
VME64x User Guide 

25/07/2012



1 Introduction 

This document provides an overview of the features VME64x slave supports. 
All implemented functionalities conform to the standards defined by 
ANSI/VITA VME64x Standard [1] [2][3][6], but not all are implemented. 
It also provides an overview of the default power-up configuration and 
configuration procedure. 

The implementation follows the design rules set by Design rules for custom 
VME modules in CMS [4]. 

This core implements a VME64 slave on one side and a WishBone master on 
the other without FIFOs in-between.

The WB pipelined single read/write implemented functionalities conform the 
Wishbone B4 standard [5].

The core supports SINGLE, BLT (D32), MBLT (D64),  transfers in A16, 
A24, A32 and A64 address modes and D08 (OE), D16, D32, D64 data 
transfers. The core can be configured via implemented CR/CSR 
configuration space. A ROACK type IRQ controller with one interrupt input 
and a programmable interrupt level and Status/ID register is provided.

2 System clock 

Due to the follow timing constraint a 50 MHz clock or more is suggested:

Fig. 25 , pag. 107 “VME bus specification”  ANSI/IEEE STD1014-1987

As show in the figure, to be sure that the slave detects the rising edge
and the following falling edge on the AS* signal the clk_i's period must be 
maximum 30 ns. 
The minimum time between two consecutive cycle observed with the 

Min 30 ns

AS*



VMETRO is 45 ns, but a 50 MHz clock or more is suggested.
The VME Bus is asynchronous so each board plugged into the crate can work 
with a different frequency. 

The clock in the vme64x core must be the same as the clock in the WB Slave 
application.

3 VME64x features

This chapter lists and explains features that VME64x slave implements. 

3.1 CR/CSR space 

For the sake of a “plug and play” capability CR/CSR space is implemented as 
defined by ANSI/VITA Standards for VME64 Extensions [2]. 
In order to provide “plug and play” capability VME64x provides a 
mechanism very similar to PCI. A dedicated “Configuration ROM / Control 
& Status Register” (CR/CSR) address space has been introduced. It consists 
of ROM and RAM regions with a set of well defined registers. It is addressed 
with the address modifier 0x2F in the A24 address space. 

Every VME module occupies a 512 kB page in this address space. The 
location of this page in the A24 space is defined by geographical address 
lines on the backplane: each slot is provided with a unique geographical five 
bit address at the J1 connector (row d). From these bits A23...A19 of the 
CR/CSR page are derived. 
If the geographical address is not correct (GA parity bit does not match), the 
base address is set to 0x00, which indicates a faulty condition. An odd parity 
is used!
If the board is plugged into an old crate that doesn't provide the GA lines, all 
the GA lines are asserted to '1' by the PU resistors on the boards and the BAR 
register is set to 0x00; it is not set by hand with some switches on the board 
so in this condition the CR/CSR space can't be accessed! The vme64x core 
provides an internal flag s_BARerror that detects this error condition. You 
can find this flag in the VME_CR_CSR_Space.vhd component and you can 
use this flag to drive a led on the board. 



The CR/CSR space can be accessed with the data width D08(EO), D16 
byte(2-3) and  D32. Please note that in compliance with the CR/CSR 
definition, only every fourth location in the CR/CSR space is used. If the 
master tries to write another location the write will not take effect and if the 
master reads the byte(0) or byte(1) or byte(2) locations the value returned is 
0.
User CSR space and User CR space are not implemented. The CRAM space 
is implemented from 0x001000 to 0x0013ff (1 KB).
The location of the user defined CR and CSR regions as well as the CRAM 
region are programmable. For each of these, six bytes defining the start and 
the end address (with respect to the start of the configuration space) are 
reserved in the CR region. Designers are free to use these regions for module 
specific purposes. 
If a user defined region is not implemented the start and end address must be 
set to 0x000000. 



The CR space is implemented in the file VME_CR_pack.vhd.
The CSR space is implemented in the file VME_CSR_pack.vhd.
All the registers in the CSR space have been implemented as defined by the 
VME64 Extensions [2].
The following registers have been added in the Reserved CSR:
IRQ_Vector     :  loc. 0x07FF5F
IRQ_level        :  loc. 0x07FF5B
MBLT_Endian :  loc. 0x07FF53
TIME0             :  loc. 0x07FF4F
TIME1             :  loc. 0x07FF4b
TIME2             :  loc. 0x07FF47
TIME3             :  loc. 0x07FF43
TIME4             :  loc. 0x07FF3F
BYTES0          :  loc. 0x07FF3b
BYTES0          :  loc. 0x07FF37
WB32or64       :  loc. 0x07FF33
The VME Master can set the IRQ level and the Status/ID (IRQ Vector) of 
each slave board.
With the MBLT_Endian register the Master can select the data swap type: 
0x00  NO swap.
0x01  Byte swap.
0x02  Word swap.
0x03  Word + Byte swap.
0x04  Dword + Word + Byte swap.
All the TIMEx and BYTEx registers can be used to calculate the data transfer 
rate; these registers storage the time in ns and the number of bytes 
transferred.
The WB32or64 tells the Master if teh Slave  WB data bus is 32 or 64 bits 
wide:
0x00 : WB 64 bit
0x01 : WB 32 bit
If the data is storaged in more than 1 location of memory (eg. The ADER 
registers  are 4 byte width) the BIG ENDIAN order is used!

3.2 Data types 



This VME64x core supports D08(OE), D16, D32, D64  data transfers. The 
implementation assumes that the target data memory is 8-bit wide. 
Each byte in the memory has one unique address.
The vme64x core supports the byte access so the WB memory should be 8 bit 
granularity. 
Upon D16 access, only every other byte is addressed indeed the D16 byte(1-
2) access is not supported, upon D32 every fourth and upon D64 data access 
only every eighth byte is addressed. 

3.3 Addressing types 

The address width can be 16 bit, 24 bit, 32 bit and 64 bit to address more than 
1 TB of memory.

The list of the addressing type supported with their address modifier codes 
can be find here:

http://www.ohwr.org/projects/vme64x-
core/repository/raw/trunk/documentation/user_guides/VME_access_modes.p
df

3.4 2e transfers

Two edge transfers have not been implemented yet.

The 2eVME transfers don't need FIFO memory between the VME and WB 
bus; the WB Master inside the vme64x core can work in the pipelined single 
write/read mode. The 2eSST mode is not an handshake protocol so the FIFO 
memory between the VME and WB bus will be necessary.

With 2e transfers, master supplies the address along with some additional 
data in three address phases as shown in Table 2. 

http://www.ohwr.org/projects/vme64x-core/repository/raw/trunk/documentation/user_guides/VME_access_modes.pdf
http://www.ohwr.org/projects/vme64x-core/repository/raw/trunk/documentation/user_guides/VME_access_modes.pdf
http://www.ohwr.org/projects/vme64x-core/repository/raw/trunk/documentation/user_guides/VME_access_modes.pdf


Signal Line Address Phase 1 Address Phase 2 Address 
Phase 3

Data Phase

AM[5:0] 0x20 0x20 0x20 0x20

A[7:0] XAM Code A[3:0]= 0
Device address A[7:0]

Reserved D[39:32]

A[15:8] Device address A[15:8] Beat/Cycle count Reserved D[47:40]

A[23:16] Device address A[23:16] A[23:21]= 0
A[20:16]= GA of Master

Reserved D[55:48]

A[31:24] Device address A[31:24] Subunit Number in 
Master

Reserved D[63:56]

D[31:0] Device address A[63:32] D[3:0] = Transfer rate 
2eSST
D[4] = Odd bit for 
2eSST
D[31:5] = Reserved

Reserved D[31:0]

note: signal LWORD is regarded as address bit 0 .

Table3 shows the supported XAMs:

XAM Address/Data Mode

0x01 A32/D64 2eVME

0x02 A64/D64 2eVME

0x11 A32/D64 2eSST

0x12 A32/D64 2eSST

3.5 Signals 

This section focuses on functionality of certain VME bus signals. 

3.5.1 RESET 

RESET resets the entire core to the default configuration. 
The reset signals are: VME_RST_n_i, software reset (BIT_SET_REG[7]), 
and we suggest to add a hand reset on the board.

3.5.2 BERR 



BERR signal is used to signal a bus error. A transfer cycle is terminated with 
assertion of this signal if the VME64x slave does not recognize the data or 
addressing type used in the transfer cycle, if master attempts to write to a 
read-only memory (CR) or if error is received from the module which is 
addressed or if master attempts to access in BLT mode with D08 or D16, or if 
the master attempts to access in MBLT mode and the WB bus is 32 bit.
The vme64x asserts this signal in the DTACK_LOW state, and not as soon it 
detects one error condition, to avoid that a temporaneous error condition 
causes the BERR assertion. 

3.5.3 RETRY 

RETRY signal terminates the transfer cycle if VME64x slave receives a retry 
request from the addressed module (via the WishBone bus), signaling that the 
read/write request cannot be completed at this time. 

3.6 Interrupts 

Interrupt controller is a ROACK type controller. 
Upon synchronously detecting a pulse on the interrupt request signal input on 
the WB bus, the VME64x core drives the IRQ request line on the VME bus 
low thus issuing an interrupt request. VME master acknowledges the 
interrupt in a form of an IACK cycle. 
During the IACK cycle the vme64x core sends the IRQ_Vector to the master. 
After the interrupt is acknowledged, the VME IRQ line is released. 
Before issuing a new interrupt request the vme64x core waits that the master 
reads the Interrupt Counter register.

There are seven VME IRQ lines but only one interrupt request input. For the 
purpose of configuring which of the seven IRQ lines the VME64x core will 
drive (in response to a rising edge on the IRQ input), an IRQ Level register 
has been implemented in the user CSR space. The value of this register 
corresponds to the number of the IRQ line on the VME bus that is to be used 
(note that on the VME master side priorities are taken into an account, IRQ7 
having the highest priority and IRQ1 the lowest). If the IRQ level register is 



set to 0x00 or values above 0x07, interrupts are disabled.
In the default power-up and reset configuration the interrupts are disabled.
To enable the interrupt the Master must write a non-zero value in the 
Interrupt rate register.

The table 4 shows the Interrupts related registers:

Register Where Address

IRQ Vector CR/CSR Space 0x07ff5f

IRQ Level CR/CSR Space 0x07ff5b

INT_RATE Application memory 0x04

INT_COUNT Application memory 0x00

To generate the Interrupt request pulse the IRQ_Generator must be insert in 
the Application (WB Slave) as shows the Interconnection Diagram, chapter 8.

3.6.1 IRQ Controller FSM

3.6.2 IRQ Generator FSM



3.7 MAIN FSM

The Main finite state machine is located in the VME_bus.vhd component.
This FSM does not support the 2e transfers.
 If the board is not addressed the FSM is in the DECODE_ACCESS state 
until the rising edge on AS signal. Indeed the FSM is resetted by a rising edge 
on AS signal.
If the board is addressed, it will acknowledge the cycle in the DTACK_LOW 
state. If same error are detected, in this state the BERR* line is asserted.





4 Configuration 

Upon power-up or reset, the module is disabled and only its CR/CSR space 
can be accessed. Software must then first map the module memory in the 64-
bit address space by setting Address Decoder Compare (ADER) registers in 
CSR, which, together with Address Decoder Mask (ADEM) registers in CR 
relocate the module memory to the desired address range. 
ADER for each function also contains an AM or XAM code to which it 
responds. 
After the module has been placed in the desired address space, it can be 
enabled by writing to Bit Set Register in the CSR and thus setting the correct 
enable bit:
BIT_SET_REG = 0x10
Upon power-up or reset, the vme64x core supports WB data bus 32 bit. The 
vme64x core provides a 64 bit data WB Master by setting the c_width 
constant to 64 in the vme64x_pack.vhd. The Master can check the WB data 
bus wide reading the following register in the CSR space: 
loc 0x7ff33 WB32or64 = 0x00          WB 64 bit.
loc 0x7ff33 WB32or64 = 0x01          WB 32 bit.
Function0 reserved for A32, A32_BLT and A32_MBLT access mode.
Function1 reserved for A24, A24_BLT and A24_MBLT access mode.
Function2 reserved for A16  access mode.
Function3 and Function4 reserved for A64, A64_BLT and A64_MBLT access 
mode.
Function5 and Function6 reserved for 2e transfers.
For more information about the decode phase see the 
VME_Access_Decode.vhd component.

5 VME bus transceivers 

The VME64x slave core also includes output signals that drive external 
hardware transceivers. These signals are DTACK OE, DATA DIR, DATA 
OE, ADDR DIR and ADDR OE, RETRY_OE.
Direction (DIR) signals specify the direction of data and address. These 
signals should be used as select line in the multiplexer on bidirectional 



signals.
 
Output enable (OE) signals are used to disable the transceivers so that the 
buses are effectively isolated. 

OEAB OEBYn OUTPUT

L H Z

H H A to B

L L B to A

H L A to B and B to Y

OEn DIR OUTPUT

H X Z

L H A to B

L L B to A

6 WishBone master 

This section describes the functional operation of the WishBone Master 
component VME_Wb_master.vhd. 
When the core is addressed with SINGLE, BLT, MBLT, 2eVME (not yet 
supported) transfers the WB master operates in accordance with official WB 
specifications document [5]. 
In particular it works in pipelined single write/read mode:

clk_i

cyc_o

stb_o

stall_i

ack_i



If the WB slave doesn't drive the stall signal, it can set the stall signal to 0.
Err and rty signals are supported by the vme64x core.
The Wb bus can be 32 bit or 64 bit .

7 I/O ports 

Clock:
clk_i                               :  in     std_logic;
VME signals:
VME_AS_n_i               :  in      std_logic;
VME_RST_n_i             :  in      std_logic;
VME_WRITE_n_i        :  in      std_logic;
VME_AM_i                  :  in      std_logic_vector(5 downto 0);
VME_DS_n_i               :  in       std_logic_vector(1 downto 0);
VME_GA_i                   : in       std_logic_vector(5 downto 0);
VME_BERR_o             :  out     std_logic;
VME_DTACK_n_o      :  out     std_logic;
VME_RETRY_n_o       :  out     std_logic;
VME_LWORD_n_b_i   :  in      std_logic;
VME_LWORD_n_b_o  :  out    std_logic;
VME_ADDR_b_i          :  in      std_logic_vector(31 downto 1);
VME_ADDR_b_o         :  out    std_logic_vector(31 downto 1);
VME_DATA_b_i           :   in     std_logic_vector(31 downto 0);
VME_DATA_b_o          :  out    std_logic_vector(31 downto 0);
VME_IRQ_n_o              :  out   std_logic_vector(6 downto 0);
VME_IACKIN_n_i        :  in     std_logic;
VME_IACK_n_i            :  in     std_logic;
VME_IACKOUT_n_o   :  out   std_logic;
VME bus transceivers :
VME_DTACK_OE_o    :  out   std_logic;
VME_DATA_DIR_o      :  out   std_logic;
VME_DATA_OE_N_o   :  out   std_logic;
VME_ADDR_DIR_o     :  out   std_logic;
VME_ADDR_OE_N_o  :  out   std_logic;
VME_RETRY_OE_o    :  out     std_logic;
WishBone signals:
DAT_i            :  in      std_logic_vector(63 downto 0);
DAT_o           :  out    std_logic_vector(63 downto 0);
ADR_o           :  out    std_logic_vector(63 downto 0);
CYC_o           :  out    std_logic;
ERR_i            :  in      std_logic;
RTY_i            :  in      std_logic;
SEL_o            :  out    std_logic_vector(7 downto 0);
STB_o            :  out    std_logic;
ACK_i            :  in      std_logic;
WE_o             :  out    std_logic;



STALL_i        :  in      std_logic;
IRQ Generator signals:
INT_ack         : out     std_logic;
IRQ_i             : in       std_logic;
reset_o            : out     std_logic;       – asserted when '1'
Debug (8 leds on the board):
leds             : out   std_logic_vector(7 downto 0);

8 Interconnection Diagram 
This diagram would be an example showing you how you can connect the 
vme64x core to your WB Slave application without interrupt generator:



The WB slave Data Bus can be 32 bit or 64 bit; before to synthesize the 
project set the following constants in the vme64x_pack.vhd file:
c_width: this is the WB Data Bus width (must be 32 or 64)
c_addr_width: this is the WB Address Bus width (must be >= 32)
If you need the Interrupter  you should insert the IRQ Generator as shown in 
the following Block Diagram:



The next Interconnection Diagram shows the WB Slave that is used to debug 
the vme64x core and to develop the Interrupter. 



 9 TEST
Here some guidelines to use the vme64x core:

http://www.ohwr.org/projects/vme64x-
core/repository/raw/trunk/documentation/user_guides/Python_test.pdf

10 Transfer Rate

Here some transfer rates detected during the tests:

50 MHz 80 MHz 100 MHz

Single 
access

MBLT 
access

Single 
access

MBLT 
access

Single 
access

MBLT 
access

About 10 
MB/s

About 19 
MB/s

About 15 
MB/s

About 24 
MB/s

About 18 
MB/s

About 27 
MB/s

11 References

[1] The VMEbus Specification ANSI/VITA October 1987
[2] VME64 Extensions ANSI/VITA 1.1 1997
[3] VME64 ANSI/VITA 1 1994
[4] CMS Internal Note  
     Design rules for custom VME modules in CMS, CMS IN 2004/005
[5] Wishbone System-on-chip (SoC) Interconnection Architecture for 
      Portable IP Cores, Revision B4
[6] ANSI/VITA 1.5-2003 2eSST

http://www.ohwr.org/projects/vme64x-core/repository/raw/trunk/documentation/user_guides/Python_test.pdf
http://www.ohwr.org/projects/vme64x-core/repository/raw/trunk/documentation/user_guides/Python_test.pdf

