
Gnu Rabbit
Code for GENNUM and White Rabbit

August 2010

Alessandro Rubini (rubini@gnudd.com)
Work sponsored by CERN (www.cern.ch)

Chapter 2: Raw PCI I/O 1

Introduction

This package includes a device driver for the GN4124 PCI-E board and a module for raw
PCI I/O, used at CERN as development tool to help prototyping White Rabbit hardware and
software.
All code and documentation is released according to the GNU GPL, version 2 or (at your option)
any later version.

1 Driver for GN4124

Still to be done, I’m sorry. Stay tuned.

2 Raw PCI I/O

The kernel module for raw I/O is called rawrabbit. After running make you’ll find a file called
rawrabbit.ko.
To compile you may optionally set the following three variables in your environment:

CROSS_COMPILE
The variable defaults to the empty string, used for native compilation

ARCH The variable defaults to the build architecture

LINUX This is the location of the kernel source against which you are compiling. It defaults
to the place where the currently running kernel has been compiled (assuming it was
compiled on this same system).

The code has been run-tested on version 2.6.34, and compile-tested on 2.6.24.7-rt27, 2.6.29.4-
rt15, 2.6.31.6-rt19, 2.6.31.12-rt21.
The module creates a misc char device driver, with major number 10 and minor number 42. If
you are running udev the special file /dev/rawrabbit will be created automatically.
Warning: future releases of this package may change the device number or switch to several
devices, I’m yet undecided on this choice.

2.1 General features of rawrabbit

The driver is designed to act as a misc device (i.e. a char device) towards user programs and as
a PCI driver towards hardware, declaring the pair vendor/device it is able to drive.
The pair of identifiers is predefined at compile time but can be changed at run time. The
defaults (set forth in rawrabbit.h refer to the GN4124 evaluation board. The values can also
be changed at module load time by setting the vendor and device arguments. For example the
following command sets rawrabbit to look for a 3com Ethernet device:

insmod rawrabbit.ko vendor=0x10b7 device=0x9055

When the driver is loaded it registers as a PCI driver for the preselected vendor/device pair, but
loading succeeds even if no matching peripheral exists on the system, as user space programs can
request a different vendor/device pair at runtime. Since a single bus might host several instances
of the same peripheral, user space programs can also specify the bus and devfn values in order
to select a specific instance of the hardware device. Similarly, the pair subvendor/subdevice may
be specified.
User programs can use read and write, mmap and ioctl as described later (Note: mmap is not
currently supported). Each and every command refers to the device currently selected by means
of the vendor/device pair as well as bus/devfn and/or subvendor/subdevice if specified.

Chapter 2: Raw PCI I/O 2

The driver allows access to the PCI memory regions for generic I/O operations, as well as some
limited interrupt management in user space. Programs can also access a DMA buffer, for which
they can know the physical address on a page-by-page basis.

In the source file, each global function or variable declared in the file itself or in the associated
header has rr_ as prefix in the name, even if its scope is static. Local variables have simple
names with no prefix, like i or dev. This convention is followed so when reading random parts
of the source you can immediately know whether the symbol is defined in the same file (like
rr_dev) or is an external Linux resource (like pci_driver).

2.2 Interrupt management

The driver is able to handle the interrupt for the active device. User space is allowed to wait
for an interrupt and acknowledge it later at will. To allow this latency, the driver disables the
interrupt as soon as it is reported, so user-space can do the board-specific I/O before asking to
re-enable the interrupt.

The interrupt handler is registered as a shared handler, as most PCI cards must share the
interrupt request line with other peripherals. In particular, on my development motherboard
both the PCI-E and the PCI slot share the interrupt with other core peripherals and I couldn’t
test stuff if I didn’t enable sharing.

Unfortunately, the rawrabbit interrupt handler can’t know if the interrupt source is its own
board or another peripherals, so all it can do is saying it handled to the interrupt (by returning
IRQ_HANDLED) and disable it. If you are running other peripherals on the same interrupt line,
you’ll need to acknowledge the interrupt pretty often, to avoid a system lock or data loss in your
storage or network device.

2.3 Bugs and misfeatures

This version of rawrabbit creates a single device and can act on a single PCI peripheral at a
time. This limitation will be removed in later versions, as time permits.

The read and write implementations don’t enforce general data-size constraints: reading or
writing 1, 2, 4, 8 bytes at a time forces 8, 16, 32, 64 bit accesses respectively, while bigger
transfers use unpredictable access patterns to I/O memory, as the driver uses copy from user
and copy to user.

The interrupt line is always requested and handled (by disabling it). This means that if the line
is shared with other devices, you can’t avoid it being disabled thus breaking the other devices.
A specific ioctl to request/release the handler is needed.

The driver assumes to work with PCI-E so odd BAR areas are not supported. This limitation
may be lifted in future versions if needed.

Important: please note that there may be bugs related to cache memory. When using DMA you
may encounter incorrect data due to missing flush or invalidate instructions. If the problem is real
please report the bug to me, with as much information as possible about the inconsistency, and
I’ll do my best to find the proper solution. One solution might be adding two ioctl commands:
one to flush the buffer after it has been written and one to invalidate it before reading; however
better solutions, with no API changes, may be viable. Or the problem may just not appear as
things are already correct, I can’t tell for sure.

2.4 The DMA buffer

At module load time, a 1MB buffer is allocated. The actual size can be changed by means of a
module parameter, but it currently can’t be bigger than 4MB.

Chapter 2: Raw PCI I/O 3

The buffer is allocated with vmalloc, so it is contiguous in virtual space but not in physical
space. User space can read and write the buffer like it was BAR 12 (0xc) of the device, using
contiguous offsets from 0 up to the buffer size.

In order to DMA data to/from the buffer, the peripheral device must be told the physical address
to use. Since allocation is page-grained, you need a different physical address for each 4kB page
of data. The driver can thus return the list of page frame numbers that make up the vmalloc
buffer. A PFN is a 32-bit number that identifies the position of the page in physical memory.
With 4kB pages, you can shift by 12 bits to have the physical address, and a 32-bit PFN can
span up to 44 bits of physical address space.

The details about how PFNs are returned to user space are described later where the ioctl
commands are discussed. A working example is in the rrcmd user space tool.

Unlikely what happens with I/O memory, reading and writing the DMA buffer uses the
copy * user functions for all accesses, so the pattern of actual access to memory can’t be con-
trolled, but this is not a problem for RAM (as opposed to registers).

2.5 System calls implemented

The following system calls are implemented in rawrabbit :

open
close These system calls are used to keep a refcount of device use. If the device has been

opened more than once, it will refuse to change the active device, to prevent possible
confusion in another process using rawrabbit at the same time. Please note that after
fork the device is still opened twice but the driver can’t know about it, so in this
case changing the active device is allowed, but it can be confusing nonetheless.

llseek The seek family of system calls is implemented using the default kernel implementa-
tion. A process may seek the device to access specific registers in specific BAR areas,
or the DMA buffer. The offset being used selects the BAR and the offset within the
BAR at the same time. Each BAR is limited to an extension of 512MB: so BAR0
starts at 0, BAR 2 starts at 0x2000.0000 and BAR 4 starts at offset 0x4000.0000;
if you prefer symbolic names, RR_BAR_0, RR_BAR_2 and RR_BAR_4 are defined in
rawrabbit.h. The DMA buffer is accessed like it was BAR 12 (RR_BAR_BUF), so
0xc or c can be used in rrcmd (see Section 2.7.1 [rrcmd], page 5).

read
write By reading and writing the device, a process can access on-board I/O space. The

file position (set through llseek or by sequential access of file data) is used to specify
both the BAR and the offset within the BAR as described above. Access to an
inexistent BAR returns EINVAL, access outside the BAR size returns EIO. If the
hardware device offers I/O ports (instead of I/O memory), the system calls are not
supported and you must use ioctl – read and write will return EINVAL like the BAR
was not existent.

As a special case, reading past the DMA buffer size returns 0 (EOF), and writing
retunrs ENOSPC, since the DMA buffer is a memory region and a file-like interface is
best suited for command-line tools like dd.

mmap Warning: mmap is not yet implemented in this version.

The mmap system call allows direct user-space access to the I/O memory. The
device offset has the same meaning as for read, but accesses to undefined pages
cause a SIGBUS to be sent. If the device offers I/O ports (instead of I/O memory),
the mmap method can’t be used on such BAR areas.

Chapter 2: Raw PCI I/O 4

ioctl A number of ioctl commands are supported, they are listed in the next section. Note
that the commamnds to read and write can act both on memory and “I/O ports”
areas.

2.6 Ioctl commands

The following ioctl commands are currently implemented. The type of the third argument is
shown in parentheses after each command:

RR_DEVSEL (struct rr_devsel *)
The command copies device selection information to kernel space. If the device has
been opened more than once the command fails with EBUSY; otherwise the pci driver
is unregistered and re-registered with a new pci_id item. If no device matches the
new selection ENODEV is returned after a timeout of 100ms.

RR_DEVGET (struct rr_devsel *)
The command returns to user space device information: vendor/device, subven-
dor/subdevice and bus/devfn. If no device is currently managed by the driver,
ENODEV is returned.

RR_READ (struct rr_iocmd *)
RR_WRITE (struct rr_iocmd *)

The commands can read or write one register from an even BAR area (BAR 0, 2,
4) of within the DMA buffer (BAR 12, 0xc). The address field of the structure
specifies both the BAR and the offset (see rawrabbit.h or the description of llseek
above for the details). Access outside the size of the area returns ENOMEDIUM. The
datasize field of rr_iocmd can be 1, 2, 4 or 8 and is a byte count. The other fields,
data8 through data64 are used to host the register value; these fields are collapsed
together in an unnamed union (see the gcc documentation about unnamed unions),
so the same code works with little-endian and big-endian systems.

RR_IRQWAIT (no third argument)
The command waits for an interrupt to happen on the device. If an interrupt did
already happen, EAGAIN is returned, otherwise an interrupt is waited for and 0
is returned. After the interrupt fired, the interrupt line is disabled by the kernel
handler. Please note that this may be a serious problem if the line is shared with
other peripherals, like your hard drive o ethernet card.

RR_IRQENA (no third argument)
The command re-enables the interrupt. The user is assumed to have acknowledged
the interrupt in the board itself, or another interrupt will immediately fire. If the
interrupt did not happen, EAGAIN is returned, otherwise the command returns the
number of nanoseconds that elapsed since the interrupt occurred. If more than one
second elapsed, the command returns 1000000000 (one billion), to avoid overflowing
the signed integer return value of ioctl.

RR_GETDMASIZE (no third argument)
The command simply returns the size, in bytes, of the DMA buffer, Currently such
size can only be changed at module load time and is fixed for the lifetime of the
module.

RR_GETPLIST (array of 1024 32-bit values)
The command returns the PFNs for the current DMA buffer. The initial part of
the page passed as third argument is filled with 32-bit values. The array must be
a complete 1024-entry array, even if only part of it is used. Each value written
represents a page frame number that can be shifted by 12 bits to obtain the physical

Chapter 2: Raw PCI I/O 5

address for the associated page. The rawrabbit module can only work with 4kB
pages, and a compile-time check is built into the code to prevent compilation with
a different page size; at least not before a serious audit of the code.

2.7 User space demo programs

The subdirectory user/ of this package includes the user-space sample tools. The helper for
rawrabbit (rr) is called rrcmd.

2.7.1 rrcmd

The rrcmd program can do raw I/O and change the active binding of the device.
Every command line can change the binding and issue a command. Since binding is persistent,
you can issue commands without specifying a new binding. The initial binding is defined by
module parameters, or by default as a GN4124 device.
To specify a new binding, the syntax is “vendor:device/subvendor:subdevice@bus:devfn”
where the first pair is mandatory and the following ones are optional.
The following is an example session with rrcmd, from the compilation directory, note that in
this case I’m using the GN4124 device and an ethernet port without active driver.

tornado% sudo insmod kernel/rawrabbit.ko
tornado% ./user/rrcmd info
/dev/rawrabbit: bound to 1a39:0004/1a39:0004@0001:0000
tornado% ./user/rrcmd 10b7:9055
tornado% ./user/rrcmd info
/dev/rawrabbit: bound to 10b7:9055/10b7:9055@0004:0000
tornado% ./user/rrcmd 1a39:0004 info
/dev/rawrabbit: bound to 1a39:0004/1a39:0004@0001:0000
tornado% ./user/rrcmd 10b7:9055@01:0
./user/rrcmd: /dev/rawrabbit: ioctl(DEVSEL): No such device
tornado% ./user/rrcmd info
/dev/rawrabbit: not bound

The “no such device” error above depends on the chosen bus:devfn parameter. Please note that
trying to bound to a device already driven by a kernel driver returns ENODEV in the same way,
as the probe function of the PCI driver registered by rawrabbit will not be called.
To read and write data with rrcmd you can use the r and w commands. The syntax of the
commands is as follows:

r[<sz>] <bar>:<addr>
w[<sz>] <bar>:<addr> <val>
<sz> = 1, 2, 4, 8 (default = 4)
<bar> = 0, 2, 4

Actually, since an interactive user often reads and writes the same register, the r and w commands
are the same, and a read or write is selected according to the number of arguments. You can
think of r as “register” and w as “word” if you prefer.
In this example two Gennum leds are turned off, and the value is read back. Address 0xa08 in
BAR 4 is the “output drive enable” register for the GPIO signals from the GN4124 chip, and
enabling the drive without any other change from default settings is enough to turn the leds off.

tornado% ./user/rrcmd r 4:a08
0x00000000
tornado% ./user/rrcmd r 4:a08 0x3000
tornado% ./user/rrcmd r 4:a08
0x00003000

Chapter 2: Raw PCI I/O 6

Note, in the example above, that “r” is used for writing as well as reading. If you forget the
r or w command name, however, the program will understand the argument as a vendor :device
pair, and will unbind the driver. This can be construed as a design bug and you can blame me
at will.

Reading data with a different-from-default size returns the right number of hex digits, to make
clear what data size that has been read:

tornado% ./user/rrcmd r1 4:a08
0x00
tornado% ./user/rrcmd r2 4:a08
0x3000
tornado% ./user/rrcmd r4 4:a08
0x00003000
tornado% ./user/rrcmd r8 4:a08
0x0000000000003000

Interrupt management with rrcmd can be performed using two commands: irqwait and irqena.
The former is used to wait for an interrupt to happen; the latter re-enables the interrupt in the
controller. You should probably acknowledge the interrupt in the device between these two
operations. The irqwait command returns EAGAIN if the interrupt has already happened; the
irqena command returns EAGAIN if the interrupt has not happened yet.

For example, this script waits for an interrupt in a BT878 frame grabber and acknowledges it
for 100 times:

select device and enable vsync interrupt (bit 1, value 0x2)
./user/rrcmd 109e:036e w 0:104 2
now wait for irq, acknowledging bit 1 for vsync
for n in $(seq 1 100); do

./user/rrcmd irqwait

./user/rrcmd w 0:100 2

./user/rrcmd irqena
done
finally, disable the interrupt in the device, ack and enable
./user/rrcmd w 0:104 0
./user/rrcmd w 0:100 2
./user/rrcmd irqena

The other commands are getdmasize and getplist, that work as follows:

tornado% ./user/rrcmd getdmasize
dmasize: 1048576 (0x100000 -- 1 MB)
tornado% ./user/rrcmd getplist | head
buf 0x00000000: pfn 0x00029a3c, addr 0x000029a3c000
buf 0x00001000: pfn 0x0002dbb1, addr 0x00002dbb1000
buf 0x00002000: pfn 0x00029a34, addr 0x000029a34000
buf 0x00003000: pfn 0x00029839, addr 0x000029839000
buf 0x00004000: pfn 0x00029838, addr 0x000029838000
buf 0x00005000: pfn 0x000298ed, addr 0x0000298ed000
buf 0x00006000: pfn 0x000298ec, addr 0x0000298ec000
buf 0x00007000: pfn 0x00029843, addr 0x000029843000
buf 0x00008000: pfn 0x00029842, addr 0x000029842000
buf 0x00009000: pfn 0x0002dbab, addr 0x00002dbab000

Chapter 2: Raw PCI I/O 7

2.8 User space benchmarks

The package includes a few trivial programs used to benchmark performance of the various I/O
primitives.

2.8.1 bench/ioctl

The program tests how many ioctl output operations can be performed per second. It issues
a number of register writes assuming the driver is currently accessing the Gennum evaluation
board.
The data written makes the 4 GPIO leds blink with different duty cycles, so you should see
them lit at different light levels.
On my system, the program reports more than 3 million operations per second:

tornado% ./bench/ioctl 1000000
1000000 ioctls in 303611 usecs
3293688 ioctls per second
tornado% ./bench/ioctl 10000000
10000000 ioctls in 3068384 usecs
3259044 ioctls per second

2.8.2 bench/irq878

Warning: this program is missing The program does the same kind of operation as the script
shown earlier: it handles BT878 interrupts in user space, and prints the delays from actual
interrupt to end-of-acknowledge. While the script shown earlier report times in the order of
10ms, since several processes are executed between the interrupt and the final irqena, this
shows the system call overhead which is just a few microseconds:

tornado% ./bench/irq878 100
got 100 interrupts, average delay 6389ns

2.8.3 Benchmarking read and write

No specific program is provided to check access to the DMA buffer, as dd is enough to verify
read and write speed. A script like the following will work:

IF="if=/dev/rawrabbit"

OF="of=/dev/rawrabbit"

test dmabuf read

for BS in 1 2 4 8 16 32 64 128 256 512 1024 2048 4096; do

dd bs=$BS skip=$(expr $(printf %i 0xc0000000) / $BS) $IF of=/dev/null \

2>&1 | grep MB/s

done

test dmabuf write

for BS in 1 2 4 8 16 32 64 128 256 512 1024 2048 4096; do

dd bs=$BS seek=$(expr $(printf %i 0xc0000000) / $BS) $OF if=/dev/null \

2>&1 | grep MB/s

done

To benchmark access to I/O memory, the rdwr utility is offered. It repeatedly accesses the
GPIO register (bar 4, offset 0xa08 of the GN4124 board) as a 32bit register and measures the
time it takes:

tornado% ./bench/rdwr 1000000
1000000 writes in 361487 usecs
2766351 writes per second
1000000 reads in 1041681 usecs
959986 reads per second

It’s interesting to note that reads are slower than writes, but mostly that writes are smaller
than writing ioctls (compare with bench/ioctl). The difference is probably due to the need to

Chapter 2: Raw PCI I/O 8

lseek between one read or write and the next, so for an ioctl-based I/O operation you need one
system call, while to achieve the same using read or write you need two system calls.

i

Table of Contents

Introduction . 1

1 Driver for GN4124 . 1

2 Raw PCI I/O . 1
2.1 General features of rawrabbit . 1
2.2 Interrupt management . 2
2.3 Bugs and misfeatures . 2
2.4 The DMA buffer . 2
2.5 System calls implemented . 3
2.6 Ioctl commands . 4
2.7 User space demo programs . 5

2.7.1 rrcmd . 5
2.8 User space benchmarks . 7

2.8.1 bench/ioctl . 7
2.8.2 bench/irq878 . 7
2.8.3 Benchmarking read and write . 7

	Introduction
	Driver for GN4124
	Raw PCI I/O
	General features of rawrabbit
	Interrupt management
	Bugs and misfeatures
	The DMA buffer
	System calls implemented
	Ioctl commands
	User space demo programs
	rrcmd

	User space benchmarks
	bench/ioctl
	bench/irq878
	Benchmarking read and write

