White Rabbit standardization in IEEE1588-20XX

Greg Daniluk (CERN)

2nd White Rabbit Tutorial Workshop
28 June 2018
THU China
IEEE standard lifecycle

- Maintaining the standard
- Gaining final approval
- Initiating the project
- Mobilizing the working group
- Balloting the standard
- Drafting the standard
IEEE1588 standard revision

• Currently: IEEE1588-2008
• Revision started in June 2013
• Enforced by standard life-cycle
IEEE1588 standard revision

- Currently: IEEE1588-2008
- Revision started in June 2013
- Enforced by standard life-cycle
- Performed by P1588 Working Group with over 200 members
- Divided into 5 sub-committees
IEEE1588 standard revision

• Currently: IEEE1588-2008
• Revision started in June 2013
• Enforced by standard life-cycle
• Performed by **P1588 Working Group** with over 200 members
• Divided into 5 sub-committees
• High Accuracy (**HA**) sub-committee dedicated to White Rabbit
White Rabbit split into 5 parts

1. L1 syntonization
2. Delay asymmetry estimation and correction of PTP calculations for delay asymmetry and hardware delays
3. Calibration procedure
4. Assignment of fixed roles (master/slave) to WR ports
5. WR PTP profile compatible with Delay Request-Response default PTP profile
1. L1 syntonization in WR

- Local PTP clock is the same as L1 clock
1. L1 syntonization in HA

- Flexible and configurable relation between PTP and L1 clocks
- All phase offsets known and pseudo-constant
1. L1 syntonization in HA

- Introduces a new L1 state machine
- Semi-independent from PTP state machine
- Detects if a peer port supports L1Sync
- Handles L1 configuration matching
2. Correction of PTP calculations

• Delay asymmetry estimation:
 • In WR: \(\text{delay}_{ms} = \frac{1+\alpha}{2+\alpha} \delta_{mm} \)
 • In HA: \(< \text{delayAsymmetry} > = \text{constantAsymmetry} + \frac{\alpha}{2+\alpha} < \text{meanDelay} > \)
 \(\text{delay}_{ms} = < \text{delayAsymmetry} > + < \text{meanDelay} > \)
2. Correction of PTP calculations

• Delay asymmetry estimation:
 • In WR: \(\text{delay}_{ms} = \frac{1+\alpha}{2+\alpha} \delta_{mm} \)
 • In HA: \(<\text{delayAsymmetry}> = \text{constantAsymmetry} + \frac{\alpha}{2+\alpha} <\text{meanDelay}> \)
 \(\text{delay}_{ms} = <\text{delayAsymmetry}> + <\text{meanDelay}> \)

• Hardware delays:
 • In WR: only Slave corrects \(of\text{fset}_{ms} \) for \(\Delta_{TXM}, \Delta_{RXM}, \Delta_{TXS}, \Delta_{RXS} \)
 • In HA: both Master and Slave correct timestamps for ingress/egress latencies
3. WR Calibration procedure v1.1

• In HA: “Calibration Procedures”
• Rewritten into informative annex
• Rewritten to use IEEE-1588 terminology and data sets
• Exactly the same step-by-step procedure

• Does not include
 • Mathematical proofs
 • Measurement errors estimation
4. Assignment of fixed roles

- **MasterOnly PTP Ports**
 - Best Master Clock Algorithm running
 - Some ports disallowed from becoming PTP Slaves
4. Assignment of fixed roles

• MasterOnly PTP Ports
 • Best Master Clock Algorithm running
 • Some ports disallowed from becoming PTP Slaves

• Mechanism for external role configuration
 • Best Master Clock Algorithm disabled
 • External mechanism to configure PTP port state
5. WR PTP Profile

- “High Accuracy Delay Request-Response Default PTP Profile”
- Extends Delay Req-Resp Default PTP Profile
- Mandates support of optional features required by High Accuracy
- Defines default and allowed values for the optional features
- Interoperates with Delay Req-Resp Default Profile
- Defines High Accuracy Clock Model
 - Syntonization through Layer-1
 - Synchronization through PTP
Where is WR in IEEE1588-20XX?

- L1 syntonization – Annex O
- Correction of PTP calculations – Clause 16.7 / 16.8
- Calibration procedure – Annex Q
- Assignment of fixed roles – Clause 9.2.2.2 / 8.2.15.5.2 / 17.6
- HA PTP Profile – Annex J.5
- Sub-ns implementation – Annex P

- Changes to core parts of the standard:
 https://www.ohwr.org/projects/wr-std/wiki/wrin1588
Where is WR in IEEE1588-20XX?

HA-specific optional features
- L1 Sync
- Calculation of the delayAsymmetry
- Configurable correction of timestamps

Changes to the main clause of IEEE1588
- HA features require changes to 1588 clauses

Generic optional features
- Mechanism for external configuration
- Master Only mode

HA Profile uses and requires support of the HA and other optional features

High Accuracy Default PTP Profile
(Addition to Annex J)

Informative annex describes HA Profile implementation that provides sub-ns accuracy of synchronization

Sub-ns synchronization using High Accuracy Default Profile
(Annex P)
IEEE1588-20XX standardization process

2013 Jun: start

Project Authorization Request (PAR)

The protocol enhances support for synchronization to better than 1 nanosecond.
IEEE1588-20XX standardization process

2013 Jun: start

2016 Jan: stop new ideas

2016 Dec: PTP draft ready / 1st Ballot starts
IEEE1588-20XX standardization process

2013 Jun: start

2016 Jan: stop new ideas

2016 Dec: PTP draft ready / 1st Ballot starts

2017 Nov: 2nd Ballot starts

2018 Feb: 3rd Ballot starts
IEEE1588-20XX standardization process

- 2013 Jun: start
- 2016 Jan: stop new ideas
- 2016 Dec: PTP draft ready / 1st Ballot starts
- 2017 Nov: 2nd Ballot starts
- 2018 Feb: 3rd Ballot starts
- 2018 Aug: Sponsor Ballot
IEEE1588-20XX standardization process

2013 Jun: start

2016 Jan: stop new ideas

2016 Dec: PTP draft ready / 1st Ballot starts

2017 Nov: 2nd Ballot starts

2018 Feb: 3rd Ballot starts

2018 Aug: Sponsor Ballot

2019 Jan: Final draft ready
IEEE1588-20XX standardization process

- 2013 Jun: start
- 2016 Jan: stop new ideas
- 2016 Dec: PTP draft ready / 1st Ballot starts
- 2017 Nov: 2nd Ballot starts
- 2018 Feb: 3rd Ballot starts
- 2018 Aug: Sponsor Ballot
- 2019 Jan: Final draft ready
- Mid-2019: Publication
IEEE1588-HA implementation

2013 Jun: start

2016 Jan: stop new ideas

2016 Dec: PTP draft ready / 1st Ballot starts

2017 Nov: 2nd Ballot starts

2018 Feb: 3rd Ballot starts

2018 Aug: Sponsor Ballot

2019 Jan: Final draft ready

Mid-2019: Publication

2016 Sep: First implementation of L1 sync
IEEE1588-HA implementation

- 2013 Jun: start
- 2016 Jan: stop new ideas
- 2016 Dec: PTP draft ready / 1st Ballot starts
- 2017 Nov: 2nd Ballot starts
- 2018 Feb: 3rd Ballot starts
- 2018 Aug: Sponsor Ballot
- 2019 Jan: Final draft ready
- Mid-2019: Publication

2016 Sep: First implementation of L1 sync

Now:
- Automated compliance tests delivered by Veryx
- Ongoing work on HA implementation

Greg Daniluk, WR standardization in IEEE1588, 28/06/2018
Summary

• White Rabbit becomes High Accuracy profile of IEEE1588-20XX
• Standard drafted
• Now going through a Balloting phase
• We’re working on first HA implementation
• Compliance tests developed independently

• New IEEE-1588 standard to be published mid-2019