
VBCP to Wishbone bridge

November 15, 2013

Theodor-Adrian Stana (CERN/BE-CO-HT)

Revision history

Date Version Change

26-06-2013 0.01 First draft
14-08-2013 0.02 Second draft
22-10-2013 0.03 Added Access commands section, updated

document according to changes in protocol
29-10-2013 0.04 Changed PDF link colors

Contents

Contents

1 Introduction 1

2 Instantiation 1

3 Testing the vbcp wb module 2

4 The VME Board Control Protocol 3
4.1 Protocol details . 3
4.2 Access commands . 3

5 Implementation 5

6 Synthesis results 8

i

List of Tables

List of Figures

1 Typical system for the vbcp wb module 1
2 VBCP port external connections 1
3 SysMon write operation . 4
4 SysMon read operation . 4
5 SysMon write using writemregs 4
6 Main FSM of vbcp wb module 5
7 FSM states when the SysMon writes to the vbcp wb 7
8 FSM states when the SysMon reads from the vbcp wb 7

List of Tables

1 Ports of vbcp wb module . 2
2 The readreg and writereg commands 5
3 States of vbcp wb FSM . 6
4 Synthesis results . 8

List of Abbreviations

FSM Finite-State Machine
VBCP Inter-Integrated Circuit (bus)
SysMon ELMA crate System Monitor board
VME VERSAmodule Eurocard

ii

2 Instantiation

1 Introduction

This document describes the vbcp wb module, a VME Board Control Proto-
col (VBCP) to Wishbone bridge HDL core for VME64x crates from ELMA.
These crates offer the possibility of accessing boards in VME slots via either
VME, or VBCP. Boards not using the VME lines on a slot can implement
the vbcp wb module on an FPGA; implements an VBCP slave and translates
VBCP accesses into Wishbone [1] accesses to a Wishbone slave device.

A typical system where the vbcp wb module is employed is shown in
Figure 1. ELMA VME crates contain a SysMon (system monitor) board [2],
that is mainly used for monitoring VME voltages and controlling the fans
of the VME crate. The SysMon can be connected to via either a serial
connection or Telnet. Then, sending specific commands (see Section 3) via
one of the two are translated by the SysMon into VBCP accesses following
the protocol described in Section 4.

V
M

E
 P

1

SERCLK

SysMon

VME board

SCL

SDA

FPGA

SERDAT
vbcp_wb

Wishbone
memory-mapped

peripherals

Figure 1: Typical system for the vbcp wb module

2 Instantiation

The ports of the vbcp wb module are shown in Table 1. The I2C signals
should be connected to tri-state ports, as shown in Figure 2; Wishbone
slaves should be connected to the Wishbone master interface ports, prefixed
with wbm.

scl_o

scl_i

scl_en_o

SCL sda_o

sda_i

sda_en_o

SDA

Figure 2: VBCP port external connections

1

3 Testing the vbcp wb module

Table 1: Ports of vbcp wb module
Port Size Description

clk i 1 Clock input
rst n i 1 Active-low reset input
sda en o 1 SDA line output tri-state enable
sda i 1 SDA line input
sda o 1 SDA line output
scl en o 1 SCL line tri-state enable
scl i 1 SCL line input
scl o 1 SCL line output
i2c addr i 7 VBCP slave address on ELMA VBCP bus
tip o 1 Transfer In Progress

’1’ – I2C address sent by SysMon matches that
of the VBCP slave
’0’ – after transfer has completed and VBCP
slave is idle

err o 1 Error bit, high for one clk i cycle when the
Wishbone address the SysMon tries to access
is invalid

wbm stb o 1 Wishbone data strobe output
wbm cyc o 1 Wishbone valid cycle output
wbm sel o 4 Wishbone byte select output
wbm we o 1 Wishbone write enable output
wbm dat i 32 Wishbone data input (to master)
wbm dat o 32 Wishbone data output (from master)
wbm adr o 32 Wishbone address output
wbm ack i 1 Wishbone acknowledge signal input
wbm rty i 1 Wishbone retry signal input
wbm err i 1 Wishbone error signal input

3 Testing the vbcp wb module

After proper synthesis and download to the FPGA, a Telnet or serial connec-
tion should be made to the SysMon board. Commands can then be sent to
the boards via the SysMon. The two commands relevant for this basic test
are readreg and writereg. These and other commands relevant for accessing
board registers are outlined in Section 4.2.

The example below shows how to connect to an ELMA crate at IP
address 1.2.3.4, obtaining the value of a register at address 0x10 in a board
in VME slot 2, writing the hex value 0x1234 to the same register and reading
it back to check for proper modification.

2

4 The VME Board Control Protocol

$ telnet 1.2.3.4

Trying 1.2.3.4...

Connected to 1.2.3.4.

Escape character is ’^]’.

login:user

password:**********

%>readreg 2 10

Read Data: 00ABCDEF

%>writereg 2 10 1234

Done!

%>readreg 2 10

Read Data: 00001234

4 The VME Board Control Protocol

4.1 Protocol details

The VME backplane provides two serial lines (SERCLK and SERDAT) on
the P1 connector. These lines can be used to access boards placed in a VME
slots to control them, in cases where the VME interface is not implemented.

The VME Board Control Protocol (VBCP) [3] has been defined for such
purposes. Using I2C as a low-level protocol, the bytes of a register can be
read from or written to a VME board.

Figure 3 shows a write operation from the SysMon to a VME board. The
process starts with the control byte, containing the board’s I2C slave address
and the read/write bit cleared, indicating an I2C write. After the slave’s
ACK, the following two bytes send the 12-bit register address in little-endian
order (most significant byte first). After the address has been acknowledged,
the following four I2C transfers are used to transmit the 32-bit data to be
written to the board register. Data transmission occurs in big-endian order
(least significant byte first).

A read transfer (Figure 4) from a VME board is similar to the write
transfer. The differences lie in the retransmission of the control byte after
the register address, this time with the read/write bit set, to indicate an I2C
read. Following the ACK from the slave, the transfer direction changes and
the SysMon will read the four data bytes sent by the VME board. As with
the write transfer, the data bytes are sent by the VME board in big-endian
order.

4.2 Access commands

In order to send data to a VME board using VBCP, a user connects to the
SysMon via Telnet and sends commands which the SysMon translates into

3

4 The VME Board Control Protocol

Control byte Address 1 Address 0

Data 0

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

0

A
C
K

X X X X

A
C
K

A
C
K

A
C
K

A
C
K

A
C
K

A
C
K

P

Bus
activity

S
T
A

S
T
O

Data 1 Data 2 Data 3

A
C
K

P

S
T
O

...

Data

Figure 3: SysMon write operation

Data 0

A
C
K

A
C
K

A
C
K

A
C
K

A
C
K

P

S
T
O

Data 1 Data 2 Data 3

Control byte Address 1 Address 0

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

0

A
C
K

X X X X

A
C
K

Bus
activity

S
T
A

Control byte

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

1

S
T
A

A
C
K

A
C
K

P

S
T
O

Data

A
C
K

...

Figure 4: SysMon read operation

I2C accesses as outlined in the previous section. The commands supported
by the vbcp wb module are shown in Table 2.

One noteworthy subject here is the writemregs command. This com-
mand allows writing more up to eight words to the same Wishbone register.
It is useful when one wants to use a Wishbone register as a proxy for access-
ing an on-board peripheral where large amounts of data are to be written.
An external memory is a good example of such a peripheral.

In principle, the writemregs is a writereg with multiple data words packed
together, as outlined in Figure 5. In this figure, each data word is split in

I2C
address

Wishbone
address

Data word 0 Data word 7...S P

7 bits 16 bits 32 bits 32 bits

Figure 5: SysMon write using writemregs

4

5 Implementation

Table 2: The readreg and writereg commands
Command Description

writereg slot addr val Writes the hex value val to hex address addr
of board in slot number slot

writemregs slot addr v1 .. v8 This command is similar to the writereg com-
mand, but it allows writing up to eight dif-
ferent values to the same Wishbone register.
The values are given in hexadecimal format
and are separate by spaces

readreg slot addr Returns the value of register at hex address
addr of board in slot number slot

four bytes as outlined in Figure 3, with an ACK sent by the VME board
after every byte.

As Figure 5 shows, the data words are sent in little-endian order, word
0 is sent first, followed by word 1 and so forth, until word 7.

5 Implementation

In order to perform low-level I2C transfers, the i2c slave module is instan-
tiated and used within the vbcp wb module. The outputs of the i2c slave
module are used as controls for an eight-state finite state machine (FSM), a
simplified version of which is shown in Figure 6. Table 3 also lists the states
of the state machine.

IDLE SYSMON_WB_ADR SIM_WB_TRANSFER

ST_OPOPER

SYSMON_WR

SYSMON_WR_WB SYSMON_RD

SYSMON_RD_WB

done='0'

done='1'

adr_byte_cnt < 1

adr_byte_cnt = 1

wb_err = '1'
wb_ack = '1'

op = start_op op /= start_op

byte_cnt < 3

byte_cnt < 3

byte_cnt = 3

I2C stop condition
or wb_err

wb_ack = '1'

byte_cnt = 3

IDLE

I2C stop condition
or wb_err

wb_ack = '1'

Figure 6: Main FSM of vbcp wb module

5

5 Implementation

Table 3: States of vbcp wb FSM
State Description

IDLE Wait for the i2c slave module to receive the VBCP
address and go to WB ADR. The starting value at
the op o output of the i2c slave module is stored for
checking in OPER

WB ADR Shift in the two address bytes sent via VBCP and go
to SIM WB TRANSF

SIM WB TRANSF Start a Wishbone read transfer from address received
in previous state and go to OPER if Wishbone ad-
dress exists (Wishbone ack received), or IDLE oth-
erwise (Wishbone err received)

OPER Check the op o output of the i2c slave module.
If different from the value at the start, go to
SYSMON RD WB state (SysMon is reading from
vbcp wb), otherwise continue shifting in bytes (Sys-
Mon writing to vbcp wb)

SYSMON WR Continue reading up to four bytes sent by the SysMon
and go to SYSMON WR WB

SYSMON WR WB Perform a Wishbone write transfer to the register
with the address obtained in WB ADR

SYSMON RD WB Perform a Wishbone read transfer from the address
obtained in WB ADR and go to SYSMON RD

SYSMON RD Shift out the four bytes of the Wishbone register when
the i2c slave module successfully finishes a write

When the i2c slave module finishes a transfer (signaled by a done p o
pulse), the status is checked and if it is as expected (e.g., address good
while in the IDLE state), the FSM advances to the next state. Where the
SysMon appears in the state names, it indicates what the SysMon action
is. For example, if the state of the FSM is SYSMON WR, this means the
SysMon is writing and the vbcp wb is reading.

To better understand how the FSM operates, Figures 7 and 8 can be
consulted, where the state of the FSM is shown during reads and writes
from the SysMon.

When the SysMon writes (Figure 7), the vbcp wb module waits in the
IDLE state until the I2C address is received, then, while in the WB ADR
state, it shifts in the Wishbone address. A Wishbone transfer is then sim-
ulated with the received the address and if this address exists (a Wishbone
ack is received), the first byte is shifted in while in the OPER state, fol-
lowed by the next three bytes while in the SYSMON WR state. Finally, the
register is written to in the SYSMON WR WB state.

6

5 Implementation

When the SysMon reads (Figure 8), the first few steps are the same as
for a read. The address is shifted in and checked in the Wishbone transfer
simulation state. In the case of a SysMon reading from a board, however, the
I2C transfer is restarted and the order is reversed (SysMon starts reading).
Thus, while in OPER, the FSM detects a different value of op o and goes
into the SYSMON RD WB state. The value of the register is read while in
this state, and sent via VBCP in the SYSMON RD state.

Control byte Address 1 Address 0

Data 0

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

0 X X X X P

Data 1 Data 2 Data 3

P

...

Data

SYSMON_WB_ADR

SIM_WB_TRANSFER

SYSMON_WR_WB

OPER SYSMON_WR

IDLE

Figure 7: FSM states when the SysMon writes to the vbcp wb

Data 0

P

Data 1 Data 2 Data 3

Control byte Address 1 Address 0

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

0 X X X X

Control byte

S
A
6

A
5

A
4

A
3

A
2

A
1

A
0

1 P

Data

...
OPER

SYSMON_RD

SYSMON_RD_WB

SYSMON_WB_ADR

SIM_WB_TRANSFER

IDLE

SYSMON_RD_WB

Figure 8: FSM states when the SysMon reads from the vbcp wb

7

6 Synthesis results

6 Synthesis results

The synthesis results for the vbcp wb design using xst on the Spartan-6
XC6SLX45T are shown in Table 4.

Table 4: Synthesis results
Resource Used Available %

Slices 76 6822 1.1
Slice registers 172 54576 0.3
LUTs 151 27288 0.6

8

References

References

[1] OpenCores, “Wishbone System-on-Chip (SoC) Interconnection Ar-
chitecture for Portable IP Cores.” http://cdn.opencores.org/

downloads/wbspec_b4.pdf.

[2] ELMA, “New SysMon User Manual Rev. 1.11.” http://www.ohwr.org/

documents/226.

[3] ELMA, “Access to board data using SNMP and I2C.” http://www.

ohwr.org/documents/227.

9

http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://www.ohwr.org/documents/226
http://www.ohwr.org/documents/226
http://www.ohwr.org/documents/227
http://www.ohwr.org/documents/227

	Introduction
	Instantiation
	Testing the vbcp_wb module
	The VME Board Control Protocol
	Protocol details
	Access commands

	Implementation
	Synthesis results

