library ieee; use ieee.std_logic_1164.all; use ieee.numeric_std.all; library work; use work.genram_pkg.all; package wishbone_pkg is constant c_wishbone_address_width : integer := 32; constant c_wishbone_data_width : integer := 32; subtype t_wishbone_address is std_logic_vector(c_wishbone_address_width-1 downto 0); subtype t_wishbone_data is std_logic_vector(c_wishbone_data_width-1 downto 0); subtype t_wishbone_byte_select is std_logic_vector((c_wishbone_address_width/8)-1 downto 0); subtype t_wishbone_cycle_type is std_logic_vector(2 downto 0); subtype t_wishbone_burst_type is std_logic_vector(1 downto 0); type t_wishbone_interface_mode is (CLASSIC, PIPELINED); type t_wishbone_address_granularity is (BYTE, WORD); type t_wishbone_master_out is record cyc : std_logic; stb : std_logic; adr : t_wishbone_address; sel : t_wishbone_byte_select; we : std_logic; dat : t_wishbone_data; end record t_wishbone_master_out; subtype t_wishbone_slave_in is t_wishbone_master_out; type t_wishbone_slave_out is record ack : std_logic; err : std_logic; rty : std_logic; stall : std_logic; int : std_logic; dat : t_wishbone_data; end record t_wishbone_slave_out; subtype t_wishbone_master_in is t_wishbone_slave_out; subtype t_wishbone_device_descriptor is std_logic_vector(255 downto 0); type t_wishbone_address_array is array(natural range <>) of t_wishbone_address; type t_wishbone_master_out_array is array (natural range <>) of t_wishbone_master_out; --type t_wishbone_slave_in_array is array (natural range <>) of t_wishbone_slave_in; subtype t_wishbone_slave_in_array is t_wishbone_master_out_array; type t_wishbone_slave_out_array is array (natural range <>) of t_wishbone_slave_out; --type t_wishbone_master_in_array is array (natural range <>) of t_wishbone_master_in; subtype t_wishbone_master_in_array is t_wishbone_slave_out_array; constant cc_dummy_address : std_logic_vector(c_wishbone_address_width-1 downto 0) := (others => 'X'); constant cc_dummy_data : std_logic_vector(c_wishbone_address_width-1 downto 0) := (others => 'X'); constant cc_dummy_sel : std_logic_vector(c_wishbone_data_width/8-1 downto 0) := (others => 'X'); constant cc_dummy_slave_in : t_wishbone_slave_in := ('0', 'X', cc_dummy_address, cc_dummy_sel, 'X', cc_dummy_data); constant cc_dummy_master_out : t_wishbone_master_out := cc_dummy_slave_in; -- Dangerous! Will stall a bus. constant cc_dummy_slave_out : t_wishbone_slave_out := ('X', 'X', 'X', 'X', 'X', cc_dummy_data); constant cc_dummy_master_in : t_wishbone_master_in := cc_dummy_slave_out; constant cc_dummy_address_array : t_wishbone_address_array(0 downto 0) := (0 => cc_dummy_address); -- A generally useful function. function f_ceil_log2(x : natural) return natural; function f_bits2string(s : std_logic_vector) return string; function f_string2bits(s : string) return std_logic_vector; function f_string2svl (s : string) return std_logic_vector; function f_slv2string (slv : std_logic_vector) return string; ------------------------------------------------------------------------------ -- SDB declaration ------------------------------------------------------------------------------ constant c_sdb_device_length : natural := 512; -- bits subtype t_sdb_record is std_logic_vector(c_sdb_device_length-1 downto 0); type t_sdb_record_array is array(natural range <>) of t_sdb_record; type t_sdb_product is record vendor_id : std_logic_vector(63 downto 0); device_id : std_logic_vector(31 downto 0); version : std_logic_vector(31 downto 0); date : std_logic_vector(31 downto 0); name : string(1 to 19); end record t_sdb_product; type t_sdb_component is record addr_first : std_logic_vector(63 downto 0); addr_last : std_logic_vector(63 downto 0); product : t_sdb_product; end record t_sdb_component; constant c_sdb_endian_big : std_logic := '0'; constant c_sdb_endian_little : std_logic := '1'; type t_sdb_device is record abi_class : std_logic_vector(15 downto 0); abi_ver_major : std_logic_vector(7 downto 0); abi_ver_minor : std_logic_vector(7 downto 0); wbd_endian : std_logic; -- 0 = big, 1 = little wbd_width : std_logic_vector(3 downto 0); -- 3=64-bit, 2=32-bit, 1=16-bit, 0=8-bit sdb_component : t_sdb_component; end record t_sdb_device; type t_sdb_bridge is record sdb_child : std_logic_vector(63 downto 0); sdb_component : t_sdb_component; end record t_sdb_bridge; type t_sdb_integration is record product : t_sdb_product; end record t_sdb_integration; type t_sdb_repo_url is record repo_url : string(1 to 63); end record t_sdb_repo_url; type t_sdb_synthesis is record syn_module_name : string(1 to 16); syn_commit_id : string(1 to 32); syn_tool_name : string(1 to 8); syn_tool_version : std_logic_vector(31 downto 0); syn_date : std_logic_vector(31 downto 0); syn_username : string(1 to 15); end record t_sdb_synthesis; -- Used to configure a device at a certain address function f_sdb_embed_device(device : t_sdb_device; address : t_wishbone_address) return t_sdb_record; function f_sdb_embed_bridge(bridge : t_sdb_bridge; address : t_wishbone_address) return t_sdb_record; function f_sdb_embed_integration(integr : t_sdb_integration) return t_sdb_record; function f_sdb_embed_repo_url(url : t_sdb_repo_url) return t_sdb_record; function f_sdb_embed_synthesis(syn : t_sdb_synthesis) return t_sdb_record; function f_sdb_extract_device(sdb_record : t_sdb_record) return t_sdb_device; function f_sdb_extract_bridge(sdb_record : t_sdb_record) return t_sdb_bridge; function f_sdb_extract_integration(sdb_record : t_sdb_record) return t_sdb_integration; function f_sdb_extract_repo_url(sdb_record : t_sdb_record) return t_sdb_repo_url; function f_sdb_extract_synthesis(sdb_record : t_sdb_record) return t_sdb_synthesis; -- For internal use by the crossbar function f_sdb_embed_product(product : t_sdb_product) return std_logic_vector; -- (319 downto 8) function f_sdb_embed_component(sdb_component : t_sdb_component; address : t_wishbone_address) return std_logic_vector; -- (447 downto 8) function f_sdb_extract_product(sdb_record : std_logic_vector(319 downto 8)) return t_sdb_product; function f_sdb_extract_component(sdb_record : std_logic_vector(447 downto 8)) return t_sdb_component; ------------------------------------------------------------------------------ -- Components declaration ------------------------------------------------------------------------------- component wb_slave_adapter generic ( g_master_use_struct : boolean; g_master_mode : t_wishbone_interface_mode; g_master_granularity : t_wishbone_address_granularity; g_slave_use_struct : boolean; g_slave_mode : t_wishbone_interface_mode; g_slave_granularity : t_wishbone_address_granularity); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; sl_adr_i : in std_logic_vector(c_wishbone_address_width-1 downto 0) := cc_dummy_address; sl_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0) := cc_dummy_data; sl_sel_i : in std_logic_vector(c_wishbone_data_width/8-1 downto 0) := cc_dummy_sel; sl_cyc_i : in std_logic := '0'; sl_stb_i : in std_logic := '0'; sl_we_i : in std_logic := '0'; sl_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0); sl_err_o : out std_logic; sl_rty_o : out std_logic; sl_ack_o : out std_logic; sl_stall_o : out std_logic; sl_int_o : out std_logic; slave_i : in t_wishbone_slave_in := cc_dummy_slave_in; slave_o : out t_wishbone_slave_out; ma_adr_o : out std_logic_vector(c_wishbone_address_width-1 downto 0); ma_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0); ma_sel_o : out std_logic_vector(c_wishbone_data_width/8-1 downto 0); ma_cyc_o : out std_logic; ma_stb_o : out std_logic; ma_we_o : out std_logic; ma_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0) := cc_dummy_data; ma_err_i : in std_logic := '0'; ma_rty_i : in std_logic := '0'; ma_ack_i : in std_logic := '0'; ma_stall_i : in std_logic := '0'; ma_int_i : in std_logic := '0'; master_i : in t_wishbone_master_in := cc_dummy_slave_out; master_o : out t_wishbone_master_out); end component; component wb_async_bridge generic ( g_simulation : integer; g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD; g_cpu_address_width : integer); port ( rst_n_i : in std_logic; clk_sys_i : in std_logic; cpu_cs_n_i : in std_logic; cpu_wr_n_i : in std_logic; cpu_rd_n_i : in std_logic; cpu_bs_n_i : in std_logic_vector(3 downto 0); cpu_addr_i : in std_logic_vector(g_cpu_address_width-1 downto 0); cpu_data_b : inout std_logic_vector(31 downto 0); cpu_nwait_o : out std_logic; wb_adr_o : out std_logic_vector(c_wishbone_address_width - 1 downto 0); wb_dat_o : out std_logic_vector(31 downto 0); wb_stb_o : out std_logic; wb_we_o : out std_logic; wb_sel_o : out std_logic_vector(3 downto 0); wb_cyc_o : out std_logic; wb_dat_i : in std_logic_vector (c_wishbone_data_width-1 downto 0); wb_ack_i : in std_logic; wb_stall_i : in std_logic := '0'); end component; component xwb_async_bridge generic ( g_simulation : integer; g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD; g_cpu_address_width : integer); port ( rst_n_i : in std_logic; clk_sys_i : in std_logic; cpu_cs_n_i : in std_logic; cpu_wr_n_i : in std_logic; cpu_rd_n_i : in std_logic; cpu_bs_n_i : in std_logic_vector(3 downto 0); cpu_addr_i : in std_logic_vector(g_cpu_address_width-1 downto 0); cpu_data_b : inout std_logic_vector(31 downto 0); cpu_nwait_o : out std_logic; master_o : out t_wishbone_master_out; master_i : in t_wishbone_master_in); end component; component xwb_bus_fanout generic ( g_num_outputs : natural; g_bits_per_slave : integer; g_address_granularity : t_wishbone_address_granularity := WORD; g_slave_interface_mode : t_wishbone_interface_mode := CLASSIC); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; master_i : in t_wishbone_master_in_array(0 to g_num_outputs-1); master_o : out t_wishbone_master_out_array(0 to g_num_outputs-1)); end component; component xwb_crossbar generic ( g_num_masters : integer; g_num_slaves : integer; g_registered : boolean; g_address : t_wishbone_address_array; g_mask : t_wishbone_address_array); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in_array(g_num_masters-1 downto 0); slave_o : out t_wishbone_slave_out_array(g_num_masters-1 downto 0); master_i : in t_wishbone_master_in_array(g_num_slaves-1 downto 0); master_o : out t_wishbone_master_out_array(g_num_slaves-1 downto 0)); end component; -- Use the f_xwb_bridge_*_sdb to bridge a crossbar to another function f_xwb_bridge_manual_sdb( -- take a manual bus size g_size : t_wishbone_address; g_sdb_addr : t_wishbone_address) return t_sdb_bridge; function f_xwb_bridge_layout_sdb( -- determine bus size from layout g_wraparound : boolean := true; g_layout : t_sdb_record_array; g_sdb_addr : t_wishbone_address) return t_sdb_bridge; component xwb_sdb_crossbar generic ( g_num_masters : integer; g_num_slaves : integer; g_registered : boolean := false; g_wraparound : boolean := true; g_layout : t_sdb_record_array; g_sdb_addr : t_wishbone_address); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in_array(g_num_masters-1 downto 0); slave_o : out t_wishbone_slave_out_array(g_num_masters-1 downto 0); master_i : in t_wishbone_master_in_array(g_num_slaves-1 downto 0); master_o : out t_wishbone_master_out_array(g_num_slaves-1 downto 0)); end component; component sdb_rom is generic( g_layout : t_sdb_record_array; g_bus_end : unsigned(63 downto 0)); port( clk_sys_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out); end component; constant c_xwb_dma_sdb : t_sdb_device := ( abi_class => x"0000", -- undocumented device abi_ver_major => x"01", abi_ver_minor => x"00", wbd_endian => c_sdb_endian_big, wbd_width => x"7", -- 8/16/32-bit port granularity sdb_component => ( addr_first => x"0000000000000000", addr_last => x"000000000000001f", product => ( vendor_id => x"0000000000000651", -- GSI device_id => x"cababa56", version => x"00000001", date => x"20120518", name => "WB4-Streaming-DMA_0"))); component xwb_dma is generic( -- Value 0 cannot stream -- Value 1 only slaves with async ACK can stream -- Value 2 only slaves with combined latency <= 2 can stream -- Value 3 only slaves with combined latency <= 6 can stream -- Value 4 only slaves with combined latency <= 14 can stream -- .... logRingLen : integer := 4 ); port( -- Common wishbone signals clk_i : in std_logic; rst_n_i : in std_logic; -- Slave control port slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; -- Master reader port r_master_i : in t_wishbone_master_in; r_master_o : out t_wishbone_master_out; -- Master writer port w_master_i : in t_wishbone_master_in; w_master_o : out t_wishbone_master_out; -- Pulsed high completion signal interrupt_o : out std_logic ); end component; -- If you reset one clock domain, you must reset BOTH! -- Release of the reset lines may be arbitrarily out-of-phase component xwb_clock_crossing is generic( g_size : natural := 16); port( -- Slave control port slave_clk_i : in std_logic; slave_rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; -- Master reader port master_clk_i : in std_logic; master_rst_n_i : in std_logic; master_i : in t_wishbone_master_in; master_o : out t_wishbone_master_out); end component; -- g_size is in words function f_xwb_dpram(g_size : natural) return t_sdb_device; component xwb_dpram generic ( g_size : natural; g_init_file : string := ""; g_must_have_init_file : boolean := true; g_slave1_interface_mode : t_wishbone_interface_mode := CLASSIC; g_slave2_interface_mode : t_wishbone_interface_mode := CLASSIC; g_slave1_granularity : t_wishbone_address_granularity := WORD; g_slave2_granularity : t_wishbone_address_granularity := WORD); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave1_i : in t_wishbone_slave_in; slave1_o : out t_wishbone_slave_out; slave2_i : in t_wishbone_slave_in; slave2_o : out t_wishbone_slave_out); end component; -- Just like the DMA controller, but constantly at address 0 component xwb_streamer is generic( -- Value 0 cannot stream -- Value 1 only slaves with async ACK can stream -- Value 2 only slaves with combined latency = 2 can stream -- Value 3 only slaves with combined latency = 6 can stream -- Value 4 only slaves with combined latency = 14 can stream -- .... logRingLen : integer := 4 ); port( -- Common wishbone signals clk_i : in std_logic; rst_n_i : in std_logic; -- Master reader port r_master_i : in t_wishbone_master_in; r_master_o : out t_wishbone_master_out; -- Master writer port w_master_i : in t_wishbone_master_in; w_master_o : out t_wishbone_master_out); end component; constant c_xwb_gpio_port_sdb : t_sdb_device := ( abi_class => x"0000", -- undocumented device abi_ver_major => x"01", abi_ver_minor => x"01", wbd_endian => c_sdb_endian_big, wbd_width => x"7", -- 8/16/32-bit port granularity sdb_component => ( addr_first => x"0000000000000000", addr_last => x"00000000000000ff", product => ( vendor_id => x"000000000000CE42", -- CERN device_id => x"441c5143", version => x"00000001", date => x"20121129", name => "WB-GPIO-Port "))); component wb_gpio_port generic ( g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD; g_num_pins : natural range 1 to 256; g_with_builtin_tristates : boolean := false); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; wb_sel_i : in std_logic_vector(c_wishbone_data_width/8-1 downto 0); wb_cyc_i : in std_logic; wb_stb_i : in std_logic; wb_we_i : in std_logic; wb_adr_i : in std_logic_vector(7 downto 0); wb_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0); wb_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0); wb_ack_o : out std_logic; wb_stall_o : out std_logic; gpio_b : inout std_logic_vector(g_num_pins-1 downto 0); gpio_out_o : out std_logic_vector(g_num_pins-1 downto 0); gpio_in_i : in std_logic_vector(g_num_pins-1 downto 0); gpio_oen_o : out std_logic_vector(g_num_pins-1 downto 0)); end component; component xwb_gpio_port generic ( g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD; g_num_pins : natural range 1 to 256; g_with_builtin_tristates : boolean); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; desc_o : out t_wishbone_device_descriptor; gpio_b : inout std_logic_vector(g_num_pins-1 downto 0); gpio_out_o : out std_logic_vector(g_num_pins-1 downto 0); gpio_in_i : in std_logic_vector(g_num_pins-1 downto 0); gpio_oen_o : out std_logic_vector(g_num_pins-1 downto 0)); end component; constant c_xwb_i2c_master_sdb : t_sdb_device := ( abi_class => x"0000", -- undocumented device abi_ver_major => x"01", abi_ver_minor => x"01", wbd_endian => c_sdb_endian_big, wbd_width => x"7", -- 8/16/32-bit port granularity sdb_component => ( addr_first => x"0000000000000000", addr_last => x"00000000000000ff", product => ( vendor_id => x"000000000000CE42", -- CERN device_id => x"123c5443", version => x"00000001", date => x"20121129", name => "WB-I2C-Master "))); component wb_i2c_master generic ( g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; wb_adr_i : in std_logic_vector(4 downto 0); wb_dat_i : in std_logic_vector(31 downto 0); wb_dat_o : out std_logic_vector(31 downto 0); wb_sel_i : in std_logic_vector(3 downto 0); wb_stb_i : in std_logic; wb_cyc_i : in std_logic; wb_we_i : in std_logic; wb_ack_o : out std_logic; wb_int_o : out std_logic; wb_stall_o : out std_logic; scl_pad_i : in std_logic; scl_pad_o : out std_logic; scl_padoen_o : out std_logic; sda_pad_i : in std_logic; sda_pad_o : out std_logic; sda_padoen_o : out std_logic); end component; component xwb_i2c_master generic ( g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; desc_o : out t_wishbone_device_descriptor; scl_pad_i : in std_logic; scl_pad_o : out std_logic; scl_padoen_o : out std_logic; sda_pad_i : in std_logic; sda_pad_o : out std_logic; sda_padoen_o : out std_logic); end component; component xwb_lm32 generic ( g_profile : string; g_reset_vector : std_logic_vector(31 downto 0) := x"00000000"); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; irq_i : in std_logic_vector(31 downto 0); dwb_o : out t_wishbone_master_out; dwb_i : in t_wishbone_master_in; iwb_o : out t_wishbone_master_out; iwb_i : in t_wishbone_master_in); end component; constant c_xwb_onewire_master_sdb : t_sdb_device := ( abi_class => x"0000", -- undocumented device abi_ver_major => x"01", abi_ver_minor => x"01", wbd_endian => c_sdb_endian_big, wbd_width => x"7", -- 8/16/32-bit port granularity sdb_component => ( addr_first => x"0000000000000000", addr_last => x"00000000000000ff", product => ( vendor_id => x"000000000000CE42", -- CERN device_id => x"779c5443", version => x"00000001", date => x"20121129", name => "WB-OneWire-Master "))); component wb_onewire_master generic ( g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD; g_num_ports : integer; g_ow_btp_normal : string := "1.0"; g_ow_btp_overdrive : string := "5.0"); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; wb_cyc_i : in std_logic; wb_sel_i : in std_logic_vector(c_wishbone_data_width/8-1 downto 0); wb_stb_i : in std_logic; wb_we_i : in std_logic; wb_adr_i : in std_logic_vector(2 downto 0); wb_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0); wb_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0); wb_ack_o : out std_logic; wb_int_o : out std_logic; wb_stall_o : out std_logic; owr_pwren_o : out std_logic_vector(g_num_ports -1 downto 0); owr_en_o : out std_logic_vector(g_num_ports -1 downto 0); owr_i : in std_logic_vector(g_num_ports -1 downto 0)); end component; component xwb_onewire_master generic ( g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD; g_num_ports : integer; g_ow_btp_normal : string := "5.0"; g_ow_btp_overdrive : string := "1.0"); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; desc_o : out t_wishbone_device_descriptor; owr_pwren_o : out std_logic_vector(g_num_ports -1 downto 0); owr_en_o : out std_logic_vector(g_num_ports -1 downto 0); owr_i : in std_logic_vector(g_num_ports -1 downto 0)); end component; component wb_spi generic ( g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; wb_adr_i : in std_logic_vector(4 downto 0); wb_dat_i : in std_logic_vector(31 downto 0); wb_dat_o : out std_logic_vector(31 downto 0); wb_sel_i : in std_logic_vector(3 downto 0); wb_stb_i : in std_logic; wb_cyc_i : in std_logic; wb_we_i : in std_logic; wb_ack_o : out std_logic; wb_err_o : out std_logic; wb_int_o : out std_logic; wb_stall_o : out std_logic; pad_cs_o : out std_logic_vector(7 downto 0); pad_sclk_o : out std_logic; pad_mosi_o : out std_logic; pad_miso_i : in std_logic); end component; component xwb_spi generic ( g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; desc_o : out t_wishbone_device_descriptor; pad_cs_o : out std_logic_vector(7 downto 0); pad_sclk_o : out std_logic; pad_mosi_o : out std_logic; pad_miso_i : in std_logic); end component; component wb_simple_uart generic ( g_with_virtual_uart : boolean := false; g_with_physical_uart : boolean := true; g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; wb_adr_i : in std_logic_vector(4 downto 0); wb_dat_i : in std_logic_vector(31 downto 0); wb_dat_o : out std_logic_vector(31 downto 0); wb_cyc_i : in std_logic; wb_sel_i : in std_logic_vector(3 downto 0); wb_stb_i : in std_logic; wb_we_i : in std_logic; wb_ack_o : out std_logic; wb_stall_o : out std_logic; uart_rxd_i : in std_logic := '1'; uart_txd_o : out std_logic); end component; component xwb_simple_uart generic ( g_with_virtual_uart : boolean := false; g_with_physical_uart : boolean := true; g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; desc_o : out t_wishbone_device_descriptor; uart_rxd_i : in std_logic := '1'; uart_txd_o : out std_logic); end component; component wb_simple_pwm generic ( g_num_channels : integer range 1 to 8; g_default_period : integer range 0 to 255 := 0; g_default_presc : integer range 0 to 255 := 0; g_default_val : integer range 0 to 255 := 0; g_interface_mode : t_wishbone_interface_mode := PIPELINED; g_address_granularity : t_wishbone_address_granularity := BYTE); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; wb_adr_i : in std_logic_vector(5 downto 0); wb_dat_i : in std_logic_vector(31 downto 0); wb_dat_o : out std_logic_vector(31 downto 0); wb_cyc_i : in std_logic; wb_sel_i : in std_logic_vector(3 downto 0); wb_stb_i : in std_logic; wb_we_i : in std_logic; wb_ack_o : out std_logic; wb_stall_o : out std_logic; pwm_o : out std_logic_vector(g_num_channels-1 downto 0)); end component; component xwb_simple_pwm generic ( g_num_channels : integer range 1 to 8; g_default_period : integer range 0 to 255 := 0; g_default_presc : integer range 0 to 255 := 0; g_default_val : integer range 0 to 255 := 0; g_interface_mode : t_wishbone_interface_mode := PIPELINED; g_address_granularity : t_wishbone_address_granularity := BYTE); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; pwm_o : out std_logic_vector(g_num_channels-1 downto 0)); end component; component wb_tics generic ( g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD; g_period : integer); port ( rst_n_i : in std_logic; clk_sys_i : in std_logic; wb_adr_i : in std_logic_vector(3 downto 0); wb_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0); wb_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0); wb_cyc_i : in std_logic; wb_sel_i : in std_logic_vector(c_wishbone_data_width/8-1 downto 0); wb_stb_i : in std_logic; wb_we_i : in std_logic; wb_ack_o : out std_logic; wb_stall_o : out std_logic); end component; component xwb_tics generic ( g_interface_mode : t_wishbone_interface_mode := CLASSIC; g_address_granularity : t_wishbone_address_granularity := WORD; g_period : integer); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; desc_o : out t_wishbone_device_descriptor); end component; component wb_vic generic ( g_interface_mode : t_wishbone_interface_mode; g_address_granularity : t_wishbone_address_granularity; g_num_interrupts : natural; g_init_vectors : t_wishbone_address_array := cc_dummy_address_array ); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; wb_adr_i : in std_logic_vector(c_wishbone_address_width-1 downto 0); wb_dat_i : in std_logic_vector(c_wishbone_data_width-1 downto 0); wb_dat_o : out std_logic_vector(c_wishbone_data_width-1 downto 0); wb_cyc_i : in std_logic; wb_sel_i : in std_logic_vector(c_wishbone_data_width/8-1 downto 0); wb_stb_i : in std_logic; wb_we_i : in std_logic; wb_ack_o : out std_logic; wb_stall_o : out std_logic; irqs_i : in std_logic_vector(g_num_interrupts-1 downto 0); irq_master_o : out std_logic); end component; constant c_xwb_vic_sdb : t_sdb_device := ( abi_class => x"0000", -- undocumented device abi_ver_major => x"01", abi_ver_minor => x"01", wbd_endian => c_sdb_endian_big, wbd_width => x"7", -- 8/16/32-bit port granularity sdb_component => ( addr_first => x"0000000000000000", addr_last => x"00000000000000ff", product => ( vendor_id => x"000000000000CE42", -- CERN device_id => x"00000013", version => x"00000002", date => x"20120113", name => "WB-VIC-Int.Control "))); component xwb_vic generic ( g_interface_mode : t_wishbone_interface_mode; g_address_granularity : t_wishbone_address_granularity; g_num_interrupts : natural; g_init_vectors : t_wishbone_address_array := cc_dummy_address_array); port ( clk_sys_i : in std_logic; rst_n_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; irqs_i : in std_logic_vector(g_num_interrupts-1 downto 0); irq_master_o : out std_logic); end component; constant c_wb_serial_lcd_sdb : t_sdb_device := ( abi_class => x"0000", -- undocumented device abi_ver_major => x"01", abi_ver_minor => x"00", wbd_endian => c_sdb_endian_big, wbd_width => x"7", -- 8/16/32-bit port granularity sdb_component => ( addr_first => x"0000000000000000", addr_last => x"00000000000000ff", product => ( vendor_id => x"0000000000000651", -- GSI device_id => x"b77a5045", version => x"00000001", date => x"20130222", name => "SERIAL-LCD-DISPLAY "))); component wb_serial_lcd generic( g_cols : natural := 40; g_rows : natural := 24; g_hold : natural := 15; -- How many times to repeat a line (for sharpness) g_wait : natural := 1); -- How many cycles per state change (for 20MHz timing) port( slave_clk_i : in std_logic; slave_rstn_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; di_clk_i : in std_logic; di_scp_o : out std_logic; di_lp_o : out std_logic; di_flm_o : out std_logic; di_dat_o : out std_logic); end component; function f_wb_spi_flash_sdb(g_bits : natural) return t_sdb_device; component wb_spi_flash is generic( g_port_width : natural := 1; -- 1 for EPCS, 4 for EPCQ g_addr_width : natural := 24; -- log of memory (24=16MB) g_idle_time : natural := 3; g_dummy_time : natural := 8; g_config : boolean := false; -- leave these at defaults if you have: -- a) slow clock, b) valid constraints, or c) registered in/outputs g_input_latch_edge : std_logic := '1'; -- rising g_output_latch_edge : std_logic := '0'; -- falling g_input_to_output_cycles : natural := 1); -- between 1 and 8 port( clk_i : in std_logic; rstn_i : in std_logic; slave_i : in t_wishbone_slave_in; slave_o : out t_wishbone_slave_out; -- For properly constrained designs, set clk_out_i = clk_in_i. clk_out_i : in std_logic; clk_in_i : in std_logic; ncs_o : out std_logic; oe_o : out std_logic_vector(g_port_width-1 downto 0); asdi_o : out std_logic_vector(g_port_width-1 downto 0); data_i : in std_logic_vector(g_port_width-1 downto 0); external_request_i : in std_logic; -- JTAG wants to use SPI? external_granted_o : out std_logic); end component; end wishbone_pkg; package body wishbone_pkg is function f_ceil_log2(x : natural) return natural is begin if x <= 1 then return 0; else return f_ceil_log2((x+1)/2) +1; end if; end f_ceil_log2; function f_sdb_embed_product(product : t_sdb_product) return std_logic_vector -- (319 downto 8) is variable result : std_logic_vector(319 downto 8); begin result(319 downto 256) := product.vendor_id; result(255 downto 224) := product.device_id; result(223 downto 192) := product.version; result(191 downto 160) := product.date; for i in 0 to 18 loop -- string to ascii result(159-i*8 downto 152-i*8) := std_logic_vector(to_unsigned(character'pos(product.name(i+1)), 8)); end loop; return result; end; function f_sdb_extract_product(sdb_record : std_logic_vector(319 downto 8)) return t_sdb_product is variable result : t_sdb_product; begin result.vendor_id := sdb_record(319 downto 256); result.device_id := sdb_record(255 downto 224); result.version := sdb_record(223 downto 192); result.date := sdb_record(191 downto 160); for i in 0 to 18 loop -- ascii to string result.name(i+1) := character'val(to_integer(unsigned(sdb_record(159-i*8 downto 152-i*8)))); end loop; return result; end; function f_sdb_embed_component(sdb_component : t_sdb_component; address : t_wishbone_address) return std_logic_vector -- (447 downto 8) is variable result : std_logic_vector(447 downto 8); constant first : unsigned(63 downto 0) := unsigned(sdb_component.addr_first); constant last : unsigned(63 downto 0) := unsigned(sdb_component.addr_last); variable base : unsigned(63 downto 0) := (others => '0'); begin base(address'length-1 downto 0) := unsigned(address); result(447 downto 384) := std_logic_vector(base); result(383 downto 320) := std_logic_vector(base + last - first); result(319 downto 8) := f_sdb_embed_product(sdb_component.product); return result; end; function f_sdb_extract_component(sdb_record : std_logic_vector(447 downto 8)) return t_sdb_component is variable result : t_sdb_component; begin result.addr_first := sdb_record(447 downto 384); result.addr_last := sdb_record(383 downto 320); result.product := f_sdb_extract_product(sdb_record(319 downto 8)); return result; end; function f_sdb_embed_device(device : t_sdb_device; address : t_wishbone_address) return t_sdb_record is variable result : t_sdb_record; begin result(511 downto 496) := device.abi_class; result(495 downto 488) := device.abi_ver_major; result(487 downto 480) := device.abi_ver_minor; result(479 downto 456) := (others => '0'); result(455) := device.wbd_endian; result(454 downto 452) := (others => '0'); result(451 downto 448) := device.wbd_width; result(447 downto 8) := f_sdb_embed_component(device.sdb_component, address); result(7 downto 0) := x"01"; -- device return result; end; function f_sdb_extract_device(sdb_record : t_sdb_record) return t_sdb_device is variable result : t_sdb_device; begin result.abi_class := sdb_record(511 downto 496); result.abi_ver_major := sdb_record(495 downto 488); result.abi_ver_minor := sdb_record(487 downto 480); result.wbd_endian := sdb_record(452); result.wbd_width := sdb_record(451 downto 448); result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8)); assert sdb_record(7 downto 0) = x"01" report "Cannot extract t_sdb_device from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "." severity failure; return result; end; function f_sdb_embed_integration(integr : t_sdb_integration) return t_sdb_record is variable result : t_sdb_record; begin result(511 downto 320) := (others => '0'); result(319 downto 8) := f_sdb_embed_product(integr.product); result(7 downto 0) := x"80"; -- integration record return result; end f_sdb_embed_integration; function f_sdb_extract_integration(sdb_record : t_sdb_record) return t_sdb_integration is variable result : t_sdb_integration; begin result.product := f_sdb_extract_product(sdb_record(319 downto 8)); assert sdb_record(7 downto 0) = x"80" report "Cannot extract t_sdb_integration from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "." severity Failure; return result; end f_sdb_extract_integration; function f_sdb_embed_repo_url(url : t_sdb_repo_url) return t_sdb_record is variable result : t_sdb_record; begin result(511 downto 8) := f_string2svl(url.repo_url); result( 7 downto 0) := x"81"; -- repo_url record return result; end; function f_sdb_extract_repo_url(sdb_record : t_sdb_record) return t_sdb_repo_url is variable result : t_sdb_repo_url; begin result.repo_url := f_slv2string(sdb_record(511 downto 8)); assert sdb_record(7 downto 0) = x"81" report "Cannot extract t_sdb_repo_url from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "." severity Failure; return result; end; function f_sdb_embed_synthesis(syn : t_sdb_synthesis) return t_sdb_record is variable result : t_sdb_record; begin result(511 downto 384) := f_string2svl(syn.syn_module_name); result(383 downto 256) := f_string2bits(syn.syn_commit_id); result(255 downto 192) := f_string2svl(syn.syn_tool_name); result(191 downto 160) := syn.syn_tool_version; result(159 downto 128) := syn.syn_date; result(127 downto 8) := f_string2svl(syn.syn_username); result( 7 downto 0) := x"82"; -- synthesis record return result; end; function f_sdb_extract_synthesis(sdb_record : t_sdb_record) return t_sdb_synthesis is variable result : t_sdb_synthesis; begin result.syn_module_name := f_slv2string(sdb_record(511 downto 384)); result.syn_commit_id := f_bits2string(sdb_record(383 downto 256)); result.syn_tool_name := f_slv2string(sdb_record(255 downto 192)); result.syn_tool_version := sdb_record(191 downto 160); result.syn_date := sdb_record(159 downto 128); result.syn_username := f_slv2string(sdb_record(127 downto 8)); assert sdb_record(7 downto 0) = x"82" report "Cannot extract t_sdb_repo_url from record of type " & Integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "." severity Failure; return result; end; function f_sdb_embed_bridge(bridge : t_sdb_bridge; address : t_wishbone_address) return t_sdb_record is variable result : t_sdb_record; constant first : unsigned(63 downto 0) := unsigned(bridge.sdb_component.addr_first); constant child : unsigned(63 downto 0) := unsigned(bridge.sdb_child); variable base : unsigned(63 downto 0) := (others => '0'); begin base(address'length-1 downto 0) := unsigned(address); result(511 downto 448) := std_logic_vector(base + child - first); result(447 downto 8) := f_sdb_embed_component(bridge.sdb_component, address); result(7 downto 0) := x"02"; -- bridge return result; end; function f_sdb_extract_bridge(sdb_record : t_sdb_record) return t_sdb_bridge is variable result : t_sdb_bridge; begin result.sdb_child := sdb_record(511 downto 448); result.sdb_component := f_sdb_extract_component(sdb_record(447 downto 8)); assert sdb_record(7 downto 0) = x"02" report "Cannot extract t_sdb_bridge from record of type " & integer'image(to_integer(unsigned(sdb_record(7 downto 0)))) & "." severity failure; return result; end; function f_xwb_bridge_manual_sdb( g_size : t_wishbone_address; g_sdb_addr : t_wishbone_address) return t_sdb_bridge is variable result : t_sdb_bridge; begin result.sdb_child := (others => '0'); result.sdb_child(c_wishbone_address_width-1 downto 0) := g_sdb_addr; result.sdb_component.addr_first := (others => '0'); result.sdb_component.addr_last := (others => '0'); result.sdb_component.addr_last(c_wishbone_address_width-1 downto 0) := g_size; result.sdb_component.product.vendor_id := x"0000000000000651"; -- GSI result.sdb_component.product.device_id := x"eef0b198"; result.sdb_component.product.version := x"00000001"; result.sdb_component.product.date := x"20120511"; result.sdb_component.product.name := "WB4-Bridge-GSI "; return result; end f_xwb_bridge_manual_sdb; function f_xwb_bridge_layout_sdb( g_wraparound : boolean := true; g_layout : t_sdb_record_array; g_sdb_addr : t_wishbone_address) return t_sdb_bridge is alias c_layout : t_sdb_record_array(g_layout'length-1 downto 0) is g_layout; -- How much space does the ROM need? constant c_used_entries : natural := c_layout'length + 1; constant c_rom_entries : natural := 2**f_ceil_log2(c_used_entries); -- next power of 2 constant c_sdb_bytes : natural := c_sdb_device_length / 8; constant c_rom_bytes : natural := c_rom_entries * c_sdb_bytes; variable result : unsigned(63 downto 0); variable sdb_component : t_sdb_component; begin if not g_wraparound then result := (others => '0'); for i in 0 to c_wishbone_address_width-1 loop result(i) := '1'; end loop; else -- The ROM will be an addressed slave as well result := (others => '0'); result(c_wishbone_address_width-1 downto 0) := unsigned(g_sdb_addr); result := result + to_unsigned(c_rom_bytes, 64) - 1; for i in c_layout'range loop sdb_component := f_sdb_extract_component(c_layout(i)(447 downto 8)); if unsigned(sdb_component.addr_last) > result then result := unsigned(sdb_component.addr_last); end if; end loop; -- round result up to a power of two -1 for i in 62 downto 0 loop result(i) := result(i) or result(i+1); end loop; end if; return f_xwb_bridge_manual_sdb(std_logic_vector(result(c_wishbone_address_width-1 downto 0)), g_sdb_addr); end f_xwb_bridge_layout_sdb; function f_xwb_dpram(g_size : natural) return t_sdb_device is variable result : t_sdb_device; begin result.abi_class := x"0001"; -- RAM device result.abi_ver_major := x"01"; result.abi_ver_minor := x"00"; result.wbd_width := x"7"; -- 32/16/8-bit supported result.wbd_endian := c_sdb_endian_big; result.sdb_component.addr_first := (others => '0'); result.sdb_component.addr_last := std_logic_vector(to_unsigned(g_size*4-1, 64)); result.sdb_component.product.vendor_id := x"000000000000CE42"; -- CERN result.sdb_component.product.device_id := x"66cfeb52"; result.sdb_component.product.version := x"00000001"; result.sdb_component.product.date := x"20120305"; result.sdb_component.product.name := "WB4-BlockRAM "; return result; end f_xwb_dpram; function f_bits2string(s : std_logic_vector) return string is --- extend length to full hex nibble variable result : string((s'length+7)/4 downto 1); variable s_norm : std_logic_vector(result'length*4-1 downto 0) := (others=>'0'); variable cut : natural; variable nibble: std_logic_vector(3 downto 0); begin s_norm(s'length-1 downto 0) := s; for i in result'length-1 downto 0 loop nibble := s_norm(i*4+3 downto i*4); case nibble is when "0000" => result(i+1) := '0'; when "0001" => result(i+1) := '1'; when "0010" => result(i+1) := '2'; when "0011" => result(i+1) := '3'; when "0100" => result(i+1) := '4'; when "0101" => result(i+1) := '5'; when "0110" => result(i+1) := '6'; when "0111" => result(i+1) := '7'; when "1000" => result(i+1) := '8'; when "1001" => result(i+1) := '9'; when "1010" => result(i+1) := 'a'; when "1011" => result(i+1) := 'b'; when "1100" => result(i+1) := 'c'; when "1101" => result(i+1) := 'd'; when "1110" => result(i+1) := 'e'; when "1111" => result(i+1) := 'f'; when others => result(i+1) := 'X'; end case; end loop; -- trim leading 0s strip : for i in result'length downto 1 loop cut := i; exit strip when result(i) /= '0'; end loop; return "0x" & result(cut downto 1); end f_bits2string; -- Converts string (hex number, without leading 0x) to std_logic_vector function f_string2bits(s : string) return std_logic_vector is variable slv : std_logic_vector(s'length*4-1 downto 0); variable nibble : std_logic_vector(3 downto 0); begin for i in 0 to s'length-1 loop case s(i+1) is when '0' => nibble := X"0"; when '1' => nibble := X"1"; when '2' => nibble := X"2"; when '3' => nibble := X"3"; when '4' => nibble := X"4"; when '5' => nibble := X"5"; when '6' => nibble := X"6"; when '7' => nibble := X"7"; when '8' => nibble := X"8"; when '9' => nibble := X"9"; when 'a' => nibble := X"A"; when 'A' => nibble := X"A"; when 'b' => nibble := X"B"; when 'B' => nibble := X"B"; when 'c' => nibble := X"C"; when 'C' => nibble := X"C"; when 'd' => nibble := X"D"; when 'D' => nibble := X"D"; when 'e' => nibble := X"E"; when 'E' => nibble := X"E"; when 'f' => nibble := X"F"; when 'F' => nibble := X"F"; when others => nibble := "XXXX"; end case; slv(((i+1)*4)-1 downto i*4) := nibble; end loop; return slv; end f_string2bits; -- Converts string to ascii (std_logic_vector) function f_string2svl (s : string) return std_logic_vector is variable slv : std_logic_vector((s'length * 8) - 1 downto 0); begin for i in 0 to s'length-1 loop slv(slv'high-i*8 downto (slv'high-7)-i*8) := std_logic_vector(to_unsigned(character'pos(s(i+1)), 8)); end loop; return slv; end f_string2svl; -- Converts ascii (std_logic_vector) to string function f_slv2string (slv : std_logic_vector) return string is variable s : string(1 to slv'length/8); begin for i in 0 to (slv'length/8)-1 loop s(i+1) := character'val(to_integer(unsigned(slv(slv'high-i*8 downto (slv'high-7)-i*8)))); end loop; return s; end f_slv2string; function f_wb_spi_flash_sdb(g_bits : natural) return t_sdb_device is variable result : t_sdb_device := ( abi_class => x"0000", -- undocumented device abi_ver_major => x"01", abi_ver_minor => x"01", wbd_endian => c_sdb_endian_big, wbd_width => x"7", -- 8/16/32-bit port granularity sdb_component => ( addr_first => x"0000000000000000", addr_last => x"0000000000ffffff", product => ( vendor_id => x"0000000000000651", -- GSI device_id => x"5cf12a1c", version => x"00000001", date => x"20130415", name => "SPI-FLASH-16M-MMAP "))); begin result.sdb_component.addr_last := std_logic_vector(to_unsigned(2**g_bits-1, 64)); return result; end f_wb_spi_flash_sdb; end wishbone_pkg;