
vme64x-core review 1

Author: Davide Pedretti

Date: 12/11/2012



Carlos

• (m) Reference the AM table (line 75) to a document...
Done. Hex code added as comments.

• (?)If all the operations are controlled by DS lines (and others), is it
necessary to place double or triple bu�ering in the address and data
lines?
Good observation: It is possible place triple bu�ering only in the con-
trol lines: VME_GA_i, VME_AS_n_i, VME_WRITE_n_i, VME_DS_n_i,
VME_RST_n_i, VME_IACK_n_i, VME_IACKIN_n_i.
Indeed when the vme64x core latches the address and data lines, they
should be stable according with the VME speci�cation.

• (o) Remove use IEEE.numeric_std.unsigned; redundant
Done.

• (?) VME_RST_n_i what for?
The Power Monitor Module (A20 MEN in our case) should drive this
line. See page 200 VMEbus speci�cation ANSI/IEEE STD1024-1987.

• (?) Debug leds should be removed?
Yes. The leds were used during the debug.

• (o) In the same process the when others => clause is missing. Probably
it would be better set a deferred output before the case, so it will always
set an output
Assigned a default con�guration before the case.
Added when others =>.

• (o) Coming back to the process in line 243, the previous comment is
applicable. Recommend to preassign before the case to avoid unwanted
latches .
Assigned a default con�guration before the case.
Added when others =>.

• (_) In the process in line 317, it would be better have records that which
are assigned with prede�ned record constants. It will reduce the length
and possible errors while assigning values to the outputs.
Done.

1



Javier

• VME_bus.vhd
There is a comment at line 527 saying: � If the S_FPGA will be
provided to a core who drives these lines � without � erase the A_FPGA
the above mentioned lines should be changed to 'Z' � !!! This should
probably change to become a generic so that people can decide on the
behaviour they want. It will then be more visible, not hidden in the
middle of the code. The sentence itself it quite cryptic. This core should
not assume it is used in a board with a S_FPGA and a A_FPGA.

The comment is related to the SVEC board, so it has been removed
from the middle of the code and it has been moved on the general
description at the beginning of the �le.

Each VME board plugged in a slot acts as a VME salve module and
it has only one CR/CSR space (conforming with the speci�cation) so
only one FPGA at time must drive the output lines on the VME bus;
only one FPGA at time can carry the vme64x core.
In other words, only one FPGA at a time shall answer to the software.

• VME_IRQ_Controller.vhd

� Text diagram in the initial comments not clear regarding state
IACKOUT2
Added comment:
If the slave module does not have an interrupt pending (IDLE
state) and it receives a falling edge on the IACKIN, it shall pass
the falling edge through the daisy chain. To obtain this the IACK-
OUT2 state has been added.

� To avoid the time constraint" -> "To respect the timing constraint
Corrected

� Signal naming is not consistent. If the "s_" pre�x is used, it
should be used for all internal signals.

Done. The pre�x s_ is used for all internal signals.

� Line 104: "reset" is clearly used as an active-low signal in this
entity, and it is an input port, so its name should be "reset_n_i".
Done. reset => reset_n_i.

� Instantiation of many FlipFlopD components: a single clocked
process would be more compact and easier to understand.

FlipFlopD components replaced by a single clocked process.

2



� Line 247: why should the interrupt controller not be allowed to go
to the IRQ state when VME_IACKIN_n_i='0'?
If VME_IACKIN_n_i='0' and the �nite state machine is still
in IDLE it means that we do not have interrupt request pending
and this is not the responding Interrupter and so it passes the
falling edge on the IACKOUT on the daisy chain. As soon as
the IACKIN has been released the �nite state machine come back
to the IDLE state and it is allowed to go in the IRQ state and
request service to the software.

� Line 256: once we have allowed going to the IRQ state even if
VME_IACKIN_n_i is low, we should detect a falling edge of
VME_IACKIN_n_i while in the IRQ state to proceed. A simple
detection of '0' won't work anymore

We go the IRQ state only if VME_IACKIN_n_i is '1'. Once we
have allowed going to the IRQ state we wait until the VME_IACKIN_n_i
signal is '0'. When it is '0' it means that the Interrupt Acknow-
ledge Cycle is in progress and the �nite state machine go in the
WAIT_AS state. At this point we do not need anymore the de-
tection of '0' on the VME_IACKIN_n_i signal. I hope I have
answered the question.

� Line 321: In the IDLE state this block should drive whatever it
gets from IACKIN into IACKOUT. Otherwise it is blocking in-
terrupt acknowledgement for any cards to the right of the module
where it is instantiated

Indeed when in IDLE, if the VME_IACKIN_n_i is '0' the �nite
state machine goes in the IACKOUT2 state where it drives the
VME_IACKOUT_n_o.

Driving IACKOUT with AS as is done in other states looks weird.
IACKOUT should be driven by IACKIN when the IACK chain is
not intercepted by this block.

The VMEbus speci�cation tells us that if this is not the respond-
ing Interrupter it shall pass the falling edge of IACKIN* to the
next interrupter module in the daisy chain by driving IACKOUT*
low.

The timing rule 38A (page 183 VMEbus speci�cation) tells us
that the Interrupter can take as time it wants before asserting
the IACKOUT (because before passing the falling edge the Inter-
rupter has to check if it is the responding Interrupter). Since the

3



timing rule 34 (in the above mentioned page) tells us that the AS*
signal is asserted before the IACKIN*, the Interrupter implemen-
ted drives the IACKOUT* with the AS* instead of the IACKIN*.
In so doing the Interrupter developed matches the timing rule 35
also at low frequencies.
See page 6.

� Line 445: these are active-low signals so their value after reset
should be '1', not '0'.

After reset the VME_IRQ_n_o lines are already set to '1'.

� I don't understand the whole DS_LATCH thing. We detect in
state WAIT_DS that there was some change in the DS lines. This
makes us go to state LATCH_DS, where the DS lines are latched.
Then we check if VME_DS_latched(0) is '0' in the ACK_INT
state. Wouldn't it be simpler to just wait for DS(0) to become '0'?

In our system the Interrupt Handler supports the data transfer
type D08(O) and during the Interrupt Acknowledge Cycle the
DS1 line is never asserted (always '1') so it is possible delete the
LATCH_DS state and delete the further control VME_DS_latched(0)
= '0' in the ACK_INT state.

More in general, the type of Interrupter can be also D32. In this
case (as shown in the table 31 page 157 VMEbus speci�cation)
the Interrupter shall monitor also the DS1* and the LWORD*
lines. When I started to implement the Interrupter I did not
know in which way the Interrupt Handler was working so I added
the LWORD* (never used at the moment) and DS1* lines.

If a D32 interrupter will be used, the �nite state machine should
be provided with one or more LATCH_DS states to match the
timing rule 13, as done in the VME_bus component.

The vhdl �le has been changed in order to be less confusing. The
VME_DS_latched(0) = '0' control has been deleted since it was
redundant in any case.

� Line 467: s_enable opens the sampling gate for INT_Req only
when either we have not latched a request (with INT_Req_sample)
or when DTACK is being driven low. In this last case, we are in
the DTACK state (until AS goes up) and any INT_Req pulse will
go through the sampling but in a transient way, i.e. it will not
"stick" and we will lose it. This behavior should be documented
so that users of the core know.

This behavior is undesired. The IRQ_Controller has been cor-
rected but in any case interrupt requests coming from the WB

4



application before the Interrupter detects the end of the Interrupt
Acknowledge Cycle (AS* rising edge), are lost. The Interrupter
implemented has no queue.

� VME_AS_n_i and VME_DS_n_i are passed to two di�erent
synchronizer blocks in parallel. The actual implementation of this
will depend on how clever the synthesis tool is. If it is not clever,
it will not notice it can tap the three-FF synchronizer to get the
double-FF output, and we will have two parallel synchronizers:
not good, especially considering that one of them will not use the
I/O FFs. If these double-clocked signals are really needed, the
triple-clocking block could deliver an extra ouput port for them.

Done.

5



Pablo

• VME_IRQ_Controller.vhd
(m!) As it is already pointed out by Javier the IACKIN-IACKOUT
should be looked in more detail. I doubt the interrupt handler can deal
correctly with rule 4.41 (30ns min skew between AS release and IACK-
OUT release). Notice that this rule applies on the VME connector edge
so even with an internal latency of 2 cycles at 10ns you still have all
the propagations delays to take care of

Rule 4.41: A partecipating interrupter shall drive IACKOUT* high
within this maximum time after the rising edge on AS*.
Please note that this rule refers to the interrupter not to the interrupt
handler. The �gure 55 (page 183 VMEbus speci�cation) and the re-
lated table tell us that the Interrupt Handler does not care the time
35 (so why should we care about that?).

However, as you said, if this rule applies on the VME connector edge
we are not matching it. If we drive the IACKOUT* with the IACKIN*
as Javier suggested, we do not match this timing rule because of the
timing rule 39. Thus, the only way to always match this rule, regardless
of the clock frequency used, is drive the IACKOUT* signal with the
AS* signal not sampled. The metastability will not be a problem in
this case because when this signal is outputted it is already stable.

• VME_bus.vhd
(m) It was pointed out in the presentation that the DS toggle could
eventually not be properlly detected. In the datasheet it is stated that
the skew between this lines can be up to a maximum of 20ns. A single
wait state may be not enough if the vme core is clocked at 100MHz.
On the other hand it is not necessary if the core is clocked at f<50Mhz.
Probably it could be a good idea to use some generic (as carlos sugested)
to insert/remove wait states depending on the clocking frequency

Done.
Now, in the main �nite state machine there are up to 4 LATCH_DS
states selectable with a generic paramiter: g_clock. It means that
now the timing rule 2.39 page 113 (VMEbus speci�cation ANSI/IEEE
STD1014-1987) can be matched up to 200 MHz by setting the generic
g_clock with the clock period in ns.
Adding other LATCH_DS states the rule 2.39 can be met with fre-
quencies upper to 200 MHz.

6



� 50 MHz or less: only 1 LATCH_DS state

� from 50 MHz to 100 MHz: 2 LATCH_DS states.

� from 100 MHz to 150 MHz: 3 LATCH_DS states.

� from 150 MHz to 200 MHz: 4 LATCH_DS states.

Please note that in order to meet the timing rule 2.31 (When using the
DTB for two consecutive cycles, the master shall not drive AS* low
until it has been high for this minimum time (30 ns for the slave)) we
suggest to use the vme64x core with frequencies upper than 40 MHz.
To match this rule with lower frequencies it is necessary to use di�erent
clock domains, and so a FIFO, inside the vme64x core and sampling
the input signals with frequencies upper than 40 MHz.

7



Tom

• VME_bus.vhd
(m) don't comment out code that is not used. Just remove it.
Done

• VME_IRQ_Controller.vhd
(!) line 235: is reset signal active low or high?
As Javier suggested the reset has been renamed reset_n_i.

• VME_CR_CSR_Space.vhd
(m) GADER_1 loop: please put a single-line comment describing what
the generate loop does.
Done.
It generates a vector of 8 array (unsigned 32 bits).
We need these registers in the decoder.

• VME_Access_Decode.vhd

(o) provide a generic allowing for reduction of device functions. In
most cases, we need only 1 A24/A32/D32 BAR. Decoding and storing
BAR con�gurations takes large percentage of the FPGA resources con-
sumed by the VME core.

I think you can discuss about this point with Julian and David. At
the moment I prefer provide the CR/CSR space with all the functions
according with the speci�cation. The aim is to provide you a generic
vme64x slave module in agreement with the speci�cation. You can
change the CR/CSR space in order to obtain a custom vme64x slave
module at a later time.

(!) process driving cardsel and base_addr: sequential nonblocking as-
signments are potentially dangerous - you are relying on assumption
that if any of bits in s_func_sel is 1, cardsel (previously set to 0) will
be overwritten by the loop. It's safer to use variables and blocking as-
signments in such cases.

According to the section 8.7 of the VHDL for logic synthesis Third
edition, this process is synthesized as shown in the following �gure:

8



I checked the RTL Schematic after synthesis and, the Base_Addr and
CardSel are synthesized as shown in the above image.
I deleted the exit statement that is useless in this case.
Thus, the process has not been changed.

• VME64xCore_Top.vhd
(_) Process at lines 530+: I would place it in VME_bus. This way
the top level module will only act as an interconnect putting together
all VME core components.
Done. The process can be found in the VME_Wb_master.vhd com-
ponent.

9



Thedi

• You can �nd the c_SIZE constant in the genram_pkg.

• I developed the code with the Xilinx ISE tool so if you open the code
with another editor it may be unaligned.

• line 316: this is actually a Moore FSM (outputs depend only on current
state)
In the sensitivity list of the project there is also the AS* signal so I
wrote: Mealy FSM

• I suggest you put the constant values in hex. They are a lot more
readable than binary.
The constant are in binary because each bit corresponds to one AM.
These are mask bits. It is easy to change them in binary.
The best thing can be to create a function which takes the AMs as
arguments and sets them automatically.

• I personally �nd it a bad idea to de�ne multiple components in the same
�le. When I get an entity name in an instantiation, my �rst instinct
is to start looking for a �le with the same name as the entity.

Yes it is not a good idea but also create a �le for each small entity it is
not nice. These entity are double �opping, triple �opping, rising and
falling edge detection so are all grouped inside one �le.

• I corrected some English errors. For sure there are other errors. Apo-
logize my English! :)

10



Matthieu

• Change MBLT endian register name to SWAP con�guration register
(or something similar).
Done.
MBLT Endian register renamed Endian since it can be used during all
the access modes except during the CR/CSR accesses.

• Add a reset output port on core's top level.
In the VME64xCore_Top's output port there is already a reset_o
signal which is active high and it comes from the software reset bit in
the CRS space.

• I deleted some of the not used signals.

• Update the Manifest �le.
Done

• now, you should not see same of the warnings you indicated to me in
your review.

11



In the VME64xCore_Top.vhd �le it is possible to �nd the following gen-
eric paramiters:

• g_clock

• g_wb_data_width.

• g_wb_addr_width.

• g_cram_size.

• g_BoardID.

• g_ManufacturerID.

• g_RevisionID.

• g_ProgramID.

In the VME_IRQ_Controller.vhd component, the ACK_INT state has
been renamed CHECK; less confusing

During this �rst review I focused more on the timing problems, not syn-
thesizable processes and so on. I started from the (!) serious and (m) medium
advices and I tried to answer all the questions.
I deleted more or less all the never used signals and processes related to the
2emodes and the bu�er not implemented. In so doing the project is less
confusing and clearer.
I tested again the vme64x core after making changes and it is still working
�ne.
I cannot see further timing rules violated.

12


