Commit 45f6b337 authored by Maciej Lipinski's avatar Maciej Lipinski

implemetned feedback from Dimitris

parent 3ad00fd9
......@@ -58,7 +58,7 @@ in scientific installations. This article classifies WR applications
into five types, briefly explains each and describes its example
installations. The article then summarizes WR enhancements that have been triggered by
different applications and outlines WR's integration into the PTP standard.
Based on the presented variety of WR applications and enhancement, it concludes
Based on the presented variety of WR applications and enhancements, it concludes
that WR will continue to proliferate in scientific applications and should soon find its way into the industry.
......@@ -111,8 +111,8 @@ manner ensuring at most a single failure per year for a network of 2000 WR nodes
Since its conception in 2008, the number of WR applications has grown beyond
any expectations. The WR Users \cite{biblio:WRusers} website attempts to keep
track of WR applications. The reasons for such a proliferation of applications
are the open nature of the WR project and the fact that the WR technology is based
track of WR applications. Apart from the suitable synchronization performance, the reasons for such a proliferation of WR applications
are the open nature of the WR project, the fact that the WR technology is based
on standards. The former encourages collaboration,
reuse of work and adaptations that also prevent vendor lock-in. The latter allows using
off-the-shelf solutions with WR networks and catalyzes
......@@ -139,69 +139,68 @@ IEEE1588 standard and we conclude in Section~\ref{sec:conclusions}.
\centering
\scriptsize
\begin{tabular}
{| p{0.9cm} | p{1cm} | p{0.6cm} | p{0.51cm} | p{0.9cm} | p{0.9cm} | p{1.1cm} |} \hline
& & & & \multicolumn{2}{c |}{\textbf{ Network Size}} & \\
\textbf{Facility}&\textbf{Location}&\textbf{Type}&\textbf{Link} & \textbf{in 2018}& \textbf{$>$2020} &\textbf{Reference} \\
& & & \textbf{Len} & N / S / L & N / S / L & \\ \hline
{| p{0.9cm} | p{1cm} | p{0.6cm} | c | p{0.9cm} | p{0.99cm} | p{1.1cm} |} \hline
& & & \textbf{Link} & \multicolumn{2}{c |}{\textbf{ Network Size}} & \\
\textbf{Facility}&\textbf{Location}&\textbf{Type}&\textbf{len.} & \textbf{in 2018}& \textbf{$>$2020} &\textbf{Reference} \\
& & & [km] & N / S / L & N / S / L & \\ \hline
% & & & (max) & & & \\ \hline
\multicolumn{7}{|c|}{\textbf{Accelerators, synchrotrons and spallation sources}} \\ \hline
CERN & Switz. & TF & 10km & 0/2/1 & 0/2/1 & \\ \hline
CERN & Switz. & FL & 1km & 6/2/1 & 20/8/1 & \cite{biblio:wr-streamers}\cite{biblio:WR-Btrain}\cite{biblio:WR-Btrain-MM} \cite{biblio:WR-BTrain-RF}\cite{biblio:WR-Btrain-status}\\ \hline
CERN & Switz. & TD & 10km & & & \cite{biblio:WR-LIST}\cite{biblio:WR-LIST-2}\cite{biblio:WRXI} \\ \hline
CERN & Switz. & RF & 10km & & & \cite{biblio:WR-LIST} \\ \hline
CERN & Switz. & TC & 10km & & & \\ \hline
GSI & Germany & TC & 1km & & & \cite{biblio:WR-GSI}\cite{biblio:FAIRtimingSystem} \\ \hline
JINR & Russia & TS & 1km & 50/5/3 & & \cite{biblio:JINR-WR} \\ \hline
JINR & Russia & TS,TD & 1km & & 200/15/- & \cite{biblio:JINR-WR} \\ \hline
CERN & Switz. & TF & 10 & 0/2/1 & 0/2/1 & \\ \hline
CERN & Switz. & FL & 1 & 6/2/1 & 20/8/1 & \cite{biblio:wr-streamers}\cite{biblio:WR-Btrain}\cite{biblio:WR-Btrain-MM} \cite{biblio:WR-BTrain-RF}\cite{biblio:WR-Btrain-status}\\ \hline
CERN & Switz. & TD & 10 & 8/2/1 & 65/31/2 & \cite{biblio:WR-LIST}\cite{biblio:WR-LIST-2}\cite{biblio:WRXI} \\ \hline
CERN & Switz. & RF & 10 & -/-/- & 13/1/1 & \cite{biblio:WR-LIST} \\ \hline
CERN & Switz. & TC & 10 & -/-/ & 500/40/4 & \\ \hline
GSI & Germany & TC & 1 & 35/4/4 & 2000/300/4& \cite{biblio:WR-GSI}\cite{biblio:FAIRtimingSystem} \\ \hline
JINR & Russia & TS,TD & 1 & 50/15/3 & 250/30/3 & \cite{biblio:JINR-WR} \\ \hline
ESRF & France & RF,TS & 1km & 7/1/1 & 40/5/2 & \cite{biblio:ESRF-WR} \\\hline
CSNS & Chine & TF,TS, TD & 1km & 50/4/2 & &\cite{biblio:CSNS-WR} \\ \hline
ESRF & France & RF,TS & 1 & 7/1/1 & 40/5/2 & \cite{biblio:ESRF-WR} \\\hline
CSNS & Chine & TF,TS, TD & 1 & 50/4/2 & 50/4/2 &\cite{biblio:CSNS-WR} \\ \hline
\multicolumn{7}{|c|}{\textbf{Neutrino Detectors}} \\ \hline
CERN & Switz. & TS & 10km & 10/4/2 & & \cite{biblio:wr-cngs} \\ \hline
KM3Net & France & TF,TS & 40km & 18/1/1 & 4140/?/? & \cite{biblio:KM3NeT}\cite{biblio:WR-KM3NeT-Letter}\cite{biblio:WR-KM3NeT-presentation} \\ \hline
KM3Net & Spain & TF,TS & 100km & 18/1/1 & 2070/?/? & \cite{biblio:KM3NeT}\cite{biblio:WR-KM3NeT-Letter}\cite{biblio:WR-KM3NeT-presentation} \\ \hline
CHIPS & USA & & 1km & & 200/16/? & \\ \hline
DUNE & Switz/USA & TS,TD & 1km & 14/5/2 & 36/5/2 & \\ \hline
SBN & USA & TS,TD & 1km & 6/1/1 & 6/1/1 & \\ \hline
GVD & Russia & TS,TD & 1km & 3/1/1 & & \cite{biblio:GVD} \\ \hline
CERN & Switz. & TS & 10 & 10/4/2 & & \cite{biblio:wr-cngs} \\ \hline
KM3Net & France & TF,TS & 40 & 18/1/1 & 4140/270/3 & \cite{biblio:KM3NeT}\cite{biblio:WR-KM3NeT-Letter}\cite{biblio:WR-KM3NeT-presentation} \\ \hline
KM3Net & Spain & TF,TS & 100 & 18/1/1 & 2070/130/2 & \cite{biblio:KM3NeT}\cite{biblio:WR-KM3NeT-Letter}\cite{biblio:WR-KM3NeT-presentation} \\ \hline
% CHIPS & USA & & 1km & & 200/16/? & \\ \hline
DUNE & Switz/USA & TS,TD & 1 & 14/5/2 & 36/5/2 & \\ \hline
SBN & USA & TS,TD & 1 & 6/1/1 & 6/1/1 & \\ \hline
GVD & Russia & TS,TD & 1 & 3/1/1 & 3/1/1 & \cite{biblio:GVD} \\ \hline
\multicolumn{7}{|c|}{\textbf{Cosmic Ray Detectors}} \\ \hline
LHAASO & China & TF,TS & 1km & 40/4/4 & 6734/564/4 & \cite{biblio:LHAASO}\cite{biblio:LHAASO-WR-temp}\cite{biblio:LHAASO-WR-calibrator} \cite{biblio:LHAASO-WR-prototype}\\ \hline
LHAASO & China & TF,TS & 1 & 40/4/4 & 6734/564/4 & \cite{biblio:LHAASO}\cite{biblio:LHAASO-WR-temp}\cite{biblio:LHAASO-WR-calibrator} \cite{biblio:LHAASO-WR-prototype}\\ \hline
% HiSCORE & Russia & TS,TD & & & & \\ \hline
TAIGA & Russia & TS,TD & 1km & 20/4/2 & 1100/90/3 & \cite{biblio:TAIGA-WR-1}\cite{biblio:TAIGA-WR-2}\cite{biblio:TAIGA-WR-harsh-env} \\ \hline
TAIGA & Russia & TS,TD & 1 & 20/4/2 & 1100/90/3 & \cite{biblio:TAIGA-WR-1}\cite{biblio:TAIGA-WR-2}\cite{biblio:TAIGA-WR-harsh-env} \\ \hline
CTA & Spain/Chile & TF,TS & 10km & 32/3/2 & 220/10/2 & \cite{biblio:CTA-WR-timestamps}\\ \hline
CTA & Spain/Chile & TF,TS & 10 & 32/3/2 & 220/10/2 & \cite{biblio:CTA-WR-timestamps}\\ \hline
HAWC & Maxico & TS,TD & 1km & & & \cite{biblio:GVD} \\ \hline
HAWC & Maxico & TS,TD & 1 & & & \cite{biblio:GVD} \\ \hline
\multicolumn{7}{|c|}{\textbf{National Time Laboratories}} \\ \hline
MIKES & Finland & TF & 950km & 10/few/2 & & \cite{biblio:MIKES-50km}\cite{biblio:MIKES+VSL} \\ \hline
LNE-SYRTE & France & TF & 125km & 4/2/4 & & \cite{biblio:SYRTE-LNE-25km}\cite{biblio:SYRTE-LNE-500km} \\ \hline
VLS & Nederland & TF & 137km & & & \cite{biblio:MIKES+VSL} \\ \hline
NIST & USA & TF & 10km & & & \cite{biblio:WR-NIS} \\ \hline
NLP & UK & TF & & & & \\ \hline
INRIM & Italy & TF,TS & 400km & & & \cite{biblio:WR-INRIM}\cite{biblio:WR-INRIM-400km} \\ \hline
MIKES & Finland & TF & 950 & 10/few/2 & 10/few/2 & \cite{biblio:MIKES-50km}\cite{biblio:MIKES+VSL} \\ \hline
LNE-SYRTE & France & TF & 125 & 4/2/4 & 4/2/4 & \cite{biblio:SYRTE-LNE-25km}\cite{biblio:SYRTE-LNE-500km} \\ \hline
VLS & Nederland & TF & 137 & 4/2/1 & 4/2/1 & \cite{biblio:MIKES+VSL} \\ \hline
NIST & USA & TF & 10 & 2/-/1 & expanding & \cite{biblio:WR-NIST} \\ \hline
NLP & UK & TF & & & & \\ \hline
INRIM & Italy & TF,TS & 400 & 8/1/1 & expanding & \cite{biblio:WR-INRIM}\cite{biblio:WR-INRIM-400km} \\ \hline
\multicolumn{7}{|c|}{\textbf{Other Applications}} \\ \hline
SKA & Australia/ Africa& TF & 80km & 2/1/1 & 233/15/3 & \cite{biblio:SKA-80km} \\ \hline
DLR & Germany & TD & 1km & 1/1/1 & 1/1/1 & \cite{biblio:ELI-BEAMS-WR} \\ \hline
ELI-ALPS & Hungry & TS & 1km & & & \cite{biblio:ELI-ALP-WR} \\ \hline
ELI-BEAMS & Czech & TF,TS, TD,TC& 1km & 70/16/2 & & \cite{biblio:ELI-BEAMS-WR} \\ \hline
EPFL & Switzerland & TS & 1km & 2/1/1 & & \cite{biblio:EPFL-WR-PMU} \\ \hline
SKA & Australia/ Africa& TF & 80 & 2/1/1 & 233/15/3 & \cite{biblio:SKA-80km} \\ \hline
DLR & Germany & TD & 1 & 1/1/1 & 1/1/1 & \cite{biblio:ELI-BEAMS-WR} \\ \hline
ELI-ALPS & Hungry & TS & 1 & & & \cite{biblio:ELI-ALP-WR} \\ \hline
ELI-BEAMS & Czech & TF,TS, TD,TC& 1 & 70/16/2 & 70/16/2 & \cite{biblio:ELI-BEAMS-WR} \\ \hline
EPFL & Switzerland & TS & 1 & 2/1/1 & 2/1/1 & \cite{biblio:EPFL-WR-PMU} \\ \hline
\multicolumn{4}{|r|}{\textbf{Total number of WR nodes: }} & \textbf{339} & \textbf{13901} & \\
\multicolumn{4}{|r|}{\textbf{Total number of WR switches: }} & \textbf{53} & \textbf{641} & \\ \hline
\multicolumn{4}{|r|}{\textbf{Total number of WR nodes: }} & \textbf{456} & \textbf{17571} & \\
\multicolumn{4}{|r|}{\textbf{Total number of WR switches: }} & \textbf{78} & \textbf{1529} & \\ \hline
% \multicolumn{7}{|l|}{\textbf{Abbreviations used}} \\
\multicolumn{7}{|l|}{TF= time and frequency transfer, TC= time-triggered control, TS= timestamping,} \\
\multicolumn{7}{|l|}{TD= trigger distribution, FL= Fixed-latency data transfer, RF= Radio-Freq. transfer} \\
......@@ -240,7 +239,7 @@ PXI \cite{biblio:spexi}.
All of these boards are open and commercially available \cite{biblio:WRcompanies}.
Morover, more and more companies integrate WR into their proprietary products,
\cite{biblio:STRUCK}\cite{biblio:sundance}\cite{biblio:spdevices}.
Such a variety of WR nodes facilitaties
Such a variety of WR nodes facilitates
implementations of WR applications described in the following sections.
......@@ -319,8 +318,8 @@ MIKES & 50km & bidir. on adjacent ITU DWDM channels
VSL & 2x137km & bidir. on CWDM (1470\&1490nm)(\#) & $<$8ns & 10ps@1000s & \cite{biblio:MIKES+VSL} \\ \hline
& 25km & unidir. at 1541nm & 150ps & 1-2ps@1000s & \cite{biblio:SYRTE-LNE-25km} \\ \cline{2-6}
LNE- & 25km & bidir. at 1310\&1490nm & 150ps & 1-2ps@1000s & \cite{biblio:SYRTE-LNE-25km} \\ \cline{2-6}
SYRTE & 125km & unidir. in the C-band or close OSC & 2.5ns & 1ps@1s (**) & \cite{biblio:SYRTE-LNE-500km} \\ \cline{2-6}
& 4x125km & unidir. in the C-band or close OSC & 2.5ns & 5.5ps@1s (**) & \cite{biblio:SYRTE-LNE-500km} \\ \hline
SYRTE & 125km & unidir. in the C-band or close OSC channel & 2.5ns & 1ps@1s (**) & \cite{biblio:SYRTE-LNE-500km} \\ \cline{2-6}
& 4x125km & unidir. in the C-band or close OSC channel & 2.5ns & 5.5ps@1s (**) & \cite{biblio:SYRTE-LNE-500km} \\ \hline
NIST & $<$10km & bidir. standard WR (1310\&1490nm \cite{biblio:wr-sfps}) & below 200ps & 20ps@1s & \cite{biblio:WR-NIST} \\ \hline
NPL & & & & & \\ \hline
& 50km & bidir. in WDM & 800ps $\pm$56ps& & \cite{biblio:WR-INRIM} \\ \cline{2-6}
......@@ -354,7 +353,7 @@ and can be improved to 1e-12 without any modifications to the WR-PTP Protocol, s
Section~\ref{sec:JitterAndStability} and
\cite{biblio:MIKES-50km}\cite{biblio:SYRTE-LNE-500km}\cite{biblio:WR-ultimate-limits}.
Many of the National Time Laboratories are now working together with other WR users
and companies within the EU-founded project WRITE \cite{biblio:WRITE} to prepare WR for industrial applications.
and companies within the EU-funded project WRITE \cite{biblio:WRITE} to prepare WR for industrial applications.
% At CERN, the General Machine Timing controller of the Antiproton Decelerator (AD)
% is synchronized with WR link to a similar controller of the LHC Injection
% Chain (LHC) that provides the beam also for AD. Such a WR link provides traceability
......@@ -442,8 +441,8 @@ WR switches. Then, the GMT system that had been used so far was replaced with WR
that consists of 35 WR switches and it is commissioned for operation, with a first beam in
June 2018.
Although a WR-based GMT to control CERN accelerators has been the reason for WR's
conception and it is yet to be implemented at CERN.
Despite being the main reason behind WR’s conception, a WR-based GMT to control CERN
accelerators is yet to be implemented.
% Both, at CERN and GSI, the same WR network that is used for time-triggered control
% can provide to subsystems precise time and frequency which can be used,
% for example, to timestamp input signals, an application described in the following
......@@ -588,7 +587,7 @@ their actions.
The concept that has proven to work in WRTD is now being generalized to
provide trigger distribution for CERN's Open Analog Signals Information System
(OASIS) \cite{biblio:OASIS}. OASIS is a gigantic distributed oscilloscope that
provides hundreds of input channels and spans all CERN's accelerators except LHC.
provides $\approx$6000 input channels and spans all CERN's accelerators except LHC.
Triggers in this system are currently distributed via coax cables that may be 1~km long without
delay compensation and multiplexed using analogue multiplexers. In order to use
OASIS to diagnose LHC and to improve its performance, the distribution of triggers
......@@ -686,8 +685,8 @@ WR slave nodes. In such schema, depicted in Figure~\ref{fig:RFoverWR} and detail
a digital direct synthesis (DDS) based on the WR reference clock
signal (125MHz) is used to generate an RF signal in the WR master node. The generated RF signal is then compared by a phase detector to the
input RF signal. The error measured by the phase detector is an input to a
loop filter (e.g. Integral-Proportional controller) that steers the DDS to produce a signal identical
to the RF input - effectively the DDS is locked to the input signal.
loop filter (e.g. Integral-Proportional controller) that steers the DDS to produce a signal identical to the RF input -
effectively locking the DDS to the input signal..
The tuning words of the DDS are the digital form of the RF input
that is sent over WR network. Each of the receiving WR slave nodes recreates the RF input signal
by using the received tuning words to control the local DDS with a fixed delay.
......@@ -1263,16 +1262,15 @@ is described in \cite{biblio:WRin1588}.
The number of WR applications and their specifications have exceeded the original
assumptions of the project.
This proliferation can be attributed to the fact that WR is based
on standards, it is openly as well as commercially available, and it has a very
active community. Open nature of WR allows its users to contribute to the
on standards and it is openly as well as commercially available while meeting
very stringent synchronization requirements. The open nature of WR allows its users to contribute to the
project with their
specific expertise and new developments, opening WR to more applications.
WR has become a \textit{de facto} for synchronization in scientific installations
and it is now becoming an industry standard within the IEEE1588.
With its wide adaptation in science, commercial support, up-coming
standardization and EU-founded project to catalyze applications in the
industry, WR applications will ontinue to proliferate in
standardization and EU-funded project to catalyze applications in the
industry, WR applications will continue to proliferate in
science and should soon find its way into industry.
% \\
......
Markdown is supported
0% or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment