Introduction to White Rabbit

Maciej Lipiński
on behalf of
the White Rabbit Team

BE-CO-HT

WR Training
White Rabbit in nutshell

- Accelerator’s control and timing
White Rabbit in nutshell

- Accelerator’s control and timing
- Renovation of General Machine Timing
White Rabbit in nutshell

- Accelerator’s control and timing
- Renovation of General Machine Timing
- Ethernet Local Area Network (LAN)
White Rabbit in nutshell

- Accelerator’s control and timing
- Renovation of General Machine Timing
- Ethernet Local Area Network (LAN)
White Rabbit in nutshell

- Accelerator’s control and timing
- Renovation of General Machine Timing
- Ethernet Local Area Network (LAN)
- LAN with two additional services:
White Rabbit in nutshell

- Accelerator’s control and timing
- Renovation of General Machine Timing
- Ethernet Local Area Network (LAN)
- LAN with two additional services:
 1. Sub-ns synchronization
White Rabbit in nutshell

- Accelerator’s control and timing
- Renovation of General Machine Timing
- Ethernet Local Area Network (LAN)
- LAN with two additional services:
 1. Sub-ns synchronization
 2. Deterministic data delivery
White Rabbit in nutshell

- Accelerator’s control and timing
- Renovation of General Machine Timing
- Ethernet Local Area Network (LAN)
- LAN with two additional services:
 1. Sub-ns synchronization
 2. Deterministic data delivery
- Open hardware & software:
White Rabbit in nutshell

- Accelerator’s control and timing
- Renovation of General Machine Timing
- Ethernet Local Area Network (LAN)
- LAN with two additional services:
 1. Sub-ns synchronization
 2. Deterministic data delivery
- Open hardware & software:
 - WR Switch
White Rabbit in nutshell

- Accelerator’s control and timing
- Renovation of General Machine Timing
- Ethernet Local Area Network (LAN)
- LAN with two additional services:
 1. Sub-ns synchronization
 2. Deterministic data delivery
- Open hardware & software:
 - WR Switch
 - WR Node
White Rabbit in nutshell

- Accelerator’s control and timing
- Renovation of General Machine Timing
- Ethernet Local Area Network (LAN)
- LAN with two additional services:
 1. Sub-ns synchronization
 2. Deterministic data delivery
- Open hardware & software:
 - WR Switch
 - WR Node
- Commercially available
White Rabbit in nutshell

- Accelerator’s control and timing
- Renovation of General Machine Timing
- Ethernet Local Area Network (LAN)
- LAN with two additional services:
 1. Sub-ns synchronization
 2. Deterministic data delivery
- Open hardware & software:
 - WR Switch
 - WR Node
- Commercially available
- Growing number of applications
Applications
Applications
Applications

[Diagram showing CMS and ALICE experiments with LHC 27 km]

M. Lipiński
Introduction to White Rabbit
3/29
Applications

- CMS
- ALICE
- LHC - 27 km
Applications

M. Lipiński
Applications
Outline

1. Introduction to White Rabbit
2. Sub-ns synchronisation
3. Deterministic Data Distribution
4. Network Elements
5. Applications at CERN
6. Summary
<table>
<thead>
<tr>
<th>Outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction to White Rabbit</td>
</tr>
<tr>
<td>2. Sub-ns synchronisation</td>
</tr>
<tr>
<td>3. Deterministic Data Distribution</td>
</tr>
<tr>
<td>4. Network Elements</td>
</tr>
<tr>
<td>5. Applications at CERN</td>
</tr>
<tr>
<td>6. Summary</td>
</tr>
</tbody>
</table>
White Rabbit synchronisation

- It provides:
 - **Sub-ns** accuracy
 - **Sub-50 ps** precision

White Rabbit synchronisation

- **Sub-ns** accuracy
- **Sub-50 ps** precision

Reference value

Accuracy

Probability density

Value

Precision

Time & Data Master

Control Data

GPS

Time & Data Master

Control Data

GPS

10km

2000 nodes
White Rabbit synchronisation

- It provides:
 - **Sub-ns** accuracy
 - **Sub-50 ps** precision

- It uses:
 - Precision Time Protocol (IEEE 1588)
 - Layer 1 syntonization
 - Digital Dual Mixer Time Difference
 - Link delay model
Precision Time Protocol (PTP)

- Packet-based synchronization protocol

\[
\delta_{\text{ms}} = \left(t_4 - t_1 \right) - \left(t_3 - t_2 \right)
\]

\[
\text{clock offset}_{\text{ms}} = t_2 - t_1 + \delta_{\text{ms}}
\]

Limitations:
- free-running oscillators
- timestamping precision
- medium asymmetry

M. Lipiński
Introduction to White Rabbit 7/29
Precision Time Protocol (PTP)

- Packet-based synchronization protocol
- Simple calculations:
 - link delay $\delta_{ms} = \frac{(t_4 - t_1) - (t_3 - t_2)}{2}$
 - clock offset $\theta_{ms} = t_2 - t_1 + \delta_{ms}$
Precision Time Protocol (PTP)

- Packet-based synchronization protocol
- Simple calculations:
 - link delay $\delta_{ms} = \frac{(t_4 - t_1) - (t_3 - t_2)}{2}$
 - clock offset $\eta_{ms} = t_2 - t_1 + \delta_{ms}$
- Sub-μs synchronisation
Introduction

Synchronisation

Determinism

Network Elements

Applications at CERN

Summary

Precision Time Protocol (PTP)

- Packet-based synchronization protocol
- Simple calculations:
 - link delay\(_{ms}\) \(\delta_{ms} = \frac{(t_4-t_1)-(t_3-t_2)}{2}\)
 - clock offset\(_{ms}\) = \(t_2 - t_1 + \delta_{ms}\)

- Sub-\(\mu\)s synchronisation

- Limitations:
 - free-running oscillators
 - timestamping precision
 - medium asymmetry
Layer 1 Synchronization

- All network devices use the same physical layer clock
- Clock is encoded in data by master and recovered by slave
- Clock loopback and phase detection allow precise timestamps
Digital Dual Mixer Time Difference (DDMTD)

Input:
- frequency f_{in} [Hz]
- phase ϕ_{in} [rad]

Output:
- proportionally lower frequency f_{out} [Hz]
- equal phase ϕ_{in} [rad]

Zooming effect:
$$x_{in}[\text{ns}] = 1 + 2^N \cdot x_{out}[\text{ns}]$$

** PLL Equation:**
$$f_{DDMTD} = \frac{2^N}{2^N + 1} f_{Ain}$$
Digital Dual Mixer Time Difference (DDMTD)

- **Input:**
 - frequency f_{in} [Hz]
 - phase ϕ_{in} [rad]

- **Output:**
 - proportionally lower frequency f_{out} [Hz]
 - equal phase ϕ_{in} [rad]

The Digital Dual Mixer Time Difference (DDMTD) is a device that takes an input signal with frequency f_{in} and phase ϕ_{in} and outputs a signal with a proportionally lower frequency f_{out} and equal phase ϕ_{in}. The relationship between the input and output frequency is given by:

$$f_{DDMTD} = \frac{2^N}{2^N + 1} f_{Ain}$$

Where N is a counter that increments by 1 for each output signal. The zooming effect is given by:

$$x_{out} = \frac{1}{1 + 2N} x_{in}$$

This relationship shows how the input signal is scaled down by a factor of $(1 + 2N)$ to produce the output signal.
Digital Dual Mixer Time Difference (DDMTD)

- **Input:**
 - frequency $f_{in}[\text{Hz}]$
 - phase $\phi_{in} [\text{rad}]$

- **Output:**
 - proportionally lower frequency $f_{out}[\text{Hz}]$
 - equal phase $\phi_{in} [\text{rad}]$

- **Zooming effect:**
 \[x_{in}[\text{ns}] = \frac{1}{1+2^N} \cdot x_{out}[\text{ns}] \]

Diagram:

- PLL
 \[f_{DDMTD} = \frac{2^N}{2^N + 1} f_{Ain} \]
- Counters
- Clocks
- Timing:
 - $x_{in}[\text{ns}]$
 - $x_{out}[\text{ns}]$

M. Lipiński
Introduction to White Rabbit 9/29
Link delay model

- **Hardware delays:**
 - Calibrate static delays: $\Delta_{TXM}, \Delta_{RXM}, \Delta_{TXS}, \Delta_{RXS}$
 - Measure semi-static delays: ϵ_M, ϵ_S

- **Link asymmetry:**
 - Single fibre for two-way communication
 - Fibre asymmetry coefficient: $\alpha = \delta_{MS} - \delta_{SM}$

Diagram:
- **WR Master**
 - WR gear
 - Δ_{TXM}
 - Δ_{RXM}, ϵ_M
 - δ_{SM}
- **WR Slave**
 - WR gear
 - ϵ_S
 - Δ_{RXS}

M. Lipiński

Introduction to White Rabbit 10/29
Link delay model

Hardware delays:
- Calibrate static delays: $\Delta_{TXM}, \Delta_{RXM}, \Delta_{TXS}, \Delta_{RXS}$
- Measure semi-static delays: ϵ_M, ϵ_S
Link delay model

- **Hardware delays:**
 - Calibrate static delays: \(\Delta_{TXM}, \Delta_{RXM}, \Delta_{TXS}, \Delta_{RXS} \)
 - Measure semi-static delays: \(\epsilon_M, \epsilon_S \)

- **Link asymmetry:**
 - Single fibre for two-way communication
 - Fibre asymmetry coefficient: \(\alpha = \frac{\delta_{MS} - \delta_{SM}}{\delta_{SM}} \)
Synchronisation performance: basic test setup

Stable oscillator

Cesium beam clock

WR Switch (master)

10 MHz
1 PPS
5 km

Oscilloscope

WR Switch (slave 1)

1 PPS

WR Switch (slave 2)

5 km

WR Switch (slave 3)

5 km

hot-air gun
Synchronisation performance: test results

Histogram of offsets between master and each slave

- Master (CH1)
- Slave 1 (CH2)
 - mean = 161.86 ps
 - sdev = 5.45 ps
- Slave 2 (CH3)
 - mean = 24.67 ps
 - sdev = 5.30 ps
- Slave 3 (CH4)
 - mean = -135.25 ps
 - sdev = 6.14 ps
White Rabbit is ...

... the most accurate implementation of the IEEE 1588 in the world.
WR standardisation in IEEE 1588

White Rabbit is ...

... the most accurate implementation of the IEEE 1588 in the world.

- IEEE 1588 standard is being revised
WR standardisation in IEEE 1588

White Rabbit is ...

... the most accurate implementation of the IEEE 1588 in the world.

- IEEE 1588 standard is being revised
- Dedicated High Accuracy sub-committee
White Rabbit is ...

... the most accurate implementation of the IEEE 1588 in the world.

- IEEE 1588 standard is being revised
- Dedicated High Accuracy sub-committee
- WR extensions will be included in the standard
Outline

1. Introduction to White Rabbit
2. Sub-ns synchronisation
3. Deterministic Data Distribution
4. Network Elements
5. Applications at CERN
6. Summary
Determinism

Deterministic system

A deterministic system is predictable: it provides calculable and consistent characteristics of operation.
Deterministic Data Distribution

White Rabbit switch provides deterministic data forwarding
Deterministic Data Distribution

White Rabbit switch provides deterministic data forwarding

- Openly available design
White Rabbit switch provides deterministic data forwarding

- Openly available design
- Optimized for latency
White Rabbit switch provides deterministic data forwarding

- Openly available design
- Optimized for latency
- Supports prioritization

![Graph showing latency over one and two WR switches](image-url)
White Rabbit switch provides deterministic data forwarding:

- Openly available design
- Optimized for latency
- Supports prioritization
- Provides for critical traffic:
 - upper-bound latency
 - reserved resources
WR Switch

- Central element of WR network
- 18 port Gigabit Ethernet switch with WR features
- Supports VLANs, SNMP, Web-based management
- Optical transceivers: up to 10km, single-mode fiber
- Fully open design commercially available
Open IP Core: WR PTP Core
WR Node

- Open IP Core: WR PTP Core
- Currently runs on:
 - **Xilinx**: Spartan, Kintex-7, Zynq
 - **Altera**: Aria II and V

![WR Node Diagram]

M. Lipiński
Introduction to White Rabbit 19/29
WR Node

- Open IP Core: WR PTP Core
- Currently runs on:
 - **Xilinx**: Spartan, Kintex-7, Zynq
 - **Altera**: Aria II and V
- Open HW WR-enabled boards:
 - PCIe
 - VME
 - PXIe
 - CRIO
 - Open HW FMCs: ADC, DAC, TDC, Fine Delay, ...

You can integrate WR into your design!
WR Node

- Open IP Core: WR PTP Core
- Currently runs on:
 - **Xilinx**: Spartan, Kintex-7, Zynq
 - **Altera**: Aria II and V
- Open HW WR-enabled boards:
 - PCIe

You can integrate WR into your design!
WR Node

- Open IP Core: WR PTP Core
- Currently runs on:
 - **Xilinx**: Spartan, Kintex-7, Zynq
 - **Altera**: Aria II and V
- Open HW WR-enabled boards:
 - PCIe
 - VME
Open IP Core: WR PTP Core
Currently runs on:
- **Xilinx**: Spartan, Kintex-7, Zynq
- **Altera**: Aria II and V
Open HW WR-enabled boards:
- PCIe
- VME
- PXIe
Open IP Core: WR PTP Core
Currently runs on:
- **Xilinx**: Spartan, Kintex-7, Zynq
- **Altera**: Aria II and V
Open HW WR-enabled boards:
- PCIe
- VME
- PXIe
- CRIO
WR Node

- Open IP Core: WR PTP Core
- Currently runs on:
 - **Xilinx**: Spartan, Kintex-7, Zynq
 - **Altera**: Aria II and V
- Open HW WR-enabled boards:
 - PCIe
 - VME
 - PXIe
 - CRIO
- Open HW FMCs: ADC, DAC, TDC, Fine Delay, ...
WR Node

- Open IP Core: WR PTP Core
- Currently runs on:
 - Xilinx: Spartan, Kintex-7, Zynq
 - Altera: Aria II and V
- Open HW WR-enabled boards:
 - PCIe
 - VME
 - PXIe
 - CRIO
- Open HW FMCs: ADC, DAC, TDC, Fine Delay, ...
- You can integrate WR into your design!
WR PTP Core - reference design

- PLL DACs drive (SPI)
- 5:1 PLL, Fanout
- DAC 16 bit
- VCTCXO 25 MHz 2.5 ppm
- REF clock generator
- DAC 16 bit
- VCXO 20 MHz 100 ppm
- DMTD clock generator
- FPGA WRPC
- IO
- IO
- IO
- IO
- IO
- IO
- GCLK
- MGTREFCLK
- IO
- IO
- IO
- IO
- IO
- IO
- GCLK, 6.25:1 PLL
- MGTX
- MGTRX
- OW
- I2C
- SFPCTRL
- SFPTX
- SFP
- SFP
- SFP
- SFP
- SFP
- PPS
- REFCLK
- UART
- GPIO
- I/O Connector (optional)
- Unique ID (optional)
- EEPROM (optional)
- SFP
- FO TxRx

M. Lipiński
Introduction to White Rabbit 20/29
White Rabbit PTP Core

- Tunable oscillators
- SFP
- Pipelined WB MAC I/F
- WR PTP Core
- UART
- Periph
- SoftPLL
- 1-PPS
- Lattice Mico32
- RAM
- mini-NIC
- Fabric redirector
- Endpoint
- Wishbone crossbar
- Control Wishbone I/F
- Flash / EEPROM
- PHY (GTP, GTX, ...)
- SFP

M. Lipiński
Introduction to White Rabbit 21/29
White Rabbit PTP Core

The diagram illustrates the components and interfaces of the White Rabbit PTP Core:

- **Tx** and **Rx** indicate the transmission and reception of data through Ethernet
- **External PHY** connects the Ethernet interface
- **External oscillators** provide reference and DMTD clocks
- **EEPROM** stores configuration data
- **TBI/Serdes** for signal processing
- **WR PTP Core** integrates all components
- **MAC I/F** for communication
- **Pipelined WB Slave I/F** for data transfer
- **Timing I/F** for synchronization
- **Control/status pins** for configuration

Integration of these elements enables precise time synchronization and deterministic network operation.
Example WR PTP Core integration
Outline

1. Introduction to White Rabbit
2. Sub-ns synchronisation
3. Deterministic Data Distribution
4. Network Elements
5. Applications at CERN
6. Summary
Existing applications at CERN

- **AD synchronisation**
 - Distribution of 10 MHz and 1 PPS
 - Operational since 2014
Existing applications at CERN

- **AD synchronisation**
 - Distribution of 10 MHz and 1 PPS
 - Operational since 2014

- **LHC Instabilities**
 - Trigger Distribution
 - Operational since 2015
Existing applications at CERN

- AD synchronisation
 - Distribution of 10 MHz and 1 PPS
 - Operational since 2014

- LHC Instabilities
 - Trigger Distribution
 - Operational since 2015

- PS WR-Btrain
 - Distribution of magnetic field
 - Experimental since 2015
Existing applications at CERN

- **AD synchronisation**
 - Distribution of 10 MHz and 1 PPS
 - Operational since 2014

- **LHC Instabilities**
 - Trigger Distribution
 - Operational since 2015

- **PS WR-Btrain**
 - Distribution of magnetic field
 - Experimental since 2015

- **Vibration transfer at LHC’s Point 1**
 - Synchronisation of geophones
 - Used in 2015
Current Developments

- **Diagnostics:**
 - Support SNMP in nodes
Current Developments

- **Diagnostics:**
 - Support SNMP in nodes
 - Integration with CERN tools

![SNMP Interface](image_url)
Current Developments

- **Diagnostics:**
 - Support SNMP in nodes
 - Integration with CERN tools

- **New hardware**
 - WRAP - White RAbbit Pluggable
 - New WR switch with 10GBit ports
Current Developments

- Diagnostics:
 - Support SNMP in nodes
 - Integration with CERN tools
- New hardware
 - WRAP - White RAbbit Pluggable
 - New WR switch with 10GBit ports
- Preparation of new White Rabbit Timing (WRT), successor of GMT
- New applications....
Distributed Direct Digital Synthesis

- Can provide various clocks (RF of many rings and linacs) with a single, standard link.
- Replaces dozens of cables with a single fiber.
- Works over big distances without degrading signal quality.
Common clock in entire network: no skew between ADCs.
Ability to sample with different clocks via Distributed DDS.
External triggers can be time tagged with a TDC and used to reconstruct the original time base in the operator’s PC.
Outline

1. Introduction to White Rabbit
2. Sub-ns synchronisation
3. Deterministic Data Distribution
4. Network Elements
5. Applications at CERN
6. Summary
Summary

- A versatile solution for general control and data acquisition
Summary

- A versatile solution for general control and data acquisition
- Open H/W & S/W with commercial support
Summary

- A versatile solution for general control and data acquisition
- Open H/W & S/W with commercial support
- Standard-compatible and standard-extending
Summary

- A versatile solution for general control and data acquisition
- Open H/W & S/W with commercial support
- Standard-compatible and standard-extending
- Active participation in IEEE1588 revision process
Summary

- A versatile solution for general control and data acquisition
- Open H/W & S/W with commercial support
- Standard-compatible and standard-extending
- Active participation in IEEE1588 revision process
- More applications than ever expected
Summary

- A versatile solution for general control and data acquisition
- Open H/W & S/W with commercial support
- Standard-compatible and standard-extending
- Active participation in IEEE1588 revision process
- More applications than ever expected
- Supported by BE-CO and recommended CERN fieldbus
A versatile solution for general control and data acquisition
Open H/W & S/W with commercial support
Standard-compatible and standard-extending
Active participation in IEEE1588 revision process
More applications than ever expected
Supported by BE-CO and recommended CERN fieldbus

http://www.ohwr.org/projects/white-rabbit/wiki

Thank you
WR PTP Core - resource utilization

<table>
<thead>
<tr>
<th>Slice Logic Utilization</th>
<th>Used</th>
<th>Available</th>
<th>Utilization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Slice Registers</td>
<td>6,791</td>
<td>54,576</td>
<td>12%</td>
</tr>
<tr>
<td>Number of Slice LUTs</td>
<td>8,956</td>
<td>27,288</td>
<td>32%</td>
</tr>
<tr>
<td>Number of occupied Slices</td>
<td>3,345</td>
<td>6,822</td>
<td>49%</td>
</tr>
<tr>
<td>Number of MUXCYs used</td>
<td>1,532</td>
<td>13,644</td>
<td>11%</td>
</tr>
<tr>
<td>Number of bonded IOBs</td>
<td>26</td>
<td>296</td>
<td>9%</td>
</tr>
<tr>
<td>Number of RAMB16BWERS</td>
<td>56</td>
<td>116</td>
<td>48%</td>
</tr>
<tr>
<td>Number of RAMB8BWERS</td>
<td>3</td>
<td>232</td>
<td>1%</td>
</tr>
<tr>
<td>Number of BUFIO2/BUFIO2_2CLKs</td>
<td>1</td>
<td>32</td>
<td>3%</td>
</tr>
<tr>
<td>Number of BUFG/BUFGMUXs</td>
<td>7</td>
<td>16</td>
<td>43%</td>
</tr>
<tr>
<td>Number of BSCANs</td>
<td>1</td>
<td>4</td>
<td>25%</td>
</tr>
<tr>
<td>Number of DSP48A1s</td>
<td>3</td>
<td>58</td>
<td>5%</td>
</tr>
<tr>
<td>Number of GTPA1_DUALs</td>
<td>1</td>
<td>2</td>
<td>50%</td>
</tr>
<tr>
<td>Number of PLL_ADVs</td>
<td>2</td>
<td>4</td>
<td>50%</td>
</tr>
</tbody>
</table>