
SPEC7 Documentation
Release 1.0

Oct 04, 2021

TABLE OF CONTENTS:

1 Introduction 1
1.1 References: . 1

2 Firmware 3
2.1 Create environment variable in U-boot in Runtime . 4
2.2 Automatic gateware update from QSPI . 4

3 FSBL 7
3.1 Build . 7

4 U-boot 11
4.1 Build . 11
4.2 General U-boot shell commands . 12
4.3 Reconfigure FPGA using U-boot shell . 12

5 Build 19
5.1 Using Vitis . 19
5.2 Using Command line . 19
5.3 Using Script . 20

6 Kernel 21
6.1 From Sources . 21
6.2 From script . 21
6.3 Petalinux Flow . 22

i

ii

CHAPTER

ONE

INTRODUCTION

1.1 References:

1. Wiki <https://ohwr.org/project/spec7/wikis/home> -https://ohwr.org/project/spec7/wikis/home

2. OHWR Repo <https://ohwr.org/project/spec7> -https://ohwr.org/project/spec7

3. Initial Document <https://ohwr.org/project/spec7/wikis/uploads/ca8f150af87f5119faa94b84539f0ea0/SPEC7.pdf>

1

https://ohwr.org/project/spec7/wikis/home
https://ohwr.org/project/spec7

SPEC7 Documentation, Release 1.0

2 Chapter 1. Introduction

CHAPTER

TWO

FIRMWARE

SPEC7 Golden Architecture

This design was build to provide PCIe enumeration within 100ms

SPEC7 Reference design with XDMA for Remote Upgrade

This design was built on SPEC7 Reference Design with addititonal BAR 4 for PCIe to upload new
firmware to PS-DDR via AXI DMA and PCIe core with addon Virtual UART provided through AXI
Uartlite Core to direct PS to load firmware in PL

3

SPEC7 Documentation, Release 1.0

1. Script Build_boot.sh in sw/scripts/boot intiates build for FSBL and Uboot It also creates
spec7.bif file which consists of path for all output obtained i.e bitstream, elf files located in
output directory

./Build_boot.sh --t <specify Tandem Design> --r <reference design> --o
→˓<offset>

2. The above step will create BOOT.bin in output directory which can be flashed directly to flash
memory

program_flash -f BOOT.bin -fsbl </path/to/fsbl>/zynq_fsbl.elf -flash_type␣
→˓qspi-x8-dual_parallel -blank_check -url tcp:localhost:3121

3. To automate loading of second design, it’s possible in two ways

2.1 Create environment variable in U-boot in Runtime

SPEC7> sf probe 0 0 0
SPEC7> sf erase 0x2000000 0x1000000

SPEC7> sf write ${loadbit_addr} 0x2000000 ${filesize}

SPEC7> fpga loadb 0 ${loadbit_addr} ${filesize}

The above commands are for test, where 0x2000000 specifies the offset defined in BOOT.bin

2.2 Automatic gateware update from QSPI

In order to allow for automatic loading of the gateware from QSPI using the UBoot, first we define the
following environment variables:

SPEC7> setenv bootdelay "0"
SPEC7> setenv gateware_size 0x1000000
SPEC7> setenv qspi_gateware_offset 0x2000000

The meaning for each of these variables are: - bootdelay: this contains the maximum value of the
countdown that UBoot perform before executing the bootcmd. By setting it to zero, we save a precious
time at startup. - gateware_size: we define this auxiliary variable that specify the size of the slot
containing the gateware that we want to move from QSPI to DDR. We set the value to 16 MiB, i.e. the
full size of the slot. - qspi_gateware_offset: we define this auxiliary variable containing the QSPI
offset of the slot containing the gateware we want to load. In this case, we are pointing to the Slot 2, but
we can easily modify the slot to be used by editing this variable.

Now, we create the boot command to read the gateware from the desired QSPI slot to DDR, then from
DDR to FPGA, and finally go back to the U-boot prompt:

SPEC7> editenv bootcmd_gateware
edit: sf probe 0 0 0 && sf read ${loadbit_addr} ${qspi_gateware_offset} $
→˓{gateware_size} && fpga loadb 0 ${loadbit_addr} 0x1

4 Chapter 2. Firmware

SPEC7 Documentation, Release 1.0

Note: because we are using bitstream in bit format, the fpga loadb command doesn’t require the exact
size of the bitstream, just a non zero value, as the size is already encoded in the bitstream header.

In order to boot execute this command at start-up, we must assign the bootcmd variable and save the
environment:

SPEC7> setenv bootcmd "run bootcmd_gateware"
SPEC7> saveenv

Adding the above environment during building U-boot using make menuconfig or adding in config

#define CONFIG_EXTRA_ENV_SETTINGS \
"bootdelay = 0"\
"gateware_size =0x1000000" \
"qspi_gateware_offse= 0x2000000" \
" bootcmd_gateware = sf probe 0 0 0 && sf read ${loadbit_addr} ${qspi_

→˓gateware_offset} ${gateware_size} && fpga loadb 0 ${loadbit_addr} 0x1" \
"bootcmd = run bootcmd_gateware"

2.2. Automatic gateware update from QSPI 5

SPEC7 Documentation, Release 1.0

6 Chapter 2. Firmware

CHAPTER

THREE

FSBL

FSBL (First stage bootloader) built using Vitis v2019.2 after successfully generating the bitstream for
above design and exporting as hardware xsa file in the platform. This provides a golden design along
with FSBL, which can be booted via writing to QSPI Flash Memory

3.1 Build

3.1.1 Using Vitis GUI

Steps to build:

1. Export the design as xsa file for later developments in Vitis

2. Add platform project name and location

3. Modify BSP Settings and enable xilffs

4. Add application project and select ZYNQ_FSBL

5. Go to Next

6. Check the sources initialised on left side

7. Run Build

More details refer this

3.1.2 Command line

Require: Vitis 2019.2

1. SetUp Environment

$ source /tools/Xilinx/Vitis/2019.2/settings64.sh

2. Enable Xilinx Software Command Line Tool

$ xsct%

3. Setup workspace

$ setws </path/to/a/directory>

7

https://ohwr.org/project/spec7/wikis/uploads/ca8f150af87f5119faa94b84539f0ea0/SPEC7.pdf

SPEC7 Documentation, Release 1.0

4. Export xsa file and setup platform project

$ platform create -name <platform/name eg:spec7_custom> -hw </<path to xsa>/
→˓spec7_custom.xsa> -no-boot-bsp

5. Check the active platform:

$ platform active

6. Create domain

$ domain create -name "fsbl_domain" -os standalone -proc ps7_cortexa9_0

7. Check the active domain with:

$ domain active

8. Add library before building FSBL:

$ bsp setlib xilffs

9. Check stdin and stdout configuration in the BSP:

$ bsp config stdin ps7_uart_1
$ bsp config stdout ps7_uart_1

10. Build the platform:

$ platform generate

11. Add system project

First, we create the application for the FSBL targeting the already existing platform and the specific
domain and specifying the template Zynq FSBL. In addition, we will select the spec7_custom_system as
the name of the system that will be created to host the application:

$ app create -name zynq_fsbl -template {Zynq FSBL} -platform spec7_
→˓custom -domain fsbl_domain -sysproj spec7_custom_system

12. Config and Build FSBL:

$ app config -name zynq_fsbl build-config release

$ app config -name zynq_fsbl build-config

$ app build -name zynq_fsbl

This will generate zynq_fsbl.elf file in workspace directory set using step 2 as <path/to/
directory_ws/zynq_fsbl/Release/zynq_fsbl.elf>.

8 Chapter 3. FSBL

SPEC7 Documentation, Release 1.0

3.1.3 Tcl script

All the above steps can be automated using Tcl script and built with make.

Source: In spec7 ohwr repo sw/fsbl/, run

$ make

This will generate zynq_fsbl.elf in /output directory.

3.1. Build 9

https://ohwr.org/project/spec7/tree/spec7_golden/sw/fsbl

SPEC7 Documentation, Release 1.0

10 Chapter 3. FSBL

CHAPTER

FOUR

U-BOOT

U-Boot is a universal bootloader and is responsible for booting the Linux OS on the Zynq based SoC. It i
sa powerful second-stage bootloader with many capabilities. U-Boot provides a command-line interface
(CLI) on the serial port of the Zynq MPSoC. The CLI offers commands for reading and writing flash
memory, device-tree manipulation,downloading files through the network, communicating with hard-
ware, etc. It even offers the use ofenvironment variables, which can store sequences of commandsOn top
of that, it can also run Hush shell scripts.

4.1 Build

Require:U-boot-Xilinx clone for SPEC7

1. Setup the environment for cross-compilation:

$ export CROSS_COMPILE=arm-linux-gnueabihf-
$ export ARCH=arm

2. Get the sources

11

https://ohwr.org/project/spec7-firmware

SPEC7 Documentation, Release 1.0

$ git clone https://ohwr.org/project/spec7-firmware.git
$ git checkout spec7_custom

3. SPEC7 Config All config files are located at configs/

$ make zynq_spec7_defconfig

4. check config also using menuconfig

$ make

5. This will generate u-boot.elf file in the same repository

U-boot can directly be built using Makefile and sources in spec7 ohwr repo ,run:

$make

This will generate u-boot.elf in ../output directory

To clean up:

4.2 General U-boot shell commands

printenv - Print the U-boot environment variables

ipaddr- Check IP Address of board

ethaddr-MAC Address

re- reload bootloader

tftpboot- Load file from tftp server

fatls - list files present in mmc

mmc - to query and check sd card

setenv - define and redefine a new environment variable

dhcp - run dhcp client and fetch IP for board if defined in network

4.3 Reconfigure FPGA using U-boot shell

• Introduction

• Overriding the default boot process

• Updating the gateware in QSPI

• Using JTAG

1. Include the gateware in the boot image

2. Program the gateware as an independent binary blob

• Using U-Boot

12 Chapter 4. U-boot

https://ohwr.org/project/spec7/tree/spec7_golden/sw/u-boot

SPEC7 Documentation, Release 1.0

1. Copy the gateware to DDR from a microSD card

2. Copy the gateware to DDR from a USB drive

3. Copy the gateware to DDR from a TFTP server

4. Copy the gateware to DDR from a serial port

5. Copy the gateware to QSPI from the DDR

• Programming the FPGA by using U-Boot

1. Load the gateware from DDR to FPGA

2. Automatic gateware update from QSPI

4.3.1 Introduction

In order to load a secondary gateware from QSPI, we first need to write our gateware in some known
offset of the QSPI. Once the secondary gateware is written to the QSPI, U-Boot must be able of loading
it on the Programmable Logic at booting time as fast as possible.

In the SPEC7, we have a 64 MiB QSPI and we initially had three different supported Zynq-7000 devices,
with the following bitstream sizes:

Device Bits Bytes MiB
7Z030 47839328 5979916 5,66
7Z035 106571232 13321404 12,61
7Z045 106571232 13321404 12,61

Despite the fact that some of the first prototypes were mounting the 7Z030 device, this device have been
discarded for production due to technical issues. In this way, we can consider a gateware size of roughly
12,61 MiB for all of the production SPEC7.

In this way, we propose to divide the QSPI in the following layout:

Slot Offset (Bytes) Size (Bytes) Size (MiB)
0 0x0000_0000 0x0100_0000 16
1 0x0100_0000 0x0100_0000 16
2 0x0200_0000 0x0100_0000 16
3 0x0300_0000 0x0100_0000 16

Each of the offset are dedicated to: - Slot 0: contains the FSBL, the golden gateware and the U-Boot bi-
nary. - Slot 1: contains the first secondary gateware - Slot 2: contains the second secondary gateware
- Slot 3: contains the third secondary gateware

4.3. Reconfigure FPGA using U-boot shell 13

SPEC7 Documentation, Release 1.0

4.3.2 Overriding the default boot process

By default, u-boot includes a pretty complex boot sequence that scan for multiple local and remote boot
targets and that is designed to boot a whole Linux runtime in the Processing System.

The command that starts the execution is contained in the bootcmd variable of the u-boot environment.

As an example, by overriding the bootcmd with a simple message and saving the environment, we will
directly break into u-boot prompt:

SPEC7> setenv bootcmd "echo Break for testing"
SPEC7> saveenv

Once done, we can check this by resetting the SPEC7 platform from U-Boot:

SPEC7> reset

4.3.3 Updating the gateware in QSPI

In order to demonstrate how to program the gateware in the bitstream, we will consider that we want to
copy a bitstream to the Slot 2, i.e. offset 0x0200_0000.

4.3.4 Using JTAG:

We have two different approaches to load the gateware to the QSPI via the JTAG: - Include the gateware
in the complete boot image to be writen in QSPI - Program the gateware as an independent binary blob
in an already programmed SPEC7.

Include the gateware in the boot image

We create a boot image with an additional data partition containing the gateware in which we specify
the offset, e.g. 0x0200_0000.

Note that we could use any of the available offset or, if required, add as many data partitions and respective
offsets as different secondary gatewares we want to program in the QSPI.

Is important to note that the Vitis Boot Image generator and the FLASH programming tools only accept
.bin and .mcs files.

The MCS file is a HEX file where two ASCII chars are used to represent each byte of data, while the
binary file just contains the raw byte stream in sequence.

So the MCS file seems less efficient, because it takes 2 bytes to represent 1 byte, but it has a couple of
advantages: - (1) It has a checksum at the end of each line for integrity. - (2) Each line includes the
address where the line should be located in memory.

So for example, if a MCS file contains a few segments located far apart in address space (e.g. a gateware
in the second or third QSPI slot), it can be small while the equivalent binary file might be huge, because
it would have a lot of 0x00 or 0xFFs to fill the space between segments.

14 Chapter 4. U-boot

SPEC7 Documentation, Release 1.0

Program the gateware as an independent binary blob

If we want to program the gateware as an independent binary blob, we just need to use the Vitis FLASH
programming tool and: - select the gateware a data image to be writen. - select the desired offset for the
data to be writen, e.g. 0x0200_0000.

Note that the gateware can be generated in standard bitstream (.bit) or binary (.bin) format. Because the
Vitis FLASH programming tool only accepts files in bin and mcs formats, if we are going to write a
bitstream gateware, we will need to modify the file extension from .bit to .bit.bin so that the tool is
able to load it to QSPI.

4.3.5 Using U-boot

We can use U-Boot drivers to access the supported peripherals in SPEC7 to: - load the gateware in a
known location at the Processing System DDR. - copy the gateware in the DDR to the intended slot at
the QSPI.

Note: the DDR offset in which we will load the gateware is defined in the pre-defined ${loadbit_addr}
variable at u-Boot environment, but you can customize to any addressable value. By default, this is the
value: .. code-block:

loadbit_addr=0x100000

Copy the gateware to DDR from a microSD card

Copy all of the bitstreams you want to test into a FAT32 formatted partition in the microSD, then insert
the card in the SPEC7 and boot.

If you hot-plug the microSD card when u-boot is running, you will need to re-scan the MMC devices:

SPEC7> mmc rescan
SPEC7> mmc info

List the contents of the first partition to check that your bitstreams are there:

SPEC7> fatls mmc 0:1
4045672 new_gateware.bit
4045564 new_gateware.bin
2 file(s), 1 dir(s)

Now, we can copy to DDR the desired bitstream by:

SPEC7> fatload mmc 0:1 ${loadbit_addr} new_gateware.bit

or, alternatively:

SPEC7> fatload mmc 0:1 0x100000 new_gateware.bit

4.3. Reconfigure FPGA using U-boot shell 15

SPEC7 Documentation, Release 1.0

Copy the gateware to DDR from a USB drive

Copy all of the bitstreams you want to test into a FAT32 formatted partition in the USB, then insert the
drive in the SPEC7 and boot.

The following command to start the USB driver:

SPEC7> usb start

And this one to stop it when you are done:

SPEC7> usb stop

This command perform a complete re-scan of USB devices when you hot-plug the key:

SPEC7> usb reset

In order to list the content of a FAT formatted partition, you use this command:

SPEC7> fatls usb 0:1

Then, as an example, if you have a gateware in your USB FAT partition, you load it to memory by:

SPEC7> fatload usb 0:1 ${loadbit_addr} gateware.bit

or, alternatively:

SPEC7> fatload usb 0:1 0x100000 gateware.bit

Copy the gateware to DDR from a TFTP Server

If we have a TFTP server in a host computer connected to a Ethernet network in which the SPEC7
is residing, we can deploy the desired gateware file in the TFTP shared folder so that the SPEC7 can
retrieve it.

Once the TFTP server is properly configured, we need to configure the server ip in the SPEC7 via the
U-Boot serverip environment variable:

SPEC7> set serverip <host_pc_ip_address>
SPEC7> saveenv

Now, we can load the gateware bitstream to the DDR memory by just:

SPEC7> tftpboot ${loadbit_addr} gateware.bit

or, alternatively:

SPEC7> tftpboot 0x100000 gateware.bit

16 Chapter 4. U-boot

SPEC7 Documentation, Release 1.0

Copy the gateware to DDR from a serial port

In some development setups, it might be useful to load a gateware to DDR by using the same serial
connection we are using for the U-Boot prompt.

This is a complex task that can be accomplished with different serial file transfer protocols. As an exam-
ple, we have included an additional wiki page with detailed instructions on how to perform a [serial file
transfer with Kermit](serial-file-transfer-with-kermit).

Copy the gateware to QSPI from the DDR

Once the desired gateware have been copied to the DDR, we can move the file contents to the destination
QSPI slot.

As an example, we will focus in using Slot 2, i.e. offset 0x0200_0000.

In order to do this, we activate the QSPI flash and erase the associated 16MiB slot:

SPEC7> sf probe 0 0 0
SPEC7> sf erase 0x2000000 0x1000000

Finally, we can move the gateware from DDR to QSPI: .. code-block:

SPEC7> sf write ${loadbit_addr} 0x2000000 ${filesize}

Note: the ${filesize} value gets automatically updated with the size of the last file that has been loaded
to DDR.

4.3.6 Programming the FPGA by using U-Boot

Load the gateware from DDR to FPGA

Once we have a gateware in the DDR memory, we can use the appropriated command to load it into the
FPGA depending on the its format.

If the gateware is in .bin format, we use this command:

SPEC7> fpga load 0 ${loadbit_addr} ${filesize}

If the gateware is in .bit format, we use this command:

SPEC7> fpga loadb 0 ${loadbit_addr} ${filesize}

4.3. Reconfigure FPGA using U-boot shell 17

SPEC7 Documentation, Release 1.0

Automatic gateware update from QSPI

In order to allow for automatic loading of the gateware from QSPI using the UBoot, first we define the
following environment variables:

SPEC7> setenv bootdelay "0"
SPEC7> setenv gateware_size 0x1000000
SPEC7> setenv qspi_gateware_offset 0x2000000

The meaning for each of these variables are: - bootdelay: this contains the maximum value of the
countdown that UBoot perform before executing the bootcmd. By setting it to zero, we save a precious
time at startup. - gateware_size: we define this auxiliary variable that specify the size of the slot
containing the gateware that we want to move from QSPI to DDR. We set the value to 16 MiB, i.e. the
full size of the slot. - qspi_gateware_offset: we define this auxiliary variable containing the QSPI
offset of the slot containing the gateware we want to load. In this case, we are pointing to the Slot 2, but
we can easily modify the slot to be used by editing this variable.

Now, we create the boot command to read the gateware from the desired QSPI slot to DDR, then from
DDR to FPGA, and finally go back to the U-boot prompt:

SPEC7> editenv bootcmd_gateware
edit: sf probe 0 0 0 && sf read ${loadbit_addr} ${qspi_gateware_offset} $
→˓{gateware_size} && fpga loadb 0 ${loadbit_addr} 0x1

Note: because we are using bitstream in bit format, the fpga loadb command doesn’t require the exact
size of the bitstream, just a non zero value, as the size is already encoded in the bitstream header.

In order to boot execute this command at start-up, we must assign the bootcmd variable and save the
environment:

SPEC7> setenv bootcmd "run bootcmd_gateware"
SPEC7> saveenv

18 Chapter 4. U-boot

CHAPTER

FIVE

BUILD

5.1 Using Vitis

Refer this

5.2 Using Command line

1. Create .bif file eg: output.bif

$ vi output.bif

Contents of .bif file:

/* Linux */
the_ROM_image:
{
[bootloader] <xsct_ws/zynq_fsbl/Release/-path>zynq_fsbl.elf
<xsct_ws/spec7_custom/hw/-path to bitstream>/spec7_custom.bit
<path-to-u-boot>/u-boot.elf
}

output.bif with offset support for two designs

/*Linux*/
the_ROM_image:
{

[bootloader] zynq_fsbl.elf
tandem_gateware.bit
u-boot.elf
[offset = 0x20000000]reference_gateware.bit
}

2. Build using bootgen command:

Setup environment

$ source /tools/Xilinx/Vitis/2019.2/settings64.sh

Run bootgen

19

https://ohwr.org/project/spec7/wikis/uploads/ca8f150af87f5119faa94b84539f0ea0/SPEC7.pdf

SPEC7 Documentation, Release 1.0

bootgen -image output.bif -arch zynq -w -o BOOT.bin

Use this image to load in QSPI from command line

program_flash -f BOOT.bin -fsbl </path/to/fsbl>/zynq_fsbl.elf -flash_type␣
→˓qspi-x8-dual_parallel -blank_check -url tcp:localhost:3121

5.3 Using Script

BOOT.bin can be generated by automating above steps. Refer ../sw/boot Build_boot.sh script in spec7
ohwr repo , run:

$./Build_boot.sh -t -r -o -u -h

Usage: $0 -t {Tandem_bitfile} -r {Reference_bitfile} -o {Memory_Offset};
-t {Tandem_bitfile} location of the bitfile used in tandem PCIe boot.␣

→˓Default is the most recent bitfile in spec7/hdl/syn/ containing the word
→˓"tandem".;

-r {Reference_bitfile} location of the bitfile used in the reference␣
→˓design. Default is the most recent bitfile in spec7/hdl/syn/ containing the␣
→˓word "ref".;

-o {Memory_Offset} the DDR3 Memory offset where the reference design␣
→˓is loaded into. Default is 0x1000000.;

-u {uboot uart channel} The uart channel number where Cout and Cin is␣
→˓directed. Default is 0.;

-h Prints this help message.;

It will generate all require components i.e FSBL, U-boot, Boot.bin in /output directory

20 Chapter 5. Build

https://ohwr.org/project/spec7
https://ohwr.org/project/spec7

CHAPTER

SIX

KERNEL

6.1 From Sources

1. Get the sources .. code-block:

git clone https://github.com/Xilinx/linux-xlnx.git
cd linux-xlnx
git checkout xilinx-v2019.2.01

2. Set environment for Cross-Compilation: .. code-block:

export CROSS_COMPILE=arm-linux-gnueabihf-
export ARCH=arm

3. Configuration .. code-block:

$make xilinx_zynq_defconfig

4. Build .. code-block:

$ make -j<cores>
$ mkimage -A arm -O linux -T kernel -C none -a 0x80008000 -e 0x80008000 -
→˓n "Linux kernel" -d linux-xlnx/arch/arm/boot/zImage uImage

6.2 From script

Above steps are automated using Makefile and can be found in spec7 ohwr repo <>

output=../../output

export CROSS_COMPILE=arm-linux-gnueabihf-
export ARCH=arm

defconfig=xilinx_zynq_defconfig

kernel := linux-xlnx

defconfig:
(continues on next page)

21

SPEC7 Documentation, Release 1.0

(continued from previous page)

@$(MAKE) -C $(kernel) $(defconfig)
@$(MAKE) -C $(kernel)
mkimage -A arm -O linux -T kernel -C none -a 0x80008000 -e 0x80008000 -

→˓n "Linux kernel" -d linux-xlnx/arch/arm/boot/zImage uImage
cp uImage $(output)

menuconfig:
@$(MAKE) -C $(kernel) menuconfig

clean:
@$(MAKE) -C $(kernel) clean

This will generate Kernel uImage in output directory, which can be stored in flash or loaded over TFTP

6.3 Petalinux Flow

1. Download Petalinux sources from Xilinx official website

2. In Petalinux directory

3. To create the Project

$ petalinux-create --type project --template zynq --name spec7_kernel

4. Copy .xsa generated from Vivado in Project directory and then build

$ petalinux-config --get-hw-description

5. To config u-boot, and Linux

$ petalinux-config -c u-boot
$ petalinux-config -c kernel

6. Now to build everything

$ petalinux-build

7. All the generated output will be availabe in images folder

8. To create final BOOT.BIN, run this inside

$ petalinux-package --boot --fsbl zynq_fsbl.elf --fpga system.bit --u-boot --
→˓kernel

22 Chapter 6. Kernel

	Introduction
	References:

	Firmware
	Create environment variable in U-boot in Runtime
	Automatic gateware update from QSPI

	FSBL
	Build
	Using Vitis GUI
	Command line
	Tcl script

	U-boot
	Build
	General U-boot shell commands
	Reconfigure FPGA using U-boot shell
	Introduction
	Overriding the default boot process
	Updating the gateware in QSPI
	Using JTAG:
	Include the gateware in the boot image
	Program the gateware as an independent binary blob

	Using U-boot
	Copy the gateware to DDR from a microSD card
	Copy the gateware to DDR from a USB drive
	Copy the gateware to DDR from a TFTP Server
	Copy the gateware to DDR from a serial port
	Copy the gateware to QSPI from the DDR

	Programming the FPGA by using U-Boot
	Load the gateware from DDR to FPGA
	Automatic gateware update from QSPI

	Build
	Using Vitis
	Using Command line
	Using Script

	Kernel
	From Sources
	From script
	Petalinux Flow

