Commit 7a8ae7cb authored by Maciej Lipinski's avatar Maciej Lipinski

Final version of the BIPM presentation

Presented at the "BIPM Workshop on Advanced Time and Frequency
Transfer (ATFT)", Sevres, France (10 October 2019)
parent a0ad5239
figures/applications/ESA-galileo.jpg

127 KB | W: | H:

figures/applications/ESA-galileo.jpg

127 KB | W: | H:

figures/applications/ESA-galileo.jpg
figures/applications/ESA-galileo.jpg
figures/applications/ESA-galileo.jpg
figures/applications/ESA-galileo.jpg
  • 2-up
  • Swipe
  • Onion skin
figures/applications/LIST.jpg

77.7 KB | W: | H:

figures/applications/LIST.jpg

99 KB | W: | H:

figures/applications/LIST.jpg
figures/applications/LIST.jpg
figures/applications/LIST.jpg
figures/applications/LIST.jpg
  • 2-up
  • Swipe
  • Onion skin
figures/p1588/HAin1588-2.jpg

42 KB | W: | H:

figures/p1588/HAin1588-2.jpg

42.2 KB | W: | H:

figures/p1588/HAin1588-2.jpg
figures/p1588/HAin1588-2.jpg
figures/p1588/HAin1588-2.jpg
figures/p1588/HAin1588-2.jpg
  • 2-up
  • Swipe
  • Onion skin
figures/p1588/HAin1588-3.jpg

57.1 KB | W: | H:

figures/p1588/HAin1588-3.jpg

57.3 KB | W: | H:

figures/p1588/HAin1588-3.jpg
figures/p1588/HAin1588-3.jpg
figures/p1588/HAin1588-3.jpg
figures/p1588/HAin1588-3.jpg
  • 2-up
  • Swipe
  • Onion skin
figures/p1588/HAin1588-4.jpg

85.3 KB | W: | H:

figures/p1588/HAin1588-4.jpg

85.5 KB | W: | H:

figures/p1588/HAin1588-4.jpg
figures/p1588/HAin1588-4.jpg
figures/p1588/HAin1588-4.jpg
figures/p1588/HAin1588-4.jpg
  • 2-up
  • Swipe
  • Onion skin
figures/p1588/HAin1588-5.jpg

110 KB | W: | H:

figures/p1588/HAin1588-5.jpg

110 KB | W: | H:

figures/p1588/HAin1588-5.jpg
figures/p1588/HAin1588-5.jpg
figures/p1588/HAin1588-5.jpg
figures/p1588/HAin1588-5.jpg
  • 2-up
  • Swipe
  • Onion skin
......@@ -66,10 +66,13 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Title Page Info %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title[White Rabbit\hspace{3em}\insertframenumber/\inserttotalframenumber]{White Rabbit}
\author{Maciej Lipi\'{n}ski}
\title[White Rabbit\hspace{20em}\insertframenumber/\inserttotalframenumber]{White Rabbit}
% \author[CERN\hspace{17em} Maciej Lipi\'{n}ski]{Maciej Lipi\'{n}ski}
% \author[European Organization for Nuclear Research $\mid$ Maciej Lipi\'{n}ski]{Maciej Lipi\'{n}ski}
% \author[Maciej Lipi\'{n}ski $\mid$ European Organization for Nuclear Research]{Maciej Lipi\'{n}ski}
\author[Maciej Lipi\'{n}ski $\mid$ CERN]{Maciej Lipi\'{n}ski}
\institute{European Organization for Nuclear Research\\(CERN)}
\date[10 October 2019]{BIPM Workshop on Advanced Time and Frequency Transfer\\10 October 2019\\Paris}
\date[10 October 2019]{BIPM Workshop on Advanced Time and Frequency Transfer\vspace{0.5cm} 10 October 2019\\Sèvres}
\AtBeginSection[]
{
......@@ -101,24 +104,31 @@
\begin{frame}{What is White Rabbit [1]?}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{columns}[c]
\column{0.75\textwidth}
\small
\column{0.65\textwidth}
\footnotesize
% \textcolor{white}{dddd dsaf asd fasd fdsa fads f dsa fdsa f dsaf dsa fdsa f dsaf dsaf fds}
\begin{itemize}
\item<1-> Initiated to renovate accelerator's ctrl \& timing
\item<1-> Initiated to renovate CERN's control \& timing
\item<2-> \textbf{Based on well-established standards}
\begin{itemize}\footnotesize
\begin{itemize}\scriptsize
\item <3->Ethernet \textcolor{gray}{(IEEE 802.3)}
\item <3->Bridged Local Area Network \textcolor{gray}{(IEEE 802.1Q)}
\item <4->Precision Time Protocol \textcolor{gray}{(IEEE 1588)}
\end{itemize}
\item<6->Extends standards to meet CERN requirements and provides
\begin{enumerate}
\begin{itemize}\scriptsize
\item \color{blue!90}{\textbf{Sub-ns synchronisation}}
\item \color{red}{Deterministic data transfer} [2]
\end{enumerate}
\item<7-> Initial specs: links up to 10km, $\approx$2000 nodes
\end{itemize}
\item<7-> Initial specs: links $\leq$10~km \& $\leq$2000 nodes
% \item<7-> Initial network specification:
% \begin{itemize}\scriptsize
% \item Fiber links length: $\leq$10~km
% \item Number of nodes: $\leq$2000
% \end{itemize}
\item<8-> \textbf{Open Source and commercially available}
% \item<9-> Many users worldwide, inc. metrology labs...
\end{itemize}
......@@ -126,13 +136,18 @@
% \textcolor{white}{dddd dsaf asd fasd fdsa fads f dsa fdsa f dsaf dsa fdsa f dsaf dsaf fds}
% \textcolor{white}{dddd dsaf asd fasd fdsa fads f dsa fdsa f dsaf dsa fdsa f dsaf dsaf fds}
\textcolor{white}{dddd dsaf asd fasd fdsa fads f dsa fdsa f dsaf dsa fdsa f dsaf dsaf fds}
\column{0.4\textwidth}
\column{0.55\textwidth}
\begin{center}
% \includegraphics<1>[width=1.0\textwidth]{additionalForPres/intro-1.jpg}
\includegraphics<3>[width=1.0\textwidth]{misc/LAN.jpg}
\includegraphics<4>[width=1.0\textwidth]{misc/ieee-1588-ptp-example.jpg}
\includegraphics<5>[width=1.0\textwidth]{network/WR_network-ethernet.pdf}
\includegraphics<6->[width=1.0\textwidth]{network/wr_network-enhanced_pro.pdf}
\includegraphics<1-2>[height=0.7\textheight]{p1588/PTPv3_blank.jpg}
\includegraphics<3>[height=0.7\textheight]{misc/LAN.jpg}
\includegraphics<4>[height=0.7\textheight]{misc/ieee-1588-ptp-example.jpg}
\includegraphics<5>[height=0.7\textheight]{network/WR_network-ethernet.pdf}
\includegraphics<6->[height=0.7\textheight]{network/wr_network-enhanced_pro_without_10km.pdf}
% \includegraphics<3>[width=0.85\textwidth]{misc/LAN.jpg}
% \includegraphics<4>[width=0.8\textwidth]{misc/ieee-1588-ptp-example.jpg}
% \includegraphics<5>[width=1.0\textwidth]{network/WR_network-ethernet.pdf}
% \includegraphics<6->[width=1.0\textwidth]{network/wr_network-enhanced_pro-v2.pdf}
\end{center}
\end{columns}%\small\pause\pause\pause\pause\pause\pause\pause\pause
......@@ -182,7 +197,7 @@
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Many users worldwide, inc. metrology labs...}
\begin{frame}{Many users worldwide, including metrology labs...}
% \small
\footnotesize
\begin{columns}[c]
......@@ -192,45 +207,26 @@
\item<2-> \color<3->{black!50}{The Large High Altitude Air Shower Observatory}
\item<3-> \color<4->{black!50}{KM3NET: Cubic Kilometre Neutrino Telescope}
\item<4-> \color<5->{black!50}{German Stock Exchange}
\item<5-> Mikes: Finish Metrology Institute
\item<6-> Metrology Institutes in Netherlands (VSL), \\France (LNE-SYRTE), USA (NIST), UK (NPL) and\\Italy (INRIM) %and Belgium (SMD)
\item<5-> \color<7->{black!50}{Mikes: Finish Metrology Institute}
\item<6-> \color<7->{black!50}{Metrology Institutes in Netherlands (VSL), \\France (LNE-SYRTE), USA (NIST), UK (NPL) and\\Italy (INRIM)} %and Belgium (SMD)
\item<7-> ESA: European Space Agency for Galileo
% \begin{table}
% \tiny
% \begin{tabular}{
% | c | c | c | c | } \hline
% \textbf{Time Lab}& \textbf{Country} & \textbf{Link Length}& \textbf{Time Error}\\ \hline
% VTT & Finland & 950~km & $\pm$2ns \\ \cline{3-4}
% MIKES & & 50~km & $<$1ns \\ \hline
% VSL & Netherlands & 2x137~km & $\approx$8ns \\ \hline
% % & & 25~km & 150ps & 1-2ps@1000s \\ \cline{3-5}
% LNE- & & 25~km & 150ps \\ \cline{3-4}
% SYRTE & France & 125~km & 2.5ns \\ \cline{3-4}
% & & 4x125~km & 2.5ns \\ \hline
% NIST & USA & $<$10~km & $<$200ps \\ \hline
% NLP & UK & 2x80~km & $<$1ns \\ \hline
% & & 50~km & 800ps $\pm$56ps\\ \cline{3-4}
% INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
% % & 400~km & & \\ \hline
%
% \end{tabular}
% \end{table}
\end{itemize}
\column{0.45\textwidth}
\begin{center}
\includegraphics<1>[height=0.7\textheight]{applications/gsiANDcern.pdf}
\includegraphics<1>[height=0.75\textheight]{applications/gsiANDcern.pdf}
% \includegraphics<2>[width=1\textwidth]{applications/lhaaso.pdf}
\includegraphics<2>[height=0.7\textheight]{applications/lhaaso-v2.jpg}
\includegraphics<2>[height=0.75\textheight]{applications/lhaaso-v2.jpg}
% \includegraphics<3>[width=1\textwidth]{applications/KM3NeT.pdf}
\includegraphics<3>[height=0.7\textheight]{applications/KM3NeT-v2.jpg}
\includegraphics<3>[height=0.75\textheight]{applications/KM3NeT-v2.jpg}
% \includegraphics<4>[width=1\textwidth]{applications/GermanStockExchange.jpg}
\includegraphics<4>[height=0.7\textheight]{applications/GermanStockExchange-v2.jpg}
\includegraphics<5>[height=0.7\textheight]{applications/finland-2.jpg}
\includegraphics<6>[height=0.7\textheight]{applications/TimeLabs.png}
\includegraphics<7->[height=0.7\textheight]{applications/ESA-galileo.jpg}
\includegraphics<4>[height=0.75\textheight]{applications/GermanStockExchange-v2.jpg}
\includegraphics<5>[height=0.75\textheight]{applications/finland-2.jpg}
\includegraphics<6>[height=0.75\textheight]{applications/TimeLabs.png}
\includegraphics<7->[height=0.75\textheight]{applications/ESA-galileo.jpg}
\end{center}
\end{columns}
......@@ -298,7 +294,7 @@
%\end{block}
\vspace{-0.2cm}
\begin{center}
\includegraphics[height=4.5cm]<1>{misc/synce_v3.pdf}
\includegraphics[height=5cm]<1>{misc/synce_v3.pdf}
% \includegraphics[height=4.5cm]<2>{p1588/1588-ha-L1vsPTP-simplified.jpg}
\end{center}
\end{frame}
......@@ -309,11 +305,11 @@
\item Precise phase measurements in FPGA
\item WR parameters:
\begin{itemize}\scriptsize
\item $clk_{in}~~~~~=62.5MHz$
\item $clk_{DDMTD}=62.496185MHz$ (N=14)
\item $clk_{out}~~~~=3.814kHz$
\item $clk_{in}~~~~~~~~=62.5$~MHz
\item $clk_{DDMTD}=62.496185$~MHz (N=14)
\item $clk_{out}~~~~~~=~~3.814$~kHz
\end{itemize}
\item Theoretical resolution of 0.977ps
\item Theoretical resolution of 0.977~ps
\end{itemize}
\vspace{-0.2cm}
\begin{center}
......@@ -341,7 +337,7 @@
\item <3->Link delay model:
\begin{itemize}\scriptsize
\item \textbf{Fixed delays} -- calibrated/measured
\item \textbf{Variable delays} -- evaluated online with:\vspace{0.1cm} $\alpha = \frac{\nu_g(\lambda_S)}{\nu_g(\lambda_M)} -1 = \frac{\delta_{MS} - \delta_{SM}}{\delta_{SM}}$
\item \textbf{Variable delays} -- evaluated online with:\vspace{0.1cm} $\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} -1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$
\end{itemize}
\item <4-> Accurate offset from master (OFM):\scriptsize \\\vspace{0.2cm}
% $RTT=(t_{4}-t_{1}) - (t_{3}-t_{2})$\\
......@@ -459,45 +455,45 @@
\end{frame}
\begin{frame}{Frequency transfer: out-of-the-box and improved}
\vspace{-0.5cm}
\vspace{-0.35cm}
\begin{center}
% \includegraphics[width=.57\textwidth]{measurements/WRSlowJitter/GM+BC_pn.jpg}
% \includegraphics[width=.53\textwidth]{measurements/WRSlowJitter/GM+BC_MDEV.jpg}
\includegraphics[width=1.0\textwidth]{measurements/WRSlowJitter/GM+BC_pn+MDEC.jpg}
\includegraphics[width=.72\textwidth]{measurements/WRSlowJitter/GM+BC_MDEV.jpg}
% \includegraphics[width=1.0\textwidth]{measurements/WRSlowJitter/GM+BC_pn+MDEC.jpg}
\end{center}
\vspace{-0.5cm}
\begin{itemize}\scriptsize
\item<1-> Out-of-the-box performance:
\begin{itemize}\tiny
\item \textbf{GM-in to GM-out}: jitter of \textbf{9ps RMS} 1Hz-100kHz and MDEV of \textbf{2E-12} $\tau$=1s ENBW 50Hz
\item \textbf{GM-in to Slave-out}: jitter of \textbf{11ps} RMS 1Hz-100kHz and MDEV of \textbf{4E-12} $\tau$=1s ENBW 50Hz
\item \textbf{GM-in to GM-out}: jitter of \textbf{9~ps} RMS 1~Hz--100~kHz and MDEV of \textbf{2E-12} $\tau$=1~s ENBW 50~Hz
\item \textbf{GM-in to Slave-out}: jitter of \textbf{11~ps} RMS 1~Hz--100~kHz and MDEV of \textbf{4E-12} $\tau$=1~s ENBW 50~Hz
\end{itemize}
\item<2-> Improved WR Switches (GM and Slave):
\item<2-> WR Switches improved with Low Jitter Daughterboard (LJD [14, 16]):
\begin{itemize}\tiny
\item \textbf{GM-in to GM-out}: jitter of \textbf{1ps} RMS 1Hz-100kHz and MDEV of $<$\textbf{5E-13} $\tau$=1s ENBW 50Hz
\item \textbf{GM-in to Slave-out}: jitter of $<$\textbf{2ps} RMS 1Hz-100kHz and MDEV of $<$\textbf{7E-13} $\tau$=1s ENBW 50Hz
\item \textbf{GM-in to GM-out}: jitter of \textbf{1~ps} RMS 1~Hz--100~kHz and MDEV of $<$\textbf{5E-13} $\tau$=1~s ENBW 50~Hz
\item \textbf{GM-in to Slave-out}: jitter of $<$\textbf{2~ps} RMS 1~Hz--100~kHz and MDEV of $<$\textbf{7E-13} $\tau$=1~s ENBW 50~Hz
\end{itemize}
% \item<3-> Enhanced end-node (Morion MV207 OCXO):
% \begin{itemize}\tiny
% \item \textbf{GM-out to BC-out}: jitter of $<$\textbf{100fs} RMS 10Hz-10MHz
% \end{itemize}
\end{itemize}
\pause\pause
\begin{center}\scriptsize
See more in t [14, 16]
\end{center}
% \pause\pause
% \begin{center}\scriptsize
% See more in t [14, 16]
% \end{center}
\end{frame}
\begin{frame}{WR Time \& frequency tranfser: state of the art}
\begin{frame}{WR time \& frequency tranfser: state of the art}
\begin{center}
\includegraphics[width=0.8\textwidth]{measurements//RF-ertm_clka_100mhz_ocxo_250m_out-v2.png}
\end{center}
\begin{itemize}\scriptsize
\item \textbf{GM-out to end-node-out}: accuracy of $<$\textbf{10ps}
\item \textbf{GM-out to end-node-out}: jitter of $<$\textbf{100fs} RMS 10Hz-10MHz
\item \textbf{GM-out to end-node-out}: accuracy of $<$\textbf{10~ps}
\item \textbf{GM-out to end-node-out}: jitter of $<$\textbf{100~fs} RMS 10~Hz--10~MHz
\end{itemize}
\end{frame}
......@@ -519,9 +515,9 @@
\end{itemize}
\column{.6\textwidth}
\pause
\begin{block}{New paradigm}
\begin{block}{\centering New paradigm}
\begin{center}
Precise time \& frequency transfer\\ revolutionises the way science is made !
Precise time \& frequency transfer\\ revolutionises \\the way science is made !
\end{center}
\end{block}
\end{columns}
......@@ -535,30 +531,33 @@
\item Widely used/evaluated by Time Laboratories\\
\textcolor{white}{Evaluated by Deutsche Telecom}
\end{itemize}
\vspace{1.5cm}
\vspace{0.2cm}
\begin{table}
\scriptsize
\begin{tabular}{
| c | c | c | c | } \hline
\textbf{Time Lab}& \textbf{Country} & \textbf{Link Length}& \textbf{Time Error}\\ \hline
VTT & Finland & \textbf{950~km} & $\pm$2ns \\ \cline{3-4}
MIKES & & \textbf{50~km} & $<$1ns \\ \hline
VSL & Netherlands & \textbf{2x137~km} & $\approx$8ns \\ \hline
% & & 25~km & 150ps & 1-2ps@1000s \\ \cline{3-5}
LNE- & & \textbf{25~km} & 150ps \\ \cline{3-4}
SYRTE & France & \textbf{125~km} & 2.5ns \\ \cline{3-4}
& & \textbf{4x125~km} & 2.5ns \\ \hline
NIST & USA & $<$10~km & $<$200ps \\ \hline
NPL & UK & \textbf{2x80~km} & $<$1ns \\ \hline
& & \textbf{50~km} & 800ps $\pm$56ps\\ \cline{3-4}
INRIM & Italy & \textbf{70~km} & 610ps $\pm$47ps\\ \hline
SMD \& & Belgium to & \textbf{260~km} & $\pm$100ps\\
ESTEC & Netherlands & & \\ \hline
| c | c | c | r | r l | } \hline
\textbf{Time Lab}& \textbf{Country} & \textbf{When}& \textbf{Length} & \multicolumn{2}{|c|}{\textbf{Time Error}}\\ \hline
VTT & Finland & 2016 & 950~km & $\pm$2~ns & \\ \cline{3-6}
MIKES & & 2018 & 50~km & $<$1~ns & \\ \hline
& & 2016 & 2x137~km & $\approx$8~ns &(2 sigma, normal dist.) \\ \cline{3-6}%
VSL & Netherlands & 2018 & 2x100~km & $<$1~ns & (rectangular dist.) \\ \cline{3-6}
& & 2019 & 2x100~km & $<$100~ps & (rectangular dist.) \\ \hline
LNE- & & 2016 & 25~km & 150~ps & \\ \cline{3-6}
SYRTE & France & 2017 & 125~km & 2.5~ns & \\ \cline{4-6}
& & & 4x125~km & 2.5~ns & \\ \hline
NIST & USA & 2018 & $<$10~km & $<$200~ps & \\ \hline
NPL & UK & 2017 & 2x80~km & $<$1~ns & \\ \hline
INRIM & Italy & 2014 & 50~km & 800~ps & $\pm$56~ps \\ \cline{4-6}
& & & 70~km & 610~ps & $\pm$47~ps \\ \hline
SMD \& & Belgium to & 2019 & 260~km & $\pm$200~ps & (2 sigma, normal dist.) \\
ESTEC & Netherlands & & & & \\ \hline
% & 400~km & & \\ \hline
\end{tabular}
\end{table}
\end{table}\vspace{-0.4cm}
\begin{center}
\scriptsize See more in [5] and [6]
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Time \& frequency transfer}
......@@ -568,7 +567,7 @@
\item Evaluated by Deutsche Telecom
\end{itemize}
\includegraphics<1>[width=1.0\textwidth]{applications/DT.png}\\\tiny
ISPCS keynote \textit{Highly Accurate Time Dissemintation \& Network Synchronisation}, Helmut Imlau, Deutsche Telekom
ISPCS keynote \textit{Highly Accurate Time Dissemination \& Network Synchronisation}, Helmut Imlau, Deutsche Telekom
\end{frame}
......@@ -650,7 +649,7 @@ ISPCS keynote \textit{Highly Accurate Time Dissemintation \& Network Synchronisa
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Time-based control - example applicatoin}
\begin{frame}{Time-based control - example application}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{columns}[c]
\column{.65\textwidth}
......@@ -659,8 +658,8 @@ ISPCS keynote \textit{Highly Accurate Time Dissemintation \& Network Synchronisa
\item<2-> 1-5 ns accuracy and 10 ps precision
\item<3-> WR network at GSI:
\begin{itemize}\footnotesize
\item Current: 134 nodes and 32 switches (operational since June 2018)
\item Final: 2000 WR nodes and 300 switches in 5 layers
\item Current: 134 nodes \& 32 switches (operational since June 2018)
\item Final: 2000 WR nodes \& 300 switches in 5 layers
\end{itemize}
\end{itemize}
......@@ -773,11 +772,14 @@ Distribution of magnetic field in CERN accelerators
\subsection{}
\begin{frame}{Radio-frequency transfer}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}\vspace{-0.2cm}
\includegraphics<1>[width=1\textwidth]{applications/DDS-0.jpg}
\includegraphics<2>[width=1\textwidth]{applications/DDS-1.jpg}
\begin{columns}[c]
\column{1.1\textwidth}
\begin{center}\vspace{-0.5cm}
\includegraphics<1>[width=1.05\textwidth]{applications/DDS-0.jpg}
\includegraphics<2>[width=1.05\textwidth]{applications/DDS-1.jpg}
\end{center}
\column{0.05\textwidth}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Radio-frequency transfer - example application}
......@@ -808,7 +810,7 @@ Distribution of magnetic field in CERN accelerators
\begin{itemize}\small
\item<1-> IEEE standards are revised periodically
\item<2-> IEEE1588 revision [23] starts in 2013 and targets\\\scriptsize
\item<2-> IEEE1588 revision [23] started in 2013 \& targeted\\\scriptsize
\textit{"...support for synchronisation to better than 1 nanosecond"}\\
\item<3-> Working Group with 5 sub-committees
\item<4-> High Accuracy sub-committee
......@@ -836,7 +838,7 @@ Distribution of magnetic field in CERN accelerators
% \subsection{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}
\includegraphics<1>[width=1.0\textwidth]{p1588/HAin1588-0.jpg}
\includegraphics<1>[width=0.88\textwidth]{p1588/HAin1588-0.jpg}
\includegraphics<2>[width=1.0\textwidth]{p1588/HAin1588-1.jpg}
\includegraphics<3>[width=1.0\textwidth]{p1588/HAin1588-2.jpg}
\includegraphics<4>[width=1.0\textwidth]{p1588/HAin1588-3.jpg}
......@@ -876,13 +878,22 @@ Distribution of magnetic field in CERN accelerators
\begin{frame}{Summary}
\begin{itemize}
\item<1-> Sub-ns accuracy and sub-10ps precision out-of-the-box
\item<2-> Sub-10ps accuracy and sub-100fs precision achievable
\item<3-> Open source (H/W \& S/W) with commercial support
\item<4-> Standard-compatible and standard-extending
\item<5-> Standardised within upcoming revision of IEEE1588
\item<6-> A versatile solution for general control and data acquisition
\item<7-> More applications than ever expected
\item<1-> Sub-ns accuracy and sub-10~ps precision out-of-the-box
\item<2-> Sub-10~ps accuracy and sub-100~fs precision achievable
\item<3-> Completely open source
\item<4-> Commercially available off-the-shelf
\item<5-> Standard-based and standard extending
\item<6-> Included in the revised IEEE1588
\item<7-> Showcase of technology transfer
\item<8-> A versatile solution for general control and data acquisition
% \item<1-> Sub-ns accuracy and sub-10ps precision out-of-the-box
% \item<2-> Sub-10ps accuracy and sub-100fs precision achievable
% \item<3-> Open source (H/W \& S/W) with commercial support
% \item<4-> Standard-compatible and standard-extending
% \item<5-> Standardised within upcoming revision of IEEE1588
% \item<6-> A versatile solution for general control and data acquisition
% \item<7-> More applications than ever expected
\end{itemize}
% \pause
%For more information see http://www.ohwr.org/projects/white-rabbit/wiki
......@@ -904,6 +915,15 @@ Distribution of magnetic field in CERN accelerators
\appendix
\backupbegin
\begin{frame}{Backup slides}
\begin{center}
Backup slides
\end{center}
\end{frame}
\section{References}
\subsection{}
\begin{frame}{References}
\tiny
% \begin{enumerate}
......@@ -949,7 +969,7 @@ $[14]$ \textbf{White Rabbit Clock Synchronization: Ultimate Limits on Close-In P
$[15]$ \textbf{White Rabbit Clock Characteristics}, M. Rizzi et el., ISPCS2016, \url{www.ohwr.org/project/white-rabbit/uploads/2fa1a438446fc6c85b4540faecf1017a/ISPCS2016-WRClockCharacteristics.pdf}\\
$[16]$ \textbf{WRS Low Jitter Daughterboard:} \url{www.ohwr.org/projects/wrs-low-jitter}\\
$[17]$ \textbf{White Rabbit standardisation:}
\url{www.ohwr.org/projects/wr-std/wiki/} (\url{www.ohwr.org/projects/wr-std/wiki/wrin1588})
\url{www.ohwr.org/projects/wr-std/wiki/}
$[18]$ \textbf{WR Precision Time Protocol on Long-Distance Fiber Links}, E. F. Dierikx et al., \url{ieeexplore.ieee.org/document/7383303}\\
$[19]$ \textbf{White Rabbit Time Transfer on Medium and Long Fibre Hauls at INRIM}, G. Fantino et al., \\
~~~~~~~ \url{www.ion.org/publications/abstract.cfm?articleID=12598}\\
......@@ -969,60 +989,100 @@ $[23]$ \textbf{IEEE P1588 Working Group: }
\end{frame}
\begin{frame}{Backup slides}
\begin{center}
Backup slides
\end{center}
\end{frame}
\section{Current developments}
\subsection{}
\begin{frame}{Current developments}
\begin{itemize}\small
\item<1-> Standardisation in IEEE 1588 [17, 23] -- practically done
\item<2-> Time \& frequency performance -- prototyping
\begin{itemize}\scriptsize
\item Jitter: \textbf{sub-100fs RMS} (100Hz to 20MHz)
\item Accuracy: \textbf{sub-10ps}
\end{itemize}
\item<3-> Long-haul link [18, 19] -- already working, study to improve
\begin{itemize}\scriptsize
\item \textbf{Sub-ns on 80km} and \textbf{ns on 137km} links with single bidirectional fiber
\item \textbf{$\pm$2.5ns on 950km} links with two unidirectional fibers
\end{itemize}
\item<4-> Absolute Calibration [22] -- developed, reproducing
\begin{itemize}\scriptsize
\item In-situ calibration of fibers
\item Absolute calibration of hardware delays
\end{itemize}
\item<5-> 10 GbE WR Switch - designing
\item<6-> WR-based applications at CERN -- to be opperational in 2020
\begin{itemize}\scriptsize
\item Radio-frequency over WR for RF cavities control
\item Distributed Oscilloscope
\end{itemize}
\end{itemize}
\end{frame}
% \section{Current developments}
% \subsection{}
% \begin{frame}{Current developments}
% \begin{itemize}\small
% \item<1-> Standardisation in IEEE 1588 [17, 23] -- practically done
% \item<2-> Time \& frequency performance -- prototyping
% \begin{itemize}\scriptsize
% \item Jitter: \textbf{sub-100fs RMS} (100Hz to 20MHz)
% \item Accuracy: \textbf{sub-10ps}
% \end{itemize}
% \item<3-> Long-haul link [18, 19] -- already working, study to improve
% \begin{itemize}\scriptsize
% \item \textbf{Sub-ns on 80km} and \textbf{ns on 137km} links with single bidirectional fiber
% \item \textbf{$\pm$2.5ns on 950km} links with two unidirectional fibers
% \end{itemize}
% \item<4-> Absolute Calibration [22] -- developed, reproducing
% \begin{itemize}\scriptsize
% \item In-situ calibration of fibers
% \item Absolute calibration of hardware delays
% \end{itemize}
% \item<5-> 10 GbE WR Switch - designing
% \item<6-> WR-based applications at CERN -- to be opperational in 2020
% \begin{itemize}\scriptsize
% \item Radio-frequency over WR for RF cavities control
% \item Distributed Oscilloscope
% \end{itemize}
% \end{itemize}
% \end{frame}
\begin{frame}{GM Switch with LJD: PM noise and Modified ADEV}
\begin{center}
\includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/pn.png}
\includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/mdev.png}
\end{center}
\end{frame}
\begin{frame}{BC Switch with LJD: PM noise and Modified ADEV}
\begin{center}
\includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/slave_pn.png}
\includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/slave_mdev.png}
\end{center}
\end{frame}
% \begin{frame}{GM Switch with LJD: PM noise and Modified ADEV}
% \begin{center}
% \includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/pn.png}
% \includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/mdev.png}
% \end{center}
% \end{frame}
%
% \begin{frame}{BC Switch with LJD: PM noise and Modified ADEV}
% \begin{center}
% \includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/slave_pn.png}
% \includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/slave_mdev.png}
% \end{center}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{Improvements}
\section{WR performance in a long chain}
\subsection{}
\begin{frame}{WR performance in a long chain}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\includegraphics[width=\textwidth]{measurements/cascadeMeasurement.pdf}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Improvements in a nutshell}
\subsection{}
\begin{frame}{Performance Enhancements}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{itemize}\footnotesize
\item<1-> Jitter and clock stability
\begin{itemize}\scriptsize
\item Triggered by National Laboratories and RF distribution
\item Allan deviation (ADEV) from 1e-11 to \textbf{1e-12} over 1~s
\item Random jitter from 11 to \textbf{1.1~ps RMS} (1~Hz to 100~kHz)
\item Ongong work to achieve jitter of \textbf{sub-100~fs RMS} (100~Hz to 20~MHz)
\end{itemize}
\item<2-> Compensation of hardware temperature variation
\begin{itemize}\scriptsize
\item Triggered by cosmic ray detectors
\item Active correction of hardware temperature variation
\item Pk-pk variation from 700~ps to \textbf{$<$150 ps with sdev $<$50~ps (-10 to 50$^o$C)}
\end{itemize}
\item<3-> Long-haul link
\begin{itemize}\scriptsize
\item Triggered by National Time Labs and Radio Telescope
\item \textbf{Sub-ns} is achievable on links on \textbf{up to 80~km}
\item \textbf{$<$100ps on 2x100~km} bidirectional \& \textbf{$\pm$2.5~ns on 950~km} unidirectional links
\end{itemize}
\item<4-> Link asymmetry correction
\begin{itemize}\scriptsize
\item Triggered by radio telescope (Square Kilometre Array)
\item At 1310/1490~nm, temp variation -0.12 ps/km/K (3ns for 80~km over 50$^o$C)
\item \textbf{Sub-ns for 80~km over 50$^o$C} using DWDM SFP on ITU channels C21/C22 (1560.61/1558.98~nm)
\end{itemize}
\item<5-> Absolute calibration
\end{itemize}
\end{frame}
\section{Improvements in depth}
\subsection{}
\begin{frame}{Performance limits and improvements}
\begin{center}
......@@ -1043,12 +1103,12 @@ $[23]$ \textbf{IEEE P1588 Working Group: }
\begin{itemize}\scriptsize
\item<1-> \textbf{PCB, FPGA, SFP} -- hardware delay uncertainty
\begin{itemize}\scriptsize
\item Calibration uncertainty: sdev of 2ps [8]
\item Linear dependency on temperature\\ (700ps over $-10..55^oC$ [7]):
\item Calibration uncertainty: sdev of 2~ps [8]
\item Linear dependency on temperature\\ (700~ps over $-10..55^oC$ [7]):
\begin{itemize}\tiny
\item CuteWR: tx $-8.4ps/K$, rx $13.3ps/K$ [7]
\item Switch: 8ps/K [8]
\item WR-Zen: 4ps/K [8]
\item CuteWR: tx $-8.4~ps/K$, rx $13.3~ps/K$ [7]
\item Switch: 8~ps/K [8]
\item WR-Zen: 4~ps/K [8]
\end{itemize}
\item Remedy: active compensation \\(for LHASSO, 50ps over $-10..55^oC$ [7])
% \item SFP delay dependency on input power, error up to 30ps [2]
......@@ -1057,7 +1117,7 @@ $[23]$ \textbf{IEEE P1588 Working Group: }
\begin{itemize}\scriptsize
\item Measured each time link goes up
\item Value provided by transceiver in FPGA
\item Error: $\approx\pm$50ps for GTX (Virtex 6)
\item Error: $\approx\pm$50~ps for GTX (Virtex 6)
\item Remedy: ensure bitslide is zero \\(ongoing work at CERN)
\end{itemize}
\end{itemize}
......@@ -1129,7 +1189,7 @@ $[23]$ \textbf{IEEE P1588 Working Group: }
\item G.652.D at 1490/1550: $-0.05 ps/(K\cdot km)$ [8]
\end{itemize}
\end{itemize}
\item<6-> Significant for links $>10km$
\item<6-> Significant for links $>10~km$
\item<7-> Remedy: temp-stabilized laser, accurate and close wavelengths (C21/C23@1560.61/1558.98nm, SKA [8])
\end{itemize}
\textcolor{white}{dddd\\dddd\\dddd\\dddd}
......@@ -1168,8 +1228,8 @@ $[23]$ \textbf{IEEE P1588 Working Group: }
\begin{itemize}\scriptsize
\item Flicker PM noise: -100 dBc/Hz at 1 Hz
\begin{itemize}\tiny
\item Dominant $<$ 10Hz,
\item MDEV 4E-13 at $\tau=1s$
\item Dominant $<$ 10~Hz,
\item MDEV 4E-13 at $\tau=1~s$
\item LVDS input clock buffer and clock routing
\end{itemize}
\item White PM noise: -108 dBc/Hz
......@@ -1182,7 +1242,7 @@ $[23]$ \textbf{IEEE P1588 Working Group: }
\item<3-> \textbf{GTX}
\begin{itemize}\scriptsize
\item Flicker PM noise: -100 dBc/Hz at 1 Hz
\item White PM noise: -106 dBc/Hz\\ MDEV 4E-13 at $\tau=1s$
\item White PM noise: -106 dBc/Hz\\ MDEV 4E-13 at $\tau=1~s$
\end{itemize}
\item<4-> Remedy: none, inherent to technology
\end{itemize}
......@@ -1194,7 +1254,7 @@ $[23]$ \textbf{IEEE P1588 Working Group: }
\end{center}
\end{columns}\vspace{0.1cm}
\begin{center}
\tiny NOTE: Carrier is 10MHz\\
\tiny NOTE: Carrier is 10~MHz\\
\tiny All above data is based on [14]
\end{center}
\end{frame}
......@@ -1217,9 +1277,9 @@ $[23]$ \textbf{IEEE P1588 Working Group: }
\item<3->\textbf{External reference input} - Grandmaster only
\begin{itemize}\scriptsize
\item Noisy internal Virtex-6 MMCM PLL
\item Large phase noise power at 10kHz to 2MHz
\item Phase noise above DDMTD Nyquist (1.9kHz) bandwidth folds back to baseband [14]
\item Remedy: external PLL to synthesize 62.5MHz from 10MHz (see daughterboard [16])
\item Large phase noise power at 10kHz to 2~MHz
\item Phase noise above DDMTD Nyquist (1.9~kHz) bandwidth folds back to baseband [14]
\item Remedy: external PLL to synthesize 62.5~MHz from 10MHz (see daughterboard [16])
\end{itemize}
......@@ -1251,9 +1311,9 @@ $[23]$ \textbf{IEEE P1588 Working Group: }
\begin{tabular}{| l | c | c | c |} \hline \tiny
\textbf{Meas.} & \multicolumn{3}{|c|}{\textbf{RMS jitter}} \\ \cline{2-4}
\textbf{at} & \textbf{1Hz-10Hz} & \textbf{1Hz-2kHz} & \textbf{1Hz-100kHz} \\ \hline
GM & 4.7ps & 9.0ps & 9.1ps \\ \hline
SW 1 & 7.1ps & 11.0ps & 11.0ps \\ \cline{1-4}
SW 2 & 8.8ps & 14.0ps & 14.0ps \\ \hline
GM & 4.7~ps & 9.0~ps & 9.1~ps \\ \hline
SW 1 & 7.1~ps & 11.0~ps & 11.0~ps \\ \cline{1-4}
SW 2 & 8.8~ps & 14.0~ps & 14.0~ps \\ \hline
\end{tabular}
% \caption{Integrated RMS jitter in different regions of the spectrum.}
\label{tab:phaseNoise}
......@@ -1298,79 +1358,45 @@ $[23]$ \textbf{IEEE P1588 Working Group: }
\begin{itemize}\scriptsize
\item Jitter improvement [14, 16]
\begin{itemize}\scriptsize
\item GM: 9ps to 1ps RMS 1Hz-100kHz
\item BC: 11ps to $<2$ps RMS 1Hz-100kHz
\item GM: 9~ps to 1~ps RMS 1~Hz--100~kHz
\item BC: 11~ps to $<2$~ps RMS 1~Hz--100~kHz
\end{itemize}
\item MDEV improvement [14, 16]
\begin{itemize}\scriptsize
\item GM: 2E-12 to $<$5E-13 $\tau$=1s ENBW 50Hz
\item BC: 4E-12 to $<$7E-13 $\tau$=1s ENBW 50Hz
\item GM: 2E-12 to $<$5E-13 $\tau$=1~s ENBW 50Hz
\item BC: 4E-12 to $<$7E-13 $\tau$=1~s ENBW 50Hz
\end{itemize}
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Enhancements}
\subsection{}
\begin{frame}{Performance Enhancements}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{itemize}\footnotesize
\item<1-> Jitter and clock stability
\begin{itemize}\scriptsize
\item Triggered by National Laboratories and RF distribution
\item Allan deviation (ADEV) from 1e-11 to \textbf{1e-12} over 1s
\item Random jitter from 11 to \textbf{1.1ps RMS} (1 Hz to 100kHz)
\item Ongong work to achieve jitter of \textbf{sub-100fs RMS} (100Hz to 20MHz)
\end{itemize}
\item<2-> Compensation of hardware temperature variation
\begin{itemize}\scriptsize
\item Triggered by cosmic ray detectors
\item Active correction of hardware temperature variation
\item Pk-pk variation from 700 ps to \textbf{$<$150 ps with sdev $<$50ps (-10 to 50$^o$C)}
\end{itemize}
\item<3-> Long-haul link
\begin{itemize}\scriptsize
\item Triggered by National Time Labs and Radio Telescope
\item \textbf{Sub-ns} is achievable on links on \textbf{up to 80km}
\item \textbf{Ns on 137km} bidirectional \& \textbf{$\pm$2.5ns on 950km} unidirectional links
\end{itemize}
\item<4-> Link asymmetry correction
\begin{itemize}\scriptsize
\item Triggered by radio telescope (Square Kilometre Array)
\item At 1310/1490nm, temp variation -0.12 ps/km/K (3ns for 80km over 50$^o$C)
\item \textbf{Sub-ns for 80km over 50$^o$C} using DWDM SFP on ITU channels C21/C22 (1560.61/1558.98 nm)
\end{itemize}
\item<5-> Absolute calibration
\end{itemize}
\end{frame}
\begin{frame}{RF over WR a.k.a. Distributed DDS [20]}
\begin{center}
\includegraphics[width=\columnwidth]{applications/remote_dds.pdf}
\end{center}
\begin{block}{Distributed Direct Digital Synthesis}
\begin{itemize}
\item Replaces dozens of cables with a single fiber
\item Works over big distances without degrading signal quality
\item Can provide various clocks with a single, standard link
\item At CERN, ongoing work to distribute 200 MHz RF with 0.25ps RMS jitter and $\pm$10ps accuracy
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{Distributed oscilloscope [21]}
\begin{center}
\includegraphics[width=0.9\textwidth]{applications/distr_oscill.pdf}
\end{center}
\begin{block}{}
\begin{itemize}
\item Common clock in entire network: no skew between ADCs
\item External triggers can be time tagged with a TDC and used to reconstruct the original time base in the operator's PC
\item Ability to sample with different clocks via Distributed DDS
\end{itemize}
\end{block}
\end{frame}
%
% \begin{frame}{RF over WR a.k.a. Distributed DDS [20]}
% \begin{center}
% \includegraphics[width=\columnwidth]{applications/remote_dds.pdf}
% \end{center}
% \begin{block}{Distributed Direct Digital Synthesis}
% \begin{itemize}
% \item Replaces dozens of cables with a single fiber
% \item Works over big distances without degrading signal quality
% \item Can provide various clocks with a single, standard link
% \item At CERN, ongoing work to distribute 200 MHz RF with 0.25ps RMS jitter and $\pm$10ps accuracy
% \end{itemize}
% \end{block}
% \end{frame}
%
% \begin{frame}{Distributed oscilloscope [21]}
% \begin{center}
% \includegraphics[width=0.9\textwidth]{applications/distr_oscill.pdf}
% \end{center}
% \begin{block}{}
% \begin{itemize}
% \item Common clock in entire network: no skew between ADCs
% \item External triggers can be time tagged with a TDC and used to reconstruct the original time base in the operator's PC
% \item Ability to sample with different clocks via Distributed DDS
% \end{itemize}
% \end{block}
% \end{frame}
\backupend
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment