearly 60 years now.

24 V pulses leads to limitations in frequency, @500KHz; Noise interferences and therefore system failures.

Electronics components of the old B-Trains are becoming obsolete and therefore hard to maintain.
B-Train system upgrade
Motivation

The old B-Trains have been working for nearly 60 years now.

24 V pulses leads to limitations in frequency, @500KHz; Noise interferences and therefore system failures.

Electronics components of the old B-Trains are becoming obsolete and therefore hard to maintain.

Increase of the B-field measurement resolution by a factor of 2, from 0.1G to 0.05G.
The old B-Trains have been working for nearly 60 years now.

24 V pulses leads to limitations in frequency, @500KHz; Noise interferences and therefore system failures.

Electronics components of the old B-Trains are becoming obsolete and therefore hard to maintain.

Increase of the B-field measurement resolution by a factor of 2, from 0.1G to 0.05G.

New hardware components, firmware algorithms and White-Rabbit field distribution.
PS B-Train upgrade

From Mark III to Mark IV
New **FMR** marker sensors are being used in the new PS-BTrain prototype.
New **FMR** marker sensors are being used in the new PS-BTrain prototype.

- 2 AnaPico 20 GHz signal generators for FMR F,D halves working @1.7GHz;
New **FMR** marker sensors are being used in the new PS-BTrain prototype.

- 2 AnaPico 20 GHz signal generators for FMR F,D halves working @1.7GHz;
- Direct acquisition of the resonance peak;
New **FMR** marker sensors are being used in the new PS-BTrain prototype.

- 2 AnaPico 20 GHz signal generators for FMR F,D halves working @1.7GHz;
- Direct acquisition of the resonance peak;
- Commercially available sensor;
New **FMR** marker sensors are being used in the new PS-BTrain prototype.

- 2 AnaPico 20 GHz signal generators for FMR F,D halves working @1.7GHz;
- Direct acquisition of the resonance peak;
- Commercially available sensor;
- Works up to several T/s;
New **FMR** marker sensors are being used in the new PS-BTrain prototype.

- 2 AnaPico 20 GHz signal generators for FMR F,D halves working @1.7GHz;
- Direct acquisition of the resonance peak;
- Commercially available sensor;
- Works up to several T/s;
- Larger dynamic range for a given sensor (current unit: 60-300 mT).
B-Train system upgrade

FMR Probe

Signal at FMR frequency 1.70 GHz

601.2 Gauss (0.06012 Tesla) @ 1.7 GHz
Outline

1 Introduction
 - CERN Accelerators
 - Magnets in Accelerators
 - Real-Time Magnetic Field Measurements
 - B-Train

2 The New PS B-Train
 - B-Train upgrade
 - B-Train Firmware Architecture
 - Hardware
 - Software

3 PS B-Train over White-Rabbit
 - White-Rabbit
 - General Architecture/Wiring
 - VHDL Streamers
 - B & I Frames
 - Tests
B-Train Firmware Architecture

Prototype installed in PS-Reference magnet (building 355/R-012)

The New PS B-Train

White-Rabbit Switch

Cross Point Switch

2x FMC mezzanine cards: Front-End components for B field acquisition, FMR field markers peak detection and LCD interface.

2x SPEC Carrier Cards: B-field integral calculation and Peak detector using Xilinx Spartan 6 FPGA.

WHite-Rabbit B-field distribution to the users.
B-Train Firmware Architecture

Prototype installed in PS-Reference magnet (building 355/R-012)

Operational & Spare systems.
Field markers and Pick-up coils: placed in focusing and defocusing halves of the magnet.

Operational & Spare systems.
Operational & Spare systems.

Field markers and Pick-up coils: placed in focusing and defocusing halves of the magnet.

2x FMC mezzanine cards: Front-End components for B field acquisition, FMR field markers peak detection and LCD interface.
B-Train Firmware Architecture

Prototype installed in PS-Reference magnet (building 355/R-012)

Operational & Spare systems.

Field markers and Pick-up coils: placed in focusing and defocusing halves of the magnet.

2x FMC mezzanine cards: Front-End components for B field acquisition, FMR field markers peak detection and LCD interface.

2x SPEC Carrier Cards: B-field integral calculation and Peak detector using Xilinx Spartan 6 FPGA.
Operational & Spare systems.

Field markers and Pick-up coils: placed in focusing and defocusing halves of the magnet.

2x FMC mezzanine cards: Front-End components for B field acquisition, FMR field markers peak detection and LCD interface.

2x SPEC Carrier Cards: B-field integral calculation and Peak detector using Xilinx Spartan 6 FPGA.

WHite-Rabbit B-field distribution to the users.
Hardware - CERN standard platform

Open hardware repository: www.ohwr.org
Hardware - CERN standard platform
Open hardware repository: www.ohwr.org

Hardware - CERN standard platform

Open hardware repository: www.ohwr.org

SPEC (Simple PCIe FMC carrier) + FMC (FPGA mezzanine cards) for modular custom electronics.
Hardware - CERN standard platform

Open hardware repository: www.ohwr.org

SPEC (Simple PCIe FMC carrier) + **FMC** (FPGA mezzanine cards) for modular custom electronics.

Wishbone serializer bridge FPGA core - used for setting/reading firmware parameters and DMA access.
Hardware - CERN standard platform

Open hardware repository: www.ohwr.org

SPEC (Simple PCIe FMC carrier) + **FMC** (FPGA mezzanine cards) for modular custom electronics.

Wishbone serializer bridge FPGA core - used for setting/reading firmware parameters and DMA access.

White Rabbit serial link - used to distribute the real time magnetic field to the various users along CERN.
Software - CERN standard platform

Open hardware repository: www.ohwr.org

VHDL

Hdlmake – Tool to construct the VHDL project with OH Repo IP cores

wbgen2 – Tool to generate automatically wishbone interface for VHDL and C header.

White-Rabbit – VHDL core to distribute B field and synchronize phase / offset between different oscillators

Driver

C, gcc – Programming Linux driver with interrupts and DMA to control the hardware (spec-bmeas)

FESA

C++, VM, Eclipse – Middleware home made to control devices @CERN

The New PS B-Train

B-Train Firmware Architecture
Outline

1 Introduction
 - CERN Accelerators
 - Magnets in Accelerators
 - Real-Time Magnetic Field Measurements
 - B-Train

2 The New PS B-Train
 - B-Train upgrade
 - B-Train Firmware Architecture
 - Hardware
 - Software

3 PS B-Train over White-Rabbit
 - White-Rabbit
 - General Architecture/Wiring
 - VHDL Streamers
 - B & I Frames
 - Tests
PS B-Train over White-Rabbit

Fully deterministic Ethernet-based network + Sub-nanosecond Synchronization

White Rabbit

White Rabbit PS-BTrain WR Switch and all cabling + spares in place @PS reference magnet; Operational & Spare systems are being sent at the same time using VLANs; PS-BTrain WR Network: 1 master and 6 nodes (WR slaves).
PS B-Train over White-Rabbit
Fully deterministic Ethernet-based network + Sub-nanosecond Synchronization

White Rabbit

Cheap, robust, scalable, fast over standard multimodal fibers;
White Rabbit

- **Cheap, robust, scalable**, fast over standard multimodal fibers;
- **Ethernet** standard: maintainability and interoperability with future control systems;
PS B-Train over White-Rabbit

Fully deterministic Ethernet-based network + Sub-nanosecond Synchronization

White Rabbit

- **Cheap, robust, scalable**, fast over standard multimodal fibers;

- **Ethernet** standard: maintainability and interoperability with future control systems;

- **CERN BE-CO-HT** support;
PS B-Train over White-Rabbit

Fully deterministic Ethernet-based network + Sub-nanosecond Synchronization

White Rabbit

- **Cheap, robust, scalable**, fast over standard multimodal fibers;
- **Ethernet** standard: maintainability and interoperability with future control systems;
- **CERN BE-CO-HT** support;
- Commercial partner products already on the market, **Seven Solutions & Creotech**.
PS B-Train over White-Rabbit

Fully deterministic Ethernet-based network + Sub-nanosecond Synchronization

White Rabbit

- **Cheap, robust, scalable**, fast over standard multimodal fibers;
- **Ethernet** standard: maintainability and interoperability with future control systems;
- **CERN BE-CO-HT** support;
- Commercial partner products already on the market, **Seven Solutions & Creotech**.

White-Rabbit PS-BTrain

![WR Switch and all cabling + spares in place @PS reference magnet; Operational & Spare systems are being sent at the same time using VLANs; PS-BTrain WR Network: 1 master and 6 nodes (WR slaves).]
PS B-Train over White-Rabbit

Fully deterministic Ethernet-based network + Sub-nanosecond Synchronization

White Rabbit

- Cheap, robust, scalable, fast over standard multimodal fibers;
- Ethernet standard: maintainability and interoperability with future control systems;
- CERN BE-CO-HT support;
- Commercial partner products already on the market, Seven Solutions & Creotech.

White-Rabbit PS-BTrain

- WR Switch and all cabling + spares in place @PS reference magnet;
PS B-Train over White-Rabbit

Fully deterministic Ethernet-based network + Sub-nanosecond Synchronization

White Rabbit

- **Cheap, robust, scalable**, fast over standard multimodal fibers;
- **Ethernet** standard: maintainability and interoperability with future control systems;
- **CERN BE-CO-HT** support;
- Commercial partner products already on the market, **Seven Solutions & Creotech**.

White-Rabbit PS-BTrain

- **WR Switch** and all cabling + spares in place @PS reference magnet;
- **Operational & Spare** systems are being sent at the same time using VLANs;
PS B-Train over White-Rabbit

Fully deterministic Ethernet-based network + Sub-nanosecond Synchronization

White Rabbit

- **Cheap, robust, scalable**, fast over standard multimodal fibers;
- **Ethernet** standard: maintainability and interoperability with future control systems;
- **CERN BE-CO-HT** support;
- Commercial partner products already on the market, **Seven Solutions & Creotech**.

White-Rabbit PS-BTrain

- **WR Switch** and all cabling + spares in place @PS reference magnet;
- **Operational & Spare** systems are being sent at the same time using VLANs;
- **PS-BTrain WR Network**: 1 master and 6 nodes (WR slaves).
Outline

1. Introduction
 - CERN Accelerators
 - Magnets in Accelerators
 - Real-Time Magnetic Field Measurements
 - B-Train

2. The New PS B-Train
 - B-Train upgrade
 - B-Train Firmware Architecture
 - Hardware
 - Software

3. PS B-Train over White-Rabbit
 - White-Rabbit
 - General Architecture/Wiring
 - VHDL Streamers
 - B & I Frames
 - Tests
PS-BTrain White-Rabbit Distribution Architecture

B-Train

- **PS B-Train**
 - WR Slave Node

POPs

- WR Slave Node (Main Power supply)

PFW

- WR Slave Node (Pole-face windings)

CPS RF

- WR Slave Node (Complex PS)

MM Lab

- WR Slave Node (Magnetics Measurements)

Beam

- WR Slave Node

Users

- Power-Supply

Diagnostic Tools

- Beam Diagnostics

Magnetic Measurement

- $\oint B \, dl$

- $B(t) I(t)$

PS Dipole Reference Magnet

WR Master Switch

WR Slave Node

- Beam Diagnostics

Beam Diagnostics

- F rev

Diagnostic Tools

- Beam Diagnostics
Outline

1. Introduction
 - CERN Accelerators
 - Magnets in Accelerators
 - Real-Time Magnetic Field Measurements
 - B-Train

2. The New PS B-Train
 - B-Train upgrade
 - B-Train Firmware Architecture
 - Hardware
 - Software

3. PS B-Train over White-Rabbit
 - White-Rabbit
 - General Architecture/Wiring
 - VHDL Streamers
 - B & I Frames
 - Tests
System CLK : 62.5MHz

Note:
The frame must be read before the next come.

Note:
"type" is used to differentiate B frame as Imain frame (see frame sheet).
Outline

1 Introduction
 - CERN Accelerators
 - Magnets in Accelerators
 - Real-Time Magnetic Field Measurements
 - B-Train

2 The New PS B-Train
 - B-Train upgrade
 - B-Train Firmware Architecture
 - Hardware
 - Software

3 PS B-Train over White-Rabbit
 - White-Rabbit
 - General Architecture/Wiring
 - VHDL Streamers
 - B & I Frames
 - Tests
WR Ethernet Frame Payload

B & I Frames

- Bit 7 – 0: Frame type
 - 0x42, ASCII code of 'B', used for the B field measurement frame
 - 0x49, ASCII code of 'I', used for the Imain frame

- Bit 8: Simulation/Effective bit, '0' if the B field sent is measured, '1' if the B field sent is simulated.

- Bit 9: Error flag bit, '1' if one of error detection systems see something wrong.

- Bit 10: C0 pulse

- Bit 11: Zero cycle pulse

- Bit 12: Focusing low marker flag (optional)

- Bit 13: Defocusing low marker flag (optional)

- Bit 14–15: Don't care, not defined control bits.

Ethernet Padding to have 64 bytes

Frame ctrl 16 bits

- B (dipole) 32-bits (signed) 10 nT (LSB) (> ±20 T range)

- Bdot 32-bits (signed) 1 \(\mu \) T/s (LSB) (> ±2 KT/s range)

- G (quadrupole) 32-bits (signed) 1 \(\mu \) T/m (LSB) (> ±2 KT/m range)

- OLD Bup-Bdown 32-bits (signed) 10 nT/ (LSB) (> ±20 T range)

CRC 16 bits

B frame: (for the PS, ELENA, BOOSTER)

I frame: (for the PS)
WR Ethernet Frame Payload

B & I Frames

B frame:
(for the PS, ELENA, BOOSTER)

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame ctrl 16 bits</td>
<td></td>
</tr>
<tr>
<td>B (dipole) 32-bits (signed)</td>
<td>10 nT (LSB) (= ±20 T range)</td>
</tr>
<tr>
<td>Bdot 32-bits (signed)</td>
<td>1 μT/s (LSB) (= ±2 K T/s range)</td>
</tr>
<tr>
<td>G (quadrupole) 32-bits (signed)</td>
<td>1 μT/m (LSB) (= ±2 K T/m range)</td>
</tr>
<tr>
<td>OLD Bup-Bdown 32-bits (signed)</td>
<td>10 nT/ (LSB) (= ±20 T range)</td>
</tr>
<tr>
<td>CRC 16 bits</td>
<td></td>
</tr>
</tbody>
</table>

Ethernet Padding to have 64 bytes

Frame ctrl 16 bits:

<table>
<thead>
<tr>
<th>Bit 15–0: Frame type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x42: ASCII code of 'B', used for the B field measurement frame</td>
</tr>
<tr>
<td>0x49: ASCII code of 'I' used for the Imain frame</td>
</tr>
</tbody>
</table>

Bit definitions:

- **Bit 7 – 0**: Frame type
 - ➞ 0x42, ASCII code of 'B', used for the B field measurement frame
 - ➞ 0x49, ASCII code of 'I' used for the Imain frame

- **Bit 8**: Simulation/Effective bit, '0' if the B field sent is measured, '1' if the B field sent is simulated.

- **Bit 9**: Error flag bit, '1' if one of error detection system sees something wrong.

- **Bit 10**: C0 pulse

- **Bit 11**: Zero cycle pulse

- **Bit 12**: Focusing low marker flag (optional)

- **Bit 13**: Defocusing low marker flag (optional)

- **Bit 14–15**: Don't care, not defined control bits.
B & I Frames

B frame:
(for the PS, ELENA, BOOSTER)

<table>
<thead>
<tr>
<th>Frame ctrl</th>
<th>B (dipole)</th>
<th>Bdot</th>
<th>G (quadrupole)</th>
<th>OLD Bup-Bdown</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 bits</td>
<td>32-bits (signed)</td>
<td>32-bits (signed)</td>
<td>32-bits (signed)</td>
<td>32-bits (signed)</td>
<td>16 bits</td>
</tr>
<tr>
<td></td>
<td>10 nT (LSB)</td>
<td>1 μT/s (LSB)</td>
<td>1 μT/m (LSB)</td>
<td>10 nT/ (LSB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(> ±20 T range)</td>
<td>(> ±2KT/s range)</td>
<td>(> ±2KT/m range)</td>
<td>(> ±20 T range)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

I frame:
(for the PS)

<table>
<thead>
<tr>
<th>Frame ctrl</th>
<th>Imain</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 bits</td>
<td>32-bits (signed)</td>
<td>16 bits</td>
</tr>
<tr>
<td></td>
<td>1mA (LSB)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(> ±20 kA range)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>0</td>
</tr>
</tbody>
</table>

Ethernet Padding to have 64 bytes

Ethernet Frame Payload

B & I Frames
Outline

1. Introduction
 - CERN Accelerators
 - Magnets in Accelerators
 - Real-Time Magnetic Field Measurements
 - B-Train

2. The New PS B-Train
 - B-Train upgrade
 - B-Train Firmware Architecture
 - Hardware
 - Software

3. PS B-Train over White-Rabbit
 - White-Rabbit
 - General Architecture/Wiring
 - VHDL Streamers
 - B & I Frames
 - Tests
White-Rabbit Synchronization

PS B-Train over White-Rabbit

Tests
RF & POPs tests
wrpc v2.0 core

Considering 2.9 T/s the PS B-field ramp rate:
RF 10 µs latency seen by CPS RF receiver @250KHz.
With 10 µT latency, gives us 29 µT error;
POPs 5.6 µs latency seen by POPs receiver @1KHz.
With 5.6 µT latency, gives us 29 µT error;
These error values are fine for PS machine but might be a problem for smaller machines, i.e. ELENA.
Considering 2.9 \(T/s \) the PS B-field ramp rate:
RF & POPs tests

Considering 2.9 T/s the PS B-field ramp rate:

RF

10 µs latency seen by CPS RF receiver @250KHz.
RF & POPs tests
wrpc v2.0 core

Considering 2.9 T/s the PS B-field ramp rate:

<table>
<thead>
<tr>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 μs latency seen by CPS RF receiver @250KHz.</td>
</tr>
</tbody>
</table>

- With 10 μT latency, gives us 29 μT error;
Considering 2.9 T/s the PS B-field ramp rate:

RF

- 10 µs latency seen by CPS RF receiver @250KHz.

- With 10 µT latency, gives us 29 µT error;

POPs

- 5.6 µs latency seen by POPs receiver @1KHz.
RF & POPs tests
wrpc v2.0 core

Considering 2.9 T/s the PS B-field ramp rate:

RF

10 μs latency seen by CPS RF receiver @250KHz.

- With 10 μT latency, gives us 29 μT error;

POPs

5.6 μs latency seen by POPs receiver @1KHz.

- With 5.6 μT latency, gives us 29 μT error;
RF & POPs tests
wrpc v2.0 core

Considering 2.9 T/s the PS B-field ramp rate:

RF
10 µs latency seen by CPS RF receiver @250KHz.

- With 10 µT latency, gives us 29 µT error;

POPs
5.6 µs latency seen by POPs receiver @1KHz.

- With 5.6 µT latency, gives us 29 µT error;

These error values are fine for PS machine but might be a problem for smaller machines, i.e. ELENA.
Summary

White-Rabbit fully tested and working in the new PS-BTrain prototype; bigger speed rates to be tested in the next few weeks; 10 µT latency might be a problem for the upcoming upgrades on the B-Train systems.

Outlook
WRPC v3.0 core to be deployed on the system; improve diagnostics on the systems; huge VHDL project with some timing failures - needs to be cleaned up; White-Rabbit B-field distribution to be implemented in all B-Train systems @CERN, ELENA is the next one.
Summary

- White-Rabbit **fully tested** and **working** in the new PS-BTrain prototype;

- Bigger speed rates to be tested in the next few weeks;

- 10 µT latency might be a problem for the upcoming upgrades on the B-Train systems.

Outlook

- WRPC v3.0 core to be deployed on the system;

- Improve diagnostics on the systems;

- Huge VHDL project with some timing failures - needs to be cleaned up;

- White-Rabbit B-field distribution to be implemented in all B-Train systems @CERN, ELENA is the next one.
White-Rabbit **fully tested** and **working** in the new PS-BTrain prototype;

Bigger **speed rates** to be tested in the next few weeks;
White-Rabbit **fully tested** and **working** in the new PS-BTrain prototype;

Bigger **speed rates** to be tested in the next few weeks;

10 \(\mu \)T latency might be a problem for the upcoming upgrades on the B-Train systems.
Summary

- White-Rabbit **fully tested** and **working** in the new PS-BTrain prototype;
- Bigger **speed rates** to be tested in the next few weeks;
- **10 µT** latency might be a problem for the upcoming upgrades on the B-Train systems.

Outlook
Summary

- White-Rabbit **fully tested** and **working** in the new PS-BTrain prototype;
- Bigger **speed rates** to be tested in the next few weeks;
- **10 μT** latency might be a problem for the upcoming upgrades on the B-Train systems.

Outlook

- **WRPC v3.0 core** to be deployed on the system;
Summary

- White-Rabbit **fully tested** and **working** in the new PS-BTrain prototype;
- Bigger **speed rates** to be tested in the next few weeks;
- **10 µT** latency might be a problem for the upcoming upgrades on the B-Train systems.

Outlook

- **WRPC v3.0 core** to be deployed on the system;
- Improve diagnostics on the systems;
Summary

- White-Rabbit **fully tested** and **working** in the new PS-BTrain prototype;
- Bigger **speed rates** to be tested in the next few weeks;
- **10 \(\mu \text{T} \)** latency might be a problem for the upcoming upgrades on the B-Train systems.

Outlook

- **WRPC v3.0 core** to be deployed on the system;
- Improve diagnostics on the systems;
- Huge VHDL project with some timing failures - needs to be cleaned up;
Summary

- White-Rabbit **fully tested** and **working** in the new PS-BTrain prototype;
- Bigger **speed rates** to be tested in the next few weeks;
- **10 µT** latency might be a problem for the upcoming upgrades on the B-Train systems.

Outlook

- **WRPC v3.0 core** to be deployed on the system;
- Improve diagnostics on the systems;
- Huge VHDL project with some timing failures - needs to be cleaned up;
- White-Rabbit **B-field distribution** to be implemented in all B-Train systems @CERN, **ELENA** is the next one.
For Further Reading I

N. Sammut, L. Bottura, J. Micallef.
Mathematical formulation to predict the harmonics of the superconducting Large Hadron Collider magnet.

P. Arpaia.
Metrological Characterization of a Ferrimagnetic Resonance Transducer for Real-Time Magnetic Field Markers in Particle Accelerators.

A. Beaumont, M. Buzio.
A NMR marker for CERN PS Combined Function Magnet.
International Magnetic Measurement Workshop (IMMW16), Bad Zurzach, Switzerland, 2009

P. Arpaia, M. Buzio, F. Caspers, G. Gollucio, C. Petrone.
Static Metrological Characterization of a Ferromagnetic Resonance Transducer for Real-Time Magnetic Field Markers in Particle Accelerators.
IEEE International Instrumentation and Measurement Technology Conference, May 3-6, 2011, China.
White rabbit: a PTP application for robust sub-nanosecond synchronization.
Precision Clock Synchronization for Measurement Control and Communication (ISPCS), 12-16 September, Munich, Germany.

Simple PCIe FMC Carrier (SPEC)
http://www.ohwr.org/projects/spec/wiki
Thank you!

Feel free to make any questions.