Commit 74fd44ca authored by Javier Serrano's avatar Javier Serrano

Javier's part for the WRITE presentation

parent 3ad50f04
all : wr_write_2020.pdf
.PHONY : all clean
wr_write_2020.pdf : wr_write_2020.tex
pdflatex $^
pdflatex $^
clean :
rm -f *.eps *.pdf *.dat *.log *.out *.aux *.dvi *.ps *.nav *.snm *.toc *.vrb *~
\documentclass[compress, red]{beamer}
\mode<presentation>
\usepackage{etex}
\setbeamertemplate{navigation symbols}{}
%\usepackage{pgfpages}
%\usepackage{listings}
\usetheme{Warsaw}
% define your own colors:
\definecolor{Red}{rgb}{1,0,0}
\definecolor{Blue}{rgb}{0,0,1}
\definecolor{Green}{rgb}{0,1,0}
\definecolor{magenta}{rgb}{1,0,.6}
\definecolor{lightblue}{rgb}{0,.5,1}
\definecolor{lightpurple}{rgb}{.6,.4,1}
\definecolor{gold}{rgb}{.6,.5,0}
\definecolor{orange}{rgb}{1,0.4,0}
\definecolor{hotpink}{rgb}{1,0,0.5}
\definecolor{newcolor2}{rgb}{.5,.3,.5}
\definecolor{newcolor}{rgb}{0,.3,1}
\definecolor{newcolor3}{rgb}{1,0,.35}
\definecolor{darkgreen1}{rgb}{0, .35, 0}
\definecolor{darkgreen}{rgb}{0, .6, 0}
\definecolor{darkred}{rgb}{.75,0,0}
\xdefinecolor{olive}{cmyk}{0.64,0,0.95,0.4}
\xdefinecolor{purpleish}{cmyk}{0.75,0.75,0,0}
\useoutertheme[subsection=false]{smoothbars}
% include packages
\usepackage{subfigure}
\usepackage{multicol}
\usepackage{amsmath}
\usepackage{epsfig}
\usepackage{graphicx}
\usepackage[all]{xy}
%\xyoption{arc}
\usepackage{url}
\usepackage{multimedia}
\usepackage{hyperref}
\usepackage{helvet}
\usepackage[english]{babel}
\usepackage[utf8]{inputenc}
\usepackage{changepage}
\usepackage{textcomp}
\newcommand{\backupbegin}{
\newcounter{framenumberappendix}
\setcounter{framenumberappendix}{\value{framenumber}}
}
\newcommand{\backupend}{
\addtocounter{framenumberappendix}{-\value{framenumber}}
\addtocounter{framenumber}{\value{framenumberappendix}}
}
\graphicspath{ {../../figures/} }
\usepackage[font=small,skip=0pt]{caption}
\captionsetup{labelformat=empty,labelsep=none}
%\setlength{\abovecaptionskip}{5pt plus 3pt minus 2pt}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Title Page Info %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\title[White Rabbit \hspace{18em}\insertframenumber/\inserttotalframenumber]{White Rabbit}
\subtitle{A short introduction and update}
% \author[CERN\hspace{17em} Maciej Lipi\'{n}ski]{Maciej Lipi\'{n}ski}
% \author[European Organization for Nuclear Research $\mid$ Maciej Lipi\'{n}ski]{Maciej Lipi\'{n}ski}
% \author[Maciej Lipi\'{n}ski $\mid$ European Organization for Nuclear Research]{Maciej Lipi\'{n}ski}
\author[Maciej Lipi\'{n}ski, Javier Serrano $\mid$ CERN]{Maciej Lipi\'{n}ski,
Javier Serrano}
\institute{European Organisation for Nuclear Research\\(CERN)}
\date[30 September 2020]{Virtual workshop on White Rabbit for time and frequency
transfer\vspace{0.5cm}\\30 September 2020}
\AtBeginSection[]
{
\begin{frame}<beamer>{Outline}
\tableofcontents[currentsection]
\end{frame}
}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Begin Your Document %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{document}
%\setbeamertemplate{caption}{\raggedright\insertcaption\par}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\frame{\titlepage}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}<beamer>{Outline}
\tableofcontents
\end{frame}
\section{Introduction}
\subsection{}
%=======================
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{What is White Rabbit [1]?}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{columns}[c]
\column{0.65\textwidth}
\footnotesize
% \textcolor{white}{dddd dsaf asd fasd fdsa fads f dsa fdsa f dsaf dsa fdsa f dsaf dsaf fds}
\begin{itemize}
\item<1-> Initiated to renovate CERN's and GSI's accelerator
timing system
\item<2-> \textbf{Based on well-established standards}
\begin{itemize}\scriptsize
\item <3->Ethernet \textcolor{gray}{(IEEE 802.3)}
\item <3->Bridged Local Area Network \textcolor{gray}{(IEEE 802.1Q)}
\item <4->Precision Time Protocol \textcolor{gray}{(IEEE 1588)}
\end{itemize}
\item<6->Extends standards to meet new requirements and provides
\begin{itemize}\scriptsize
\item \color{blue!90}{\textbf{Sub-ns synchronisation}}
\item \color{red}{Deterministic data transfer} [2]
\end{itemize}
\item<7-> Initial specs: links $\leq$10~km \& $\leq$2000 nodes
% \item<7-> Initial network specification:
% \begin{itemize}\scriptsize
% \item Fiber links length: $\leq$10~km
% \item Number of nodes: $\leq$2000
% \end{itemize}
\item<8-> \textbf{Open Source and commercially available}
% \item<9-> Many users worldwide, inc. metrology labs...
\end{itemize}
% \textcolor{white}{dddd dsaf asd fasd fdsa fads f dsa fdsa f dsaf dsa fdsa f dsaf dsaf fds}
% \textcolor{white}{dddd dsaf asd fasd fdsa fads f dsa fdsa f dsaf dsa fdsa f dsaf dsaf fds}
\textcolor{white}{dddd dsaf asd fasd fdsa fads f dsa fdsa f dsaf dsa fdsa f dsaf dsaf fds}
\column{0.55\textwidth}
\begin{center}
\includegraphics<1-2>[height=0.7\textheight]{p1588/PTPv3_blank.jpg}
\includegraphics<3>[height=0.7\textheight]{misc/LAN.jpg}
\includegraphics<4>[height=0.7\textheight]{misc/ieee-1588-ptp-example.jpg}
\includegraphics<5>[height=0.7\textheight]{network/WR_network-ethernet.pdf}
\includegraphics<6->[height=0.7\textheight]{network/wr_network-enhanced_pro_without_10km.pdf}
% \includegraphics<3>[width=0.85\textwidth]{misc/LAN.jpg}
% \includegraphics<4>[width=0.8\textwidth]{misc/ieee-1588-ptp-example.jpg}
% \includegraphics<5>[width=1.0\textwidth]{network/WR_network-ethernet.pdf}
% \includegraphics<6->[width=1.0\textwidth]{network/wr_network-enhanced_pro-v2.pdf}
\end{center}
\end{columns}%\small\pause\pause\pause\pause\pause\pause\pause\pause
% \url{https://www.ohwr.org/projects/white-rabbit/}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Open \textbf{and} commercially available off-the-shelf}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\includegraphics[width=1.0\textwidth]{misc/WR-zoo.jpg}\vspace{-1cm}
\begin{center}
\small
\textbf{Companies selling White Rabbit [3]:} \url{www.ohwr.org/projects/white-rabbit/wiki/wrcompanies}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% \begin{frame}{White Rabbit application examples}
%
% \begin{columns}[c]
% \column{0.7\textwidth}
% \begin{itemize}
% \item<1-> \color<2->{black!50}{CERN and GSI}
% \item<2-> \color<3->{black!50}{HiSCORE: Gamma\&Cosmic-Ray experiment}
% \item<3-> \color<4->{black!50}{The Large High Altitude Air Shower Observatory}
% \item<4-> \color<5->{black!50}{MIKES: Centre for metrology and accreditation}
% \item<5-> {KM3NET: European deep-sea neutrino telescope}
% \end{itemize}
%
% \column{0.45\textwidth}
% \begin{center}
% \includegraphics<1>[width=0.80\textwidth]{applications/gsiANDcern.pdf}
% \pause
% \includegraphics<2>[width=1\textwidth]{applications/tunka.pdf}
% \pause
% \includegraphics<3>[width=1\textwidth]{applications/lhaaso.pdf}
% \pause
% \includegraphics<4>[width=.7\textwidth]{applications/mikes.pdf}
% \pause
% \includegraphics<5->[width=1\textwidth]{applications/KM3NeT.pdf}
% \end{center}
%
% \end{columns}
% \pause
% {\small More WR collaborators: \url{http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers}}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Many users worldwide, including metrology labs...}
% \small
\footnotesize
\begin{columns}[c]
\column{0.72\textwidth}
\begin{itemize}
\item<1-> \color<2->{black!50}{CERN and GSI}
\item<2-> \color<3->{black!50}{The Large High Altitude Air Shower Observatory}
\item<3-> \color<4->{black!50}{KM3NET: Cubic Kilometre Neutrino Telescope}
\item<4-> \color<5->{black!50}{German Stock Exchange}
\item<5-> \color<7->{black!50}{Mikes: Finish Metrology Institute}
\item<6-> \color<7->{black!50}{Metrology Institutes in Netherlands (VSL), \\France (LNE-SYRTE), USA (NIST), UK (NPL) and\\Italy (INRIM)} %and Belgium (SMD)
\item<7-> ESA: European Space Agency for Galileo
\end{itemize}
\column{0.45\textwidth}
\begin{center}
\includegraphics<1>[height=0.75\textheight]{applications/gsiANDcern.pdf}
% \includegraphics<2>[width=1\textwidth]{applications/lhaaso.pdf}
\includegraphics<2>[height=0.75\textheight]{applications/lhaaso-v2.jpg}
% \includegraphics<3>[width=1\textwidth]{applications/KM3NeT.pdf}
\includegraphics<3>[height=0.75\textheight]{applications/KM3NeT-v2.jpg}
% \includegraphics<4>[width=1\textwidth]{applications/GermanStockExchange.jpg}
\includegraphics<4>[height=0.75\textheight]{applications/GermanStockExchange-v2.jpg}
\includegraphics<5>[height=0.75\textheight]{applications/finland-2.jpg}
\includegraphics<6>[height=0.75\textheight]{applications/TimeLabs.png}
\includegraphics<7->[height=0.75\textheight]{applications/ESA-galileo.jpg}
\end{center}
\end{columns}
\pause\pause\pause\pause\pause\pause\pause%\vspace{0.5cm}
{\scriptsize See user page [4]: \url{http://www.ohwr.org/projects/white-rabbit/wiki/WRUsers}}
{\scriptsize See also article [5] and newsletter [6]}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Technology}
\subsection{}
\begin{frame}{White Rabbit technology - sub-ns synchronisation}
\begin{block}{Based on}
\begin{itemize}
\item IEEE 1588 Precision Time Protocol \\ on Gigabit Ethernet over fibre
\end{itemize}
\end{block}
\pause
\begin{block}{Enhanced with}
\begin{itemize}
\item Layer 1 syntonisation
\item Digital Dual Mixer Time Difference (DDMTD)
\item Link delay model
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{Precision Time Protocol (IEEE 1588)}
\begin{columns}[c]
\column{.4\textwidth}
\begin{center}
\includegraphics<1>[height=5cm]{protocol/ptp_exchange-enhanced.jpg}
\includegraphics<2->[height=4cm]{protocol/ptpNetwork.jpg}
\end{center}
\column{.75\textwidth}
\begin{itemize}
\item Frame-based synchronisation protocol
\item Simple calculations:
\begin{itemize}
\item link delay: $\delta_{ms} = \frac{(t_{4}-t_{1}) - (t_{3}-t_{2})}{2}$
\item offset from master: $OFM = t_{2} - (t_{1} + \delta_{ms})$
\end{itemize}
\item<2-> Hierarchical network
\item<3-> Shortcomings:
\begin{itemize}
\item devices have free-running oscillators
\item frequency drift compensation vs. message exchange traffic
\item assumes symmetry of medium
\item timestamps resolution
\end{itemize}
\end{itemize}
\end{columns}
\end{frame}
\begin{frame}{Layer 1 Syntonisation}
%\begin{block}{Common clock for the entire network}
\begin{itemize}\small
\item Clock is encoded in the Ethernet carrier and recovered by the receiver chip
\item All network devices use the same physical layer clock
\item Clock loopback allows phase detection to enhance precision of timestamps
% \item Phase detection allows sub-ns delay measurement
\end{itemize}
%\end{block}
\vspace{-0.2cm}
\begin{center}
\includegraphics<1>[height=5cm]{misc/synce_v3.pdf}
% \includegraphics[height=4.5cm]<2>{p1588/1588-ha-L1vsPTP-simplified.jpg}
\end{center}
\end{frame}
\begin{frame}{Digital Dual Mixer Time Difference (DDMTD)}
\begin{itemize}
\item Precise phase measurements in FPGA
\item WR parameters:
\begin{itemize}\scriptsize
\item $clk_{in}~~~~~~~~=62.5$~MHz
\item $clk_{DDMTD}=62.496185$~MHz (N=14)
\item $clk_{out}~~~~~~=~~3.814$~kHz
\end{itemize}
\item Theoretical resolution of 0.977~ps
\end{itemize}
\vspace{-0.2cm}
\begin{center}
\includegraphics[width=\textwidth]{misc/ddmtd_3.jpg}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}{SoftPLL}
% \begin{center}
% \includegraphics[width=.9\textwidth]{protocol/dmpll_diagram-slides.pdf}
% \end{center}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Link delay model}
\begin{columns}
\column{.65\textwidth}
\footnotesize
\begin{itemize}
\item <1->Correction of RTT for asymmetries
\item <2->Asymmetry sources: FPGA, PCB, SFP electrics/optics, chromatic dispersion [7,8]
\item <3->Link delay model:
\begin{itemize}\scriptsize
\item \textbf{Fixed delays} -- calibrated/measured
\item \textbf{Variable delays} -- evaluated online with:\vspace{0.1cm} $\alpha = \frac{\nu_g(\lambda_s)}{\nu_g(\lambda_m)} -1 = \frac{\delta_{ms} - \delta_{sm}}{\delta_{sm}}$
\end{itemize}
\item <4-> Accurate offset from master (OFM):\scriptsize \\\vspace{0.2cm}
% $RTT=(t_{4}-t_{1}) - (t_{3}-t_{2})$\\
$\delta_{ms}~ = \frac{1 + \alpha}{2 + \alpha} \, (RTT - \sum \Delta - \sum \epsilon)$\vspace{0.2cm}
$OFM = t_{2} - (t_{1} + \delta_{ms} + \Delta_{txm} + \Delta_{rxs} + \epsilon_S)$
\end{itemize}
\column{.5\textwidth}
\begin{center}
\includegraphics<1>[width=1.0\textwidth]{protocol/link-delay-model-detailed-1.jpg}
\includegraphics<2>[width=1.0\textwidth]{protocol/link-delay-model-detailed-2.jpg}
\includegraphics<3->[width=1.0\textwidth]{protocol/link-delay-model-detailed-3.jpg}\\\pause\pause\pause
\tiny See: \textit{WR Calibration} [9]
\end{center}
\end{columns}
% \pause\pause\pause\pause
% \scriptsize See: \textit{WR Calibration}, version 1.1, G.Daniluk
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \section{Equipment}
% \subsection{}
%
% \begin{frame}{Typical WR network}
% \begin{center}
% \includegraphics[width=.5\textwidth]{network/wr_network-enhanced_pro.pdf}
% \end{center}
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}[t,fragile]{White Rabbit Switch [10]}
% \begin{center}
% \includegraphics[width=\textwidth]{switch/wrSwitch_v3_3.jpg}
% \begin{itemize}\small
% \item Central element of WR network
% \item 18 port gigabit Ethernet switch with WR features
% \item Default Optical transceivers: up to 10km, single-mode fiber
% \item Fully open, commercially available from 4 companies
% \end{itemize}
%
% \end{center}
% \begin{center}\scriptsize
% NOTE: Work started on a new WR switch with 10 Gigabit Ethernet
% \end{center}
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% \begin{frame}{Simplified block diagram of the hardware}
% \vspace{-0.3cm}
% \begin{center}
% \includegraphics[width=.85\textwidth]{switch/switch3_4_simple_diagram_h.pdf}
% \end{center}
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}{Open \textbf{and} commercially available off-the-shelf}
% \includegraphics[width=\textwidth]{misc/WR-zoo.jpg}
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
%
% \begin{frame}{WR Node [11]: carrier board + FMC}
% \vspace{-0.5cm}
% \begin{center}
% \includegraphics[width=9.5cm]{node/shw_kit2.png}
% \end{center}
%
% \begin{columns}[c]
% \column{.01\textwidth}
% \column{.98\textwidth}
% \vspace{-0.5cm}
% \begin{block}{FMC-based Hardware Kit}
% \begin{itemize}\small
% % \item Carrier boards in PCI-Express, VME, PXIe
% \item All carrier cards are equipped with a White Rabbit port
% \item All carrier cards instantite WR PTP Core [12]
% \item Mezzanines can use the accurate clock signal and ``TAI''
% \\ (synchronous sampling clock, trigger time tag, ...)
% \end{itemize}
% \end{block}
%
% \column{.01\textwidth}
% \end{columns}
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}{White Rabbit PTP Core [11]}
% \begin{center}
% \includegraphics[width=\textheight]{node/wrNode.jpg}
% \end{center}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Performance}
\subsection{}
\begin{frame}{Time transfer: out-of-the-box}
\begin{center}
\includegraphics[height=7.0cm]{measurements/meas_setup.pdf}
\end{center}
\end{frame}
\begin{frame}{Time transfer: out-of-the-box}
\begin{center}
\includegraphics[height=6.0cm]{measurements/meas_results2.pdf}\\
Reported in 2011 in [13]
\end{center}
\end{frame}
\begin{frame}{Frequency transfer: out-of-the-box and improved}
\begin{center}
\includegraphics[width=\textwidth]{measurements/WRSlowJitter/rsz_experimental_setup.png}\\
\scriptsize
Measurement device: Microsemi/Microchip 3120A Phase Noise Test Probe\\
\end{center}
\end{frame}
\begin{frame}{Frequency transfer: out-of-the-box and improved}
\vspace{-0.35cm}
\begin{center}
% \includegraphics[width=.57\textwidth]{measurements/WRSlowJitter/GM+BC_pn.jpg}
\includegraphics[width=.72\textwidth]{measurements/WRSlowJitter/GM+BC_MDEV.jpg}
% \includegraphics[width=1.0\textwidth]{measurements/WRSlowJitter/GM+BC_pn+MDEC.jpg}
\end{center}
\vspace{-0.5cm}
\begin{itemize}\scriptsize
\item<1-> Out-of-the-box performance:
\begin{itemize}\tiny
\item \textbf{GM-in to GM-out}: jitter of \textbf{9~ps} RMS 1~Hz--100~kHz and MDEV of \textbf{2E-12} $\tau$=1~s ENBW 50~Hz
\item \textbf{GM-in to Slave-out}: jitter of \textbf{11~ps} RMS 1~Hz--100~kHz and MDEV of \textbf{4E-12} $\tau$=1~s ENBW 50~Hz
\end{itemize}
\item<2-> WR Switches improved with Low Jitter Daughterboard (LJD [14, 16]):
\begin{itemize}\tiny
\item \textbf{GM-in to GM-out}: jitter of \textbf{1~ps} RMS 1~Hz--100~kHz and MDEV of $<$\textbf{5E-13} $\tau$=1~s ENBW 50~Hz
\item \textbf{GM-in to Slave-out}: jitter of $<$\textbf{2~ps} RMS 1~Hz--100~kHz and MDEV of $<$\textbf{7E-13} $\tau$=1~s ENBW 50~Hz
\end{itemize}
% \item<3-> Enhanced end-node (Morion MV207 OCXO):
% \begin{itemize}\tiny
% \item \textbf{GM-out to BC-out}: jitter of $<$\textbf{100fs} RMS 10Hz-10MHz
% \end{itemize}
\end{itemize}
% \pause\pause
% \begin{center}\scriptsize
% See more in t [14, 16]
% \end{center}
\end{frame}
\begin{frame}{WR time \& frequency tranfser: state of the art}
\begin{center}
\includegraphics[width=0.8\textwidth]{measurements//RF-ertm_clka_100mhz_ocxo_250m_out-v2.png}
\end{center}
\begin{itemize}\scriptsize
\item \textbf{GM-out to end-node-out}: accuracy of $<$\textbf{10~ps}
\item \textbf{GM-out to end-node-out}: jitter of $<$\textbf{100~fs} RMS 10~Hz--10~MHz
\end{itemize}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section[WR and Open Source]{White Rabbit and Open Source}
\subsection{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{The White Rabbit ecosystem 1/2}
\begin{block}{Individuals, companies and public institutions}
\begin{itemize}
\item Open Source provides level playing field.
\item ``Open Core'' business model with ever-expanding core.
\item If you are paid with public money, please publish all your
contributions under an open-source licence. See
\href{https://ohwr.org/project/ohr-meta/wikis/Documents/oshw-in-public-institutions}
{https://ohwr.org/project/ohr-meta/wikis/Documents/oshw-in-public-institutions}.
\end{itemize}
\end{block}
\end{frame}
\begin{frame}{The White Rabbit ecosystem 1/2}
\begin{block}{Challenges ahead}
\begin{itemize}
\item How to maintain a healthy ever-expanding open core? The issue with
patents.
\item How to manage the evolution of WR in a fair, transparent way?
\item How to make WR more sustainable, providing a template other FOSS and
OSHW projects can use?
\end{itemize}
\end{block}
Should we create a White Rabbit Foundation?
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Applications}
\subsection{}
\begin{frame}{WR applications in science and beyond}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{columns}[c]
\column{.5\textwidth}
\begin{itemize}
\item Time \& frequency transfer
\item Time-based control
\item Precise timestamping
\item Trigger distribution
\item Fixed-latency data transfer
\item Radio-frequency transfer
\end{itemize}
\column{.6\textwidth}
\pause
\begin{block}{\centering New paradigm}
\begin{center}
Precise time \& frequency transfer\\ revolutionises \\the way science is made !
\end{center}
\end{block}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Time \& frequency transfer}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{itemize}\small
\item Widely used/evaluated by Time Laboratories\\
\textcolor{white}{Evaluated by Deutsche Telecom}
\end{itemize}
\vspace{0.2cm}
\begin{table}
\scriptsize
\begin{tabular}{
| c | c | c | r | r l | } \hline
\textbf{Time Lab}& \textbf{Country} & \textbf{When}& \textbf{Length} & \multicolumn{2}{|c|}{\textbf{Time Error}}\\ \hline
VTT & Finland & 2016 & 950~km & $\pm$2~ns & \\ \cline{3-6}
MIKES & & 2018 & 50~km & $<$1~ns & \\ \hline
& & 2016 & 2x137~km & $\approx$8~ns &(2 sigma, normal dist.) \\ \cline{3-6}%
VSL & Netherlands & 2018 & 2x100~km & $<$1~ns & (rectangular dist.) \\ \cline{3-6}
& & 2019 & 2x100~km & $<$100~ps & (rectangular dist.) \\ \hline
LNE- & & 2016 & 25~km & 150~ps & \\ \cline{3-6}
SYRTE & France & 2017 & 125~km & 2.5~ns & \\ \cline{4-6}
& & & 4x125~km & 2.5~ns & \\ \hline
NIST & USA & 2018 & $<$10~km & $<$200~ps & \\ \hline
NPL & UK & 2017 & 2x80~km & $<$1~ns & \\ \hline
INRIM & Italy & 2014 & 50~km & 800~ps & $\pm$56~ps \\ \cline{4-6}
& & & 70~km & 610~ps & $\pm$47~ps \\ \hline
SMD \& & Belgium to & 2019 & 260~km & $\pm$200~ps & (2 sigma, normal dist.) \\
ESTEC & Netherlands & & & & \\ \hline
% & 400~km & & \\ \hline
\end{tabular}
\end{table}\vspace{-0.4cm}
\begin{center}
\scriptsize See more in [5] and [6]
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Time \& frequency transfer}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{itemize}\small
\item Widely used/evaluated by Time Laboratories
\item Evaluated by Deutsche Telecom
\end{itemize}
\includegraphics<1>[width=1.0\textwidth]{applications/DT.png}\\\tiny
ISPCS keynote \textit{Highly Accurate Time Dissemination \& Network Synchronisation}, Helmut Imlau, Deutsche Telekom
\end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}{Time \& frequency transfer}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{columns}[c]
% \column{.4\textwidth}
%
% \begin{itemize}\small
% \item<1-> Not very useful in scientific installations
% \item<2-> Widely used/evaluated by National Time Laboratories\\
% \textcolor{white}{bleblebleblebleblebleblebleblebleblebleblebleblebleblebleblebleblebleble}
% \end{itemize}
%
%
%
% \column{.7\textwidth}
% \pause
% \begin{table}
% \scriptsize
% \begin{tabular}{
% | c | c | c | c | } \hline
% \textbf{Time Lab}& \textbf{Country} & \textbf{Link Length}& \textbf{Time Error}\\ \hline
% VTT & Finland & 950~km & $\pm$2ns \\ \cline{3-4}
% MIKES & & 50~km & $<$1ns \\ \hline
% VSL & Netherlands & 2x137~km & $\approx$8ns \\ \hline
% % & & 25~km & 150ps & 1-2ps@1000s \\ \cline{3-5}
% LNE- & & 25~km & 150ps \\ \cline{3-4}
% SYRTE & France & 125~km & 2.5ns \\ \cline{3-4}
% & & 4x125~km & 2.5ns \\ \hline
% NIST & USA & $<$10~km & $<$200ps \\ \hline
% NLP & UK & 2x80~km & $<$1ns \\ \hline
% & & 50~km & 800ps $\pm$56ps\\ \cline{3-4}
% INRIM & Italy & 70~km & 610ps $\pm$47ps\\ \hline
% % & 400~km & & \\ \hline
%
% \end{tabular}
% \end{table}
%
% \end{columns}
%
% \end{frame}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{frame}{Time \& frequency transfer}
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \begin{columns}[c]
% \column{.4\textwidth}
%
% \begin{itemize}\small
% \item Not very useful in scientific installations
% \item Widely used/evaluated by National Time Laboratories
% \item Evaluated by Deutche Telecom
%
% \end{itemize}
%
%
%
% \column{.7\textwidth}
% \includegraphics<1>[width=1.0\textwidth]{applications/DT.png}\\\tiny
% From ISPCS keynote "Highly Accurate Time Dissemintation and Network Synchronization" by Helmut Imlau,
%
% \end{columns}
%
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Time-based control}
\subsection{}
\begin{frame}{Time-based control}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}
\includegraphics<1>[width=1.0\textwidth]{applications/CERN/Determinism+synchronization-1.jpg}
\includegraphics<2>[width=1.0\textwidth]{applications/CERN/Determinism+synchronization-2.jpg}
\includegraphics<3>[width=1.0\textwidth]{applications/CERN/Determinism+synchronization-3.jpg}
\includegraphics<4>[width=1.0\textwidth]{applications/CERN/Determinism+synchronization-4.jpg}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Time-based control - example application}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{columns}[c]
\column{.65\textwidth}
\begin{itemize} \small
\item<1-> GSI Helmholtz Centre for Heavy Ion Research in Germany
\item<2-> 1-5 ns accuracy and 10 ps precision
\item<3-> WR network at GSI:
\begin{itemize}\footnotesize
\item Current: 134 nodes \& 32 switches (operational since June 2018)
\item Final: 2000 WR nodes \& 300 switches in 5 layers
\end{itemize}
\end{itemize}
\column{.5\textwidth}
\begin{center}
\includegraphics[width=1.0\textwidth]{applications/gsi.pdf}
\end{center}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Precise timestamping}
\subsection{}
\begin{frame}{Precise timestamping}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{columns}[c]
\column{.65\textwidth}
\textcolor{white}{dddd dsaf asd fasd fdsa fads f dsa fdsa f dsaf dsa fdsa f dsaf dsaf fds}
\begin{itemize} \small
\item<1-> Association of time with
\begin{itemize}\footnotesize
\item an event
\item a sample (measured value)
\end{itemize}
\item<2-> The most widely used WR application
\begin{itemize}\footnotesize
\item<3-> Time-of-flight measurement
\begin{itemize}\scriptsize
\item<4-> Speed of neutrinos - CNGS
\item<5-> Types of particles - ProtoDUNE
\end{itemize}
\item<6-> Cosmic ray and neutrino detection
\begin{itemize}\scriptsize
\item<7-> Large High Altitude Air Shower Observatory
\item<8-> Cubic Kilometre Neutrino Telescope
\item<9-> Tunka Advanced Instrument for cosmic ray physics and Gamma Astronomy
\end{itemize}
\item<10-> German Stock Exchange
\end{itemize}
\end{itemize}
\column{.5\textwidth}
\begin{center}
\includegraphics<1-2>[width=1.0\textwidth]{applications/timestamping.jpg}
\includegraphics<4>[width=1.0\textwidth]{applications/cngs-timing-31.pdf}
\includegraphics<5>[width=1.0\textwidth]{applications/ProtoDUNE.png}
\includegraphics<7>[width=1.0\textwidth]{applications/lhaaso.pdf}
\includegraphics<8>[width=1.0\textwidth]{applications/KM3NeT.pdf}
\includegraphics<9>[width=1.0\textwidth]{applications/TAIGA-1.jpg}
\includegraphics<10>[width=1.0\textwidth]{applications/GermanStockExchange.jpg}
\end{center}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Trigger distribution}
\subsection{}
\begin{frame}{Trigger distribution}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}\vspace{-0.2cm}
\includegraphics[width=1.0\textwidth]{applications/CERN/WRTD.jpg}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Trigger distribution - example applications}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}\vspace{-0.2cm}\small
LHC trigger distribution to measure beam instabilities - since 2016\\
\includegraphics[width=0.7\textwidth]{applications/LIST.jpg}
\end{center}
\begin{center}
\pause\small
WRXI - White Rabbit eXtensions for Instrumentation - to replace CERN’s Open Analog Signals Information System (OASIS)
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Fixed-latency data transfer}
\subsection{}
\begin{frame}{Fixed-latency data transfer}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}\vspace{-0.2cm}
\includegraphics<1>[width=1.0\textwidth]{applications/Fixed-latency.jpg}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Fixed-latency data transfer- example application}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}
Distribution of magnetic field in CERN accelerators
\end{center}
\begin{center}\vspace{-0.2cm}
\includegraphics<1>[height=0.6\textwidth]{applications/CERN/btrain-1.jpg}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% \subsection{Radio-frequency transfer}
\subsection{}
\begin{frame}{Radio-frequency transfer}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{columns}[c]
\column{1.1\textwidth}
\begin{center}\vspace{-0.5cm}
\includegraphics<1>[width=1.05\textwidth]{applications/DDS-0.jpg}
\includegraphics<2>[width=1.05\textwidth]{applications/DDS-1.jpg}
\end{center}
\column{0.05\textwidth}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Radio-frequency transfer - example application}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}\vspace{-0.2cm}
\includegraphics[height=0.4\textwidth]{applications/ESRF.jpg}
\includegraphics[height=0.4\textwidth]{applications/ESRF-pic.png}
\end{center}\small
\begin{itemize}\footnotesize
\item RF over WR at European Synchrotron Radiation Facility (ESRF)
\begin{itemize}\scriptsize
\item A prototype tested in operation: $<$10 ps jitter
\end{itemize}
\item RF over WR at CERN
\begin{itemize}\scriptsize
\item A prototype: $<$100 fs jitter and $<$10 ps accuracy
\end{itemize}
\end{itemize}
\end{frame}
\section{Standardisation}
\subsection{}
\begin{frame}{WR standardisation in IEEE1588 (1)}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{columns}[c]
\column{.8\textwidth}
\begin{itemize}\small
\item<1-> IEEE standards are revised periodically
\item<2-> IEEE1588 revision [23] started in 2013 \& targeted\\\scriptsize
\textit{"...support for synchronisation to better than 1 nanosecond"}\\
\item<3-> Working Group with 5 sub-committees
\item<4-> High Accuracy sub-committee
\begin{itemize}\scriptsize
\item Focus on White Rabbit
\item Experts from industry and academia
\item Division of WR into self-contained parts
\item Definition of Optional Features and PTP Profile that
allow WR-like implementation and WR performance
\end{itemize}
\item<6-> Revised IEEE1588 expected in 2019/2020
\end{itemize}
\column{.4\textwidth}
\begin{center}
\includegraphics<1-2>[width=0.8\textwidth]{p1588/p1588-1.jpg}
\includegraphics<3>[width=0.8\textwidth]{p1588/p1588-2.jpg}
\includegraphics<4>[width=0.8\textwidth]{p1588/p1588-3.jpg}
\includegraphics<5->[width=0.8\textwidth]{p1588/p1588-4.jpg}
\end{center}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{WR standardisation in IEEE1588 (2)}
% \subsection{}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{center}
\includegraphics<1>[width=0.88\textwidth]{p1588/HAin1588-0.jpg}
\includegraphics<2>[width=1.0\textwidth]{p1588/HAin1588-1.jpg}
\includegraphics<3>[width=1.0\textwidth]{p1588/HAin1588-2.jpg}
\includegraphics<4>[width=1.0\textwidth]{p1588/HAin1588-3.jpg}
\includegraphics<5>[width=1.0\textwidth]{p1588/HAin1588-4.jpg}
\includegraphics<6>[width=1.0\textwidth]{p1588/HAin1588-5.jpg}
\end{center}
\begin{center}
\scriptsize
\textbf{White Rabbit integration into IEEE1588-20XX as High Accuracy [17]:} \url{https://www.ohwr.org/projects/wr-std/wiki/wrin1588}
\end{center}
\end{frame}
% \begin{frame}{Current developments}
% \begin{block}{Switches and nodes are commercially available}
% Work now revolves around better diagnostics and remote management of WR
% networks as well as improving the phase noise and performing extensive network stress tests.
% \end{block}
% \pause
% \begin{block}{Standardisation}
% IEEE 1588 revision process is ongoing and contains a sub-committee (High
% Accuracy) dedicated to White Rabbit. Revised standard expected in 2019.
% \end{block}
% \pause
% \begin{block}{Robustness}
% Based on redundant information and fast switch-over between
% redundant fibres and switches.
% \end{block}
% \end{frame}
%
\section{Conclusions}
\subsection{}
\begin{frame}{Summary}
\begin{itemize}
\item<1-> Sub-ns accuracy and sub-10~ps precision out-of-the-box
\item<2-> Sub-10~ps accuracy and sub-100~fs precision achievable
\item<3-> Completely open source
\item<4-> Commercially available off-the-shelf
\item<5-> Standard-based and standard extending
\item<6-> Included in the revised IEEE1588
\item<7-> Showcase of technology transfer
\item<8-> A versatile solution for general control and data acquisition
% \item<1-> Sub-ns accuracy and sub-10ps precision out-of-the-box
% \item<2-> Sub-10ps accuracy and sub-100fs precision achievable
% \item<3-> Open source (H/W \& S/W) with commercial support
% \item<4-> Standard-compatible and standard-extending
% \item<5-> Standardised within upcoming revision of IEEE1588
% \item<6-> A versatile solution for general control and data acquisition
% \item<7-> More applications than ever expected
\end{itemize}
% \pause
%For more information see http://www.ohwr.org/projects/white-rabbit/wiki
\end{frame}
\begin{frame}{Q\&A}
\begin{center}
\includegraphics[height=4.0cm]{misc/white_rabbit_end.png}
\end{center}
\begin{center}
Thank you for attention!\\ Any questions?
\end{center}
\vspace{1cm}
\begin{center}\scriptsize
WR Project page: http://www.ohwr.org/projects/white-rabbit/wiki
\end{center}
\end{frame}
\appendix
\backupbegin
\begin{frame}{Backup slides}
\begin{center}
Backup slides
\end{center}
\end{frame}
\section{References}
\subsection{}
\begin{frame}{References}
\tiny
% \begin{enumerate}
% \item \textbf{White Rabbit Project:}\url{https://www.ohwr.org/project/white-rabbit/wikis}
% \item \textbf{Companies selling WR:}\url{https://www.ohwr.org/project/white-rabbit/wrcompanies}
% \item \textbf{Users of WR:}\url{https://www.ohwr.org/project/white-rabbit/WRUsers}
% \item \textbf{White Rabbit Applications and Enhancements}, M.Lipinski et. al, ISPCS2018\\\url{https://www.ohwr.org/project/white-rabbit/uploads/7f9e67258850d5c036629a509bf2e124/ISPCS2018-WRApplicatoinsAndEnhancements.pdf}
% \item \textbf{White Rabbit Newsletter, September 2018} \\\url{https://www.ohwr.org/project/white-rabbit/wikis/newsletter-2018-09}
% \item \textbf{Temperature Effect and Correction Method of White Rabbit Timing Link}; Hongming Li, Guanghua Gong, Weibin Pan, Qiang Du, Jianmin Li
% \item \textbf{DWDM Stabilized Optics for White Rabbit}, Paul Boven
% \item \textbf{WR Calibration}, version 1.1, G.Daniluk\\ \url{www.cern.ch/white-rabbit/documents/WR_Calibration-v1.1-20151109.pdf}
% \item \textbf{White Rabbit Switch:} \url{https://www.ohwr.org/project/white-rabbit/wikis/Switch}
% \item \textbf{White Rabbit Node:} \url{https://www.ohwr.org/project/white-rabbit/wikis/Node}
% \item \textbf{White Rabbit PTP Core:} \url{https://www.ohwr.org/project/wr-cores/wikis/Wrpc-core}
% \item \textbf{White Rabbit: a PTP application for robust sub-nanosecond synchronization}, M. Lipiński et el, ISPCS2011\\\url{https://www.ohwr.org/project/white-rabbit/uploads/cfc34350adcbf5156f968fac0b9301b5/ISPCS2011_WR.pdf}
% \item \textbf{White Rabbit Clock Synchronization: Ultimate Limits on Close-In Phase Noise and Short-Term Stability Due to FPGA Implementation}, M.Rizzi et el, UFFC-T, 2018\\\url{https://www.ohwr.org/project/white-rabbit/uploads/253cbfc17d2b43cd445b68348aee0374/Submitted_IEEE.pdf}
% \item \textbf{White Rabbit Clock Characteristics}, M. Rizzi et el, ISPCS2016\\\url{https://www.ohwr.org/project/white-rabbit/uploads/2fa1a438446fc6c85b4540faecf1017a/ISPCS2016-WRClockCharacteristics.pdf}
% \item \textbf{WRS Low Jitter Daughterboard:}\url{www.ohwr.org/projects/wrs-low-jitter}
% \item \textbf{Methods to Increase Reliability and Ensure Determinism in a White Rabbit Network}, M. Lipinski\\\url{http://cds.cern.ch/record/2261452}
% \item \textbf{Trigger and RF Distribution using White Rabbit}, T. Wlostowski et al\\\url{http://accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/wec3o01.pdf}
% \item \textbf{White Rabbit Trigger Distribution:}\url{https://www.ohwr.org/project/wrtd/wikis/home}
% % \url{https://indico.cern.ch/event/815290/#1-trigger-distribution-over-wh}
% \end{enumerate}
\begin{columns}[c]
\column{.01\textwidth}
\column{1.15\textwidth}
$[1]$ \textbf{White Rabbit Project:} \url{www.ohwr.org/project/white-rabbit/wikis}\\
$[2]$ \textbf{Methods to Increase Reliability and Ensure Determinism in a WR Network}, M. Lipinski, \url{cds.cern.ch/record/2261452}\\
$[3]$ \textbf{Companies selling WR:} \url{www.ohwr.org/project/white-rabbit/wrcompanies}\\
$[4]$ \textbf{Users of WR:} \url{www.ohwr.org/project/white-rabbit/WRUsers}\\
$[5]$ \textbf{White Rabbit Applications and Enhancements}, M.Lipinski et al., ISPCS2018, \url{www.ohwr.org/project/white-rabbit/uploads/7f9e67258850d5c036629a509bf2e124/ISPCS2018-WRApplicatoinsAndEnhancements.pdf}\\
$[6]$ \textbf{White Rabbit Newsletter, September 2018: } \url{www.ohwr.org/project/white-rabbit/wikis/newsletter-2018-09}\\
$[7]$ \textbf{Temperature Effect and Correction Method of White Rabbit Timing Link}; H. Li et al., \url{arxiv.org/abs/1406.4223}\\
$[8]$ \textbf{DWDM Stabilized Optics for White Rabbit}, P. Boven, \url{ieeexplore.ieee.org/document/8409035}\\
$[9]$ \textbf{WR Calibration}, version 1.1, G.Daniluk, \url{www.cern.ch/white-rabbit/documents/WR_Calibration-v1.1-20151109.pdf}\\
$[10]$ \textbf{White Rabbit Switch:} \url{www.ohwr.org/project/white-rabbit/wikis/Switch}\\
$[11]$ \textbf{White Rabbit Node:} \url{www.ohwr.org/project/white-rabbit/wikis/Node}\\
$[12]$ \textbf{White Rabbit PTP Core:} \url{www.ohwr.org/project/wr-cores/wikis/Wrpc-core}\\
$[13]$ \textbf{White Rabbit: a PTP application for robust sub-nanosecond synchronization}, M. Lipiński et el, ISPCS2011\\
~~~~~~~ \url{www.ohwr.org/project/white-rabbit/uploads/cfc34350adcbf5156f968fac0b9301b5/ISPCS2011_WR.pdf}\\
$[14]$ \textbf{White Rabbit Clock Synchronization: Ultimate Limits on Close-In Phase Noise and Short-Term Stability Due to FPGA Implementation}, M.Rizzi et el, UFFC-T, 2018\\
~~~~~~~ \url{www.ohwr.org/project/white-rabbit/uploads/253cbfc17d2b43cd445b68348aee0374/Submitted_IEEE.pdf}\\
$[15]$ \textbf{White Rabbit Clock Characteristics}, M. Rizzi et el., ISPCS2016, \url{www.ohwr.org/project/white-rabbit/uploads/2fa1a438446fc6c85b4540faecf1017a/ISPCS2016-WRClockCharacteristics.pdf}\\
$[16]$ \textbf{WRS Low Jitter Daughterboard:} \url{www.ohwr.org/projects/wrs-low-jitter}\\
$[17]$ \textbf{White Rabbit standardisation:}
\url{www.ohwr.org/projects/wr-std/wiki/}
$[18]$ \textbf{WR Precision Time Protocol on Long-Distance Fiber Links}, E. F. Dierikx et al., \url{ieeexplore.ieee.org/document/7383303}\\
$[19]$ \textbf{White Rabbit Time Transfer on Medium and Long Fibre Hauls at INRIM}, G. Fantino et al., \\
~~~~~~~ \url{www.ion.org/publications/abstract.cfm?articleID=12598}\\
$[20]$ \textbf{Trigger and RF Distribution using White Rabbit}, T. Wlostowski et al., ICALEPCS2015, \\
~~~~~~~ \url{accelconf.web.cern.ch/AccelConf/ICALEPCS2015/papers/wec3o01.pdf}\\
$[21]$ \textbf{White Rabbit Trigger Distribution: }
\url{www.ohwr.org/project/wrtd/wikis/home}\\
~~~~~~~ \url{indico.cern.ch/event/815290/\#1-trigger-distribution-over-wh}\\
$[22]$ \textbf{Absolute Calibration: }
\url{https://www.ohwr.org/project/wr-calibration/wikis/home}\\
$[23]$ \textbf{IEEE P1588 Working Group: }
\url{https://ieee-sa.imeetcentral.com/1588public/}
% \column{.01\textwidth}
\end{columns}
\end{frame}
% \section{Current developments}
% \subsection{}
% \begin{frame}{Current developments}
% \begin{itemize}\small
% \item<1-> Standardisation in IEEE 1588 [17, 23] -- practically done
% \item<2-> Time \& frequency performance -- prototyping
% \begin{itemize}\scriptsize
% \item Jitter: \textbf{sub-100fs RMS} (100Hz to 20MHz)
% \item Accuracy: \textbf{sub-10ps}
% \end{itemize}
% \item<3-> Long-haul link [18, 19] -- already working, study to improve
% \begin{itemize}\scriptsize
% \item \textbf{Sub-ns on 80km} and \textbf{ns on 137km} links with single bidirectional fiber
% \item \textbf{$\pm$2.5ns on 950km} links with two unidirectional fibers
% \end{itemize}
% \item<4-> Absolute Calibration [22] -- developed, reproducing
% \begin{itemize}\scriptsize
% \item In-situ calibration of fibers
% \item Absolute calibration of hardware delays
% \end{itemize}
% \item<5-> 10 GbE WR Switch - designing
% \item<6-> WR-based applications at CERN -- to be opperational in 2020
% \begin{itemize}\scriptsize
% \item Radio-frequency over WR for RF cavities control
% \item Distributed Oscilloscope
% \end{itemize}
% \end{itemize}
% \end{frame}
% \begin{frame}{GM Switch with LJD: PM noise and Modified ADEV}
% \begin{center}
% \includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/pn.png}
% \includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/mdev.png}
% \end{center}
% \end{frame}
%
% \begin{frame}{BC Switch with LJD: PM noise and Modified ADEV}
% \begin{center}
% \includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/slave_pn.png}
% \includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/slave_mdev.png}
% \end{center}
% \end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{WR performance in a long chain}
\subsection{}
\begin{frame}{WR performance in a long chain}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\includegraphics[width=\textwidth]{measurements/cascadeMeasurement.pdf}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\section{Improvements in a nutshell}
\subsection{}
\begin{frame}{Performance Enhancements}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{itemize}\footnotesize
\item<1-> Jitter and clock stability
\begin{itemize}\scriptsize
\item Triggered by National Laboratories and RF distribution
\item Allan deviation (ADEV) from 1e-11 to \textbf{1e-12} over 1~s
\item Random jitter from 11 to \textbf{1.1~ps RMS} (1~Hz to 100~kHz)
\item Ongong work to achieve jitter of \textbf{sub-100~fs RMS} (100~Hz to 20~MHz)
\end{itemize}
\item<2-> Compensation of hardware temperature variation
\begin{itemize}\scriptsize
\item Triggered by cosmic ray detectors
\item Active correction of hardware temperature variation
\item Pk-pk variation from 700~ps to \textbf{$<$150 ps with sdev $<$50~ps (-10 to 50$^o$C)}
\end{itemize}
\item<3-> Long-haul link
\begin{itemize}\scriptsize
\item Triggered by National Time Labs and Radio Telescope
\item \textbf{Sub-ns} is achievable on links on \textbf{up to 80~km}
\item \textbf{$<$100ps on 2x100~km} bidirectional \& \textbf{$\pm$2.5~ns on 950~km} unidirectional links
\end{itemize}
\item<4-> Link asymmetry correction
\begin{itemize}\scriptsize
\item Triggered by radio telescope (Square Kilometre Array)
\item At 1310/1490~nm, temp variation -0.12 ps/km/K (3ns for 80~km over 50$^o$C)
\item \textbf{Sub-ns for 80~km over 50$^o$C} using DWDM SFP on ITU channels C21/C22 (1560.61/1558.98~nm)
\end{itemize}
\item<5-> Absolute calibration
\end{itemize}
\end{frame}
\section{Improvements in depth}
\subsection{}
\begin{frame}{Performance limits and improvements}
\begin{center}
\includegraphics<1>[width=\textwidth]{misc/inaccuracy-sources.jpg}
\includegraphics<2>[width=\textwidth]{misc/inaccuracy-sources-fixed-delays.jpg}
\end{center}
\end{frame}
\begin{frame}{Hardware asymmetry compensation}
% \begin{center}\vspace{-0.3cm}
% \includegraphics<1-2>[height=2.3cm]{misc/inaccuracy-sources-fixed-delays.jpg}
% \includegraphics<3>[height=2.3cm]{protocol/bitslide.jpg}
% \includegraphics<4->[height=2.3cm]{misc/inaccuracy-sources-fixed-delays.jpg}
% \end{center}
\begin{columns}[c]
\column{0.65\textwidth}\vspace{-0.5cm}
\begin{itemize}\scriptsize
\item<1-> \textbf{PCB, FPGA, SFP} -- hardware delay uncertainty
\begin{itemize}\scriptsize
\item Calibration uncertainty: sdev of 2~ps [8]
\item Linear dependency on temperature\\ (700~ps over $-10..55^oC$ [7]):
\begin{itemize}\tiny
\item CuteWR: tx $-8.4~ps/K$, rx $13.3~ps/K$ [7]
\item Switch: 8~ps/K [8]
\item WR-Zen: 4~ps/K [8]
\end{itemize}
\item Remedy: active compensation \\(for LHASSO, 50ps over $-10..55^oC$ [7])
% \item SFP delay dependency on input power, error up to 30ps [2]
\end{itemize}
\item<2-> \textbf{Bitslide} -- measurement uncertainty
\begin{itemize}\scriptsize
\item Measured each time link goes up
\item Value provided by transceiver in FPGA
\item Error: $\approx\pm$50~ps for GTX (Virtex 6)
\item Remedy: ensure bitslide is zero \\(ongoing work at CERN)
\end{itemize}
\end{itemize}
\column{0.5\textwidth}
\begin{center}
\includegraphics<2>[width=\textwidth]{protocol/bitslide.jpg}
\includegraphics<1>[width=\textwidth]{measurements/fixed-delays-temp-dependency.jpg}\\
\tiny
\textcolor<2>{white}{Figure source: [7]}
\end{center}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Performance limits and improvements}
\begin{center}
\includegraphics[width=\textwidth]{misc/inaccuracy-sources-variable-delays.jpg}
\end{center}
\begin{center}
\pause
$\alpha = \frac{\nu_g(\lambda_S)}{\nu_g(\lambda_M)} -1 = \frac{\delta_{MS} - \delta_{SM}}{\delta_{SM}}$\\\vspace{0.2cm}
$\delta_{ms}~ = \frac{1 + \alpha}{2 + \alpha} \, (RTT - \sum \Delta - \sum \epsilon)$
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Medium asymmetry compensation}
% \begin{center}\vspace{-0.3cm}
% \includegraphics[height=2.3cm]{misc/inaccuracy-sources-variable-delays.jpg}
% \end{center}
\begin{columns}[c]
\column{0.71\textwidth}\vspace{-0.5cm}
\textcolor{white}{dddd\\dddd}
\begin{itemize}\scriptsize
\item<1-> \textbf{SFP} -- tx wavelength
\begin{itemize}\scriptsize
\item<2-> IEEE802.3ah allows nominal value departures\\(10nm at 1490nm, 50nm at 1310nm)
\item<3-> Linear dependency on SFP temp:
\begin{itemize}\tiny
\item 1310nm: $0.4~~\sim0.5~~nm/K$ \textcolor<1-3>{white}{$\Rightarrow$ $~~~0.11 ps/(K \cdot km)$ [7]}
\item 1490nm: $0.09\sim0.12 nm/K$ \textcolor<1-3>{white}{$\Rightarrow$ $-0.51 ps/(K \cdot km)$ [7]}
\item 1550nm: ~~~~~~~~~$\approx0.1~~nm/K$ \textcolor<1-3>{white}{$\Rightarrow$ $~~~1.7~~ps/(K \cdot km)$ [8]}
\end{itemize}
% \begin{itemize}\tiny
% \item 1310nm: $0.4\sim0.5 nm/K$ (AXGE-1254 SFP) [6]
% \item 1490nm: $0.09\sim0.12 nm/K$ (AXGE-3454 SFP) [6]
% \item 1550nm: $\approx0.1 nm/K$ [7]
% \end{itemize}
% \begin{itemize}\tiny
% \item 1310nm: $0.4\sim0.5 nm/K$, for G.652.D fiber: $0.11 ps/(K \cdot km)$ [6]
% \item 1490nm: $0.09\sim0.12 nm/K$, for G.652.D fiber: $-0.51 ps/(K \cdot km)$ [6]
% \item 1550nm: $0.1 nm/K$, for G.652.D fiber:$1.7ps/(K \cdot km)$ [7]
% \end{itemize}
% \item<4-> SFP temp-dependency for G652.D fiber:
% \begin{itemize}\tiny
% \item 1310nm: $0.11 ps/(K \cdot km)$ [6]
% \item 1490nm: $-0.51 ps/(K \cdot km)$ [6]
% \item 1550nm: $1.7ps/(K \cdot km)$ [7]
% \end{itemize}
\end{itemize}
\item<5-> \textbf{Fiber} -- chromatic dispersion
\begin{itemize}\scriptsize
\item Linear dependency on fiber temp:
\begin{itemize}\tiny
\item G.652.D at 1310/1490: $-0.2 ~~ps/(K\cdot km)$ [7]
\item G.652.D at 1310/1490: $-0.12 ps/(K\cdot km)$ [7]
\item G.652.D at 1490/1550: $-0.05 ps/(K\cdot km)$ [8]
\end{itemize}
\end{itemize}
\item<6-> Significant for links $>10~km$
\item<7-> Remedy: temp-stabilized laser, accurate and close wavelengths (C21/C23@1560.61/1558.98nm, SKA [8])
\end{itemize}
\textcolor{white}{dddd\\dddd\\dddd\\dddd}
\column{0.45\textwidth}
\begin{center}\vspace{-0.5cm}
\includegraphics<4>[width=0.8\textwidth]{measurements/sfp-temp-dependence.jpg}
\includegraphics<5>[width=\textwidth]{measurements/fiber-temp-dependency.jpg}
% \includegraphics<5->[width=\textwidth]{applications/SKA-DWDM.jpg}
\includegraphics<6->[width=\textwidth]{measurements/PBowen-link-errors.jpg}\textcolor{white}{d}\\
\textcolor<1-3,5->{white}{\tiny Figure source: [7]}\\
\textcolor<1-4>{white}{\tiny Figure source: [8]}
% \tiny\pause\pause\pause
% Figure source: [1]
\end{center}
\end{columns}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Frequency transfer}
\begin{center}\vspace{-0.3cm}
\includegraphics[height=2.3cm]{misc/inaccuracy-sources-freq-transfer.jpg}\\
\includegraphics<2>[width=.95\textwidth]{switch/wrs_v3_3_clocking_with_bandwidth.png}
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Frequency transfer}
% \begin{center}\vspace{-0.3cm}
% \includegraphics[height=2.3cm]{misc/inaccuracy-sources-freq-transfer.jpg}
% \end{center}
\begin{columns}[c]
\column{0.6\textwidth}\vspace{-0.5cm}
\begin{itemize}\scriptsize
\item<1-> \textbf{DDMTD}
\begin{itemize}\scriptsize
\item Flicker PM noise: -100 dBc/Hz at 1 Hz
\begin{itemize}\tiny
\item Dominant $<$ 10~Hz,
\item MDEV 4E-13 at $\tau=1~s$
\item LVDS input clock buffer and clock routing
\end{itemize}
\item White PM noise: -108 dBc/Hz
\begin{itemize}\tiny
\item Limits the phase noise to -108 dBc/Hz
\item Thermal, DFF meta-stability, noise due to aliasing
\end{itemize}
\item<2-> Stability at $\tau$=1s better on\\ Kintex-7 (28nm) \& Kintex US (20nm)
\end{itemize}
\item<3-> \textbf{GTX}
\begin{itemize}\scriptsize
\item Flicker PM noise: -100 dBc/Hz at 1 Hz
\item White PM noise: -106 dBc/Hz\\ MDEV 4E-13 at $\tau=1~s$
\end{itemize}
\item<4-> Remedy: none, inherent to technology
\end{itemize}
\column{0.5\textwidth}
\begin{center}\vspace{-0.5cm}
\includegraphics<1>[width=.99\textwidth]{measurements/DDMTD-noise.jpg}
\includegraphics<2>[width=.99\textwidth]{measurements/DDMTD-future-tech-noise.jpg}
\end{center}
\end{columns}\vspace{0.1cm}
\begin{center}
\tiny NOTE: Carrier is 10~MHz\\
\tiny All above data is based on [14]
\end{center}
\end{frame}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\begin{frame}{Frequency transfer}
% \begin{center}\vspace{-0.3cm}
% \includegraphics[height=2.3cm]{misc/inaccuracy-sources-freq-transfer.jpg}
% \end{center}
\vspace{0.5cm}
\begin{columns}[c]
\column{0.67\textwidth}\vspace{-0.5cm}
\begin{itemize}\scriptsize
\item<1-> Accumulation of phase noise in lower frequencies
\item<2-> \textbf{VCXO} - Boundary Clock only
\begin{itemize}\scriptsize
\item Phase noise leaking from the local oscillator
\item Instabilities induced by cooling airflow
\item Remedy: increase bandwidth (see [15]) or better oscillator (see daughterboard [16])
\end{itemize}
\item<3->\textbf{External reference input} - Grandmaster only
\begin{itemize}\scriptsize
\item Noisy internal Virtex-6 MMCM PLL
\item Large phase noise power at 10kHz to 2~MHz
\item Phase noise above DDMTD Nyquist (1.9~kHz) bandwidth folds back to baseband [14]
\item Remedy: external PLL to synthesize 62.5~MHz from 10MHz (see daughterboard [16])
\end{itemize}
\end{itemize}%\vspace{-0.2cm}
\begin{table}[ht]
\centering
\tiny
\begin{tabular}{|l | c | c | c | c | c | } \hline \tiny
\textbf{Meas.} & \multicolumn{5}{|c|}{\textbf{Allan Deviation (ADEV)}} \\ \cline{2-6}
\textbf{at} & $\tau$=0.01 s & $\tau$=0.1 s & $\tau$=1 s & $\tau$=10 s & $\tau$=100 s \\ \cline{2-6}
& [s] & [s] & [s] & [s] & [s] \\ \hline
GM & 9.2e-10 & 1.3e-10 & 1.3e-11 & 1.3e-12 & 1.3e-13 \\ \hline
SW 1 & 7.4e-10 & 1.6e-10 & 1.9e-11 & 1.9e-12 & 1.9e-13 \\ \cline{1-6}
SW 2 & 6.9e-10 & 2.1e-10 & 2.7e-11 & 2.6e-12 & 2.6e-13 \\ \cline{1-6}
\end{tabular}
% \caption{Allan Deviation, equivalent noise bandwidth of 50Hz.}
\label{tab:adev}
\end{table}%\vspace{-0.3cm}
\column{0.5\textwidth}
\begin{center}\vspace{-0.5cm}\vspace{0.5cm}
\includegraphics<1-2>[width=.99\textwidth]{measurements/phase_noise_v3_4.pdf}
\includegraphics<3>[width=0.98\textwidth]{switch/mmcm_noise2.jpg}
\includegraphics<4>[width=.99\textwidth]{measurements/phase_noise_v3_4.pdf}
\includegraphics<5>[width=.45\textheight, angle=90]{measurements/WRSlowJitter/rsz_3d_image__1_.jpg} \textcolor{white}{dddd\\dddd}
\tiny
\begin{table}[!ht]
\centering
\tiny
\begin{tabular}{| l | c | c | c |} \hline \tiny
\textbf{Meas.} & \multicolumn{3}{|c|}{\textbf{RMS jitter}} \\ \cline{2-4}
\textbf{at} & \textbf{1Hz-10Hz} & \textbf{1Hz-2kHz} & \textbf{1Hz-100kHz} \\ \hline
GM & 4.7~ps & 9.0~ps & 9.1~ps \\ \hline
SW 1 & 7.1~ps & 11.0~ps & 11.0~ps \\ \cline{1-4}
SW 2 & 8.8~ps & 14.0~ps & 14.0~ps \\ \hline
\end{tabular}
% \caption{Integrated RMS jitter in different regions of the spectrum.}
\label{tab:phaseNoise}
\end{table}%\vspace{-0.3cm}
\end{center}
\end{columns}\vspace{-0.5cm}
\begin{center}
\tiny Data from [15]
\end{center}
\end{frame}
\begin{frame}{Test setup for switch with Low Jitter Daughterboard}
\begin{center}
\includegraphics[width=\textwidth]{measurements/WRSlowJitter/rsz_experimental_setup.png}\\
\tiny See more: [16]
\end{center}
\end{frame}
%
% \begin{frame}{Improvements for GM: PM noise and Modified ADEV}
% \begin{center}
% \includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/pn.png}
% \includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/mdev.png}
% \end{center}
% \begin{itemize}\scriptsize
% \item Jitter improvement: 9ps to $<$2ps RMS 10Hz-100kHz
% \item ADEV improvement: 1.4E-11 to $<$5E-13 $\tau$=1s ENBW 50Hz
% \end{itemize}
% \end{frame}
\begin{frame}{Switch with LJD: PM noise and Modified ADEV}
\vspace{-0.5cm}
\begin{center}
\includegraphics[width=.5\textwidth]{measurements/WRSlowJitter/GM+BC_pn.jpg}
\includegraphics[width=.45\textwidth]{measurements/WRSlowJitter/GM+BC_MDEV.jpg}
\end{center}
\begin{itemize}\scriptsize
\item Jitter improvement [14, 16]
\begin{itemize}\scriptsize
\item GM: 9~ps to 1~ps RMS 1~Hz--100~kHz
\item BC: 11~ps to $<2$~ps RMS 1~Hz--100~kHz
\end{itemize}
\item MDEV improvement [14, 16]
\begin{itemize}\scriptsize
\item GM: 2E-12 to $<$5E-13 $\tau$=1~s ENBW 50Hz
\item BC: 4E-12 to $<$7E-13 $\tau$=1~s ENBW 50Hz
\end{itemize}
\end{itemize}
\end{frame}
%
% \begin{frame}{RF over WR a.k.a. Distributed DDS [20]}
% \begin{center}
% \includegraphics[width=\columnwidth]{applications/remote_dds.pdf}
% \end{center}
% \begin{block}{Distributed Direct Digital Synthesis}
% \begin{itemize}
% \item Replaces dozens of cables with a single fiber
% \item Works over big distances without degrading signal quality
% \item Can provide various clocks with a single, standard link
% \item At CERN, ongoing work to distribute 200 MHz RF with 0.25ps RMS jitter and $\pm$10ps accuracy
% \end{itemize}
% \end{block}
% \end{frame}
%
% \begin{frame}{Distributed oscilloscope [21]}
% \begin{center}
% \includegraphics[width=0.9\textwidth]{applications/distr_oscill.pdf}
% \end{center}
% \begin{block}{}
% \begin{itemize}
% \item Common clock in entire network: no skew between ADCs
% \item External triggers can be time tagged with a TDC and used to reconstruct the original time base in the operator's PC
% \item Ability to sample with different clocks via Distributed DDS
% \end{itemize}
% \end{block}
% \end{frame}
\backupend
\end{document}
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment