
CI guide for BE-CEM-EDL
(for Linux OS)

Chapter 1 - Introduction

• What is Continuous Integration

By definition, CI is a software engineering practice where developers can automate the merge of
code changes from different branches, into a single project. Automated builds and tests are run to
ensure that there is no issue, or for better bug traceability. A version control system is at the core of
the CI process. The version control system is also supplemented with other checks like code quality
tests,  syntax  style  review tools,  and  more.  The  process  contains  several  automation  tools  that
emphasize code correctness.

Some of the main practices of continuous integration are the following:
1. Maintain a single project repository
2. Automate the build phase to make it self-testing
3. Keep it as fast as possible
4. Every commit should be built on an integration machine
5. Make it easy for any user to get the latest executable version of the project version

By following these rules, elimination of the chance for catastrophic merge issues can be achieved. 

• How does this work

Developers, usually check out code, into their  private workspace. When done, they commit the
changes  to  the  repository.  With  a  CI  service  like  GitLab,  servers  monitor  the  repository  and
automatically compile, build, and test every new version of code committed and ensure that the
entire  team is  alerted  any time the  central  code  repository contains  broken code.  However,  CI
doesn’t get rid of errors, but it does make them productively easier to find and remove. 

In BE-CEM-EDL, both GitLab (gitlab.cern.ch) and OHWR (ohwr.org), Open Hardware Repository,
are used for source code version management.  The latter is a GitLab community edition which is
being used by BE-CEM-EDL mostly alongside with GitLab enterprise edition. Therefore, the same
tools and mechanism can be applied for repositories in ohwr.org and in GitLab. For convention
reasons, in this documentation, GitLab refers to gitlab.cern.ch and OHWR refers to ohwr.org. One
of the most preferred ways to build and run tests for each project is to use Docker alongside with
GitLab CI.

1



• Docker 

Since Docker is an important software tool which is used for the creation and improvement of the
CI process, here is some significant information about it. Docker is an open source platform which
permits  developers  to  package  applications  into  containers.  They  are  standardized  executable
components  combining  application  source  code  with  the  operating  system  (OS)  libraries  and
dependencies required to run that code in any environment [1]. Containers are executable units of
software  in  which  application  code  is  packaged,  along  with  its  libraries  and  dependencies,  in
common ways so that it can be run anywhere, whether it be on desktop, traditional IT, or the cloud
[2].

Some of the major tools and terminology that are often used and encountered when using Docker
are:

1. Dockerfile   :  Text  file  consisting of  instruction  commands  needed  to  build  the  docker
container image. In this way the creation process of this image can be automated

2. Docker  Image   :  Contains executable  application  source  code  as  well  as  all  the  tools,
libraries, and dependencies that the application code needs to run as a container. When you
run the Docker image, it becomes one instance (or multiple instances) of the container [1]. A
docker image can be created from scratch or can be pulled down from common repositories. 

3. Docker Containers   :  Docker containers are the live, running instances of Docker images.
They are live, temporary, executable content. Users can interact with them, and adjust their
settings and conditions using docker commands.

• GitLab CI 

As already mentioned, GitLab (and OHWR), provides a full CI/CD environment for the users who
want to trace bugs and errors. The majority of the concepts can be described below:

1. GitLab Runner   : an application that works with GitLab CI/CD to run jobs in a pipeline
2. Pipelines   : the top-level component of CI. They comprise the jobs and stages which define

what to do and when, respectively
3. Job Artifacts   : the output of jobs that can either be an archive of files or directories

In order to get started with GitLab CI, there are some prerequisites that need to be met. First of all,
the user must have the maintainer or owner role of the project. In addition, the latest edition of
GitLab-runner should be installed. In this way, one or more runners can be registered in the project,
since there is no limitation in the number of runners. Once a job is triggered, an activated registered
runner is going to run the job. In conclusion, the creation of a .gitlab-ci.yml file is needed at the root
of the repository. This is the file where all the CI jobs are defined. 

In the Figure 1, there is an architecture diagram which describes briefly the idea of continuous
integration with Gitlab. From one side there is the Gitlab Instance, which as already mentioned, can
be either gitlab.cern.ch or ohwr.org and from the other side there is the server which has the gitlab-
runners and runs the CI jobs. This server can be either a private server, like a real machine which
can be handled remotely or a virtual machine (personal or shared project in openstack.cern.ch). It is
very important for each project to have one file that describes the CI pipeline among with other

2



configuration  of  them.  Then,  different  gitlab-runners  will  run  different  jobs,  like  simulations,
synthesis etc. 

Figure 1. Architecture diagram of Gitlab CI

Subsequently, in the Figure 2, there is a flow diagram that shows, in briefly, the steps that a user
need to follow, in order to use CI service in Gitlab. In the next chapters of this guide, all these steps
are described with more details, in order to be clear for the user to better understand each step.
Some important things to be declared at that point are:

• Docker images can be generated by the user or the user can pull some already existing, for
example  for  a  container  registry  like  the  one  here  in  gitlab.cern.ch
https://gitlab.cern.ch/cce/docker_build/container_registry

• The steps are the same either the project is at OHWR.org or at Gitlab.cern.ch. The only
difference is that they can not use the same gitlab-runners.

Figure 2. Flow diagram of the steps that the user need to follow

With the blue color in the background, there are the actions that the user should do in the server side
and with the lighter color there are the steps in the Gitlab instance side. 

3

https://gitlab.cern.ch/cce/docker_build/container_registry


Chapter 2 – Set up CI in a private server

In this  chapter,  the steps to set  the whole CI environment in the Gitlab instance are presented.
Through these steps, the user will be able to create docker images, Gitlab runners and start using
continuous integration in  every project.  At  this  point,  it  is  worth mentioning that  the user  that
registers the runners, has to be a maintainer in the repository, in order to enable them each time. 

• Step 1) Download prerequisite software tools

The maintainer of the project, who will activate up the CI service and create the remote server,
should download some software tools in the server which are needed. Below there is a list of the
most important in order for someone to get started:

1. docker
2. git
3. gitlab-runner

Note:  More details on how to install these tools can be found in Chapter 3. These steps can vary
regarding the linux distribution that the server has.

• Step 2) Create the dockerfile

The steps 2 to 4, can be skipped if the user will choose to use a docker image provided by some
common repository. In case a new one will be created, a Dockerfile must be described, which is
responsible  for  the  generation  of  the  docker  image.  One  good  practice,  is  to  have  a  separate
Dockerfile for different applications. In addition, all the scripts or other files should be present in
the same directory where the dockerfile is.

In order to have a better view on how to write dockerfiles, you can always refer to the official
docker documentation page [3]. However, below there is an example on the form that it must follow
(Figure 3). The example is a dockerfile for Xilinx ISE 14.7. The full content can be found in the
GitLab repository where all the custom docker images are stored [4].

F  igure 3  . Dockerfile example for Xilinx ISE docker image

4



Briefly, a specific flow must be followed where in the beginning there is the declaration of the OS
and other fundamental information about the image. Then, the required files in order to install the
application, are copied into the Docker Image. In the end, the entrypoint script is also copied and
specified. This entrypoint, is the script that will run first and can usually be a script that checks if
the user of CI has all the rights to use it. 

Note: In some cases, the programs that are used, can be quite big in terms of disc space. For that
reason, it would be useful to use techniques to decrease the space that they require. One simple
technique can be to just delete the files needed to install the program, after its installation.

• Step 3) Essential scripts needed

The development of some scripts used from the Dockerfile is needed before the generation of the
docker image :

1. build_dockerfile.sh  : A script containing the command to build the docker image (docker
build -t <image_name:version> .)

2. entrypoint.sh  : Can be used for all projects. Contains a test where we check if the user is
authorized to use CI. 

3. setup.sh :  A script  containing  all  the  appropriate  commands  in  order  to  execute  the
application program, like Licenses and libraries path. 

If needed, more scripts can be developed, so as to automate some steps and speed up the whole
process. They have to be in the same directory as the Dockerfile too.

• Step 4) Generate the docker image

In the same directory where Dockerfile and all the scripts and the program installation files are, we
can execute the build_dockerfile.sh. It may take some time, depending on the server and the size of
the docker image. 

Every command from the Dockerfile, is being executed serially as it can be seen in the terminal. In
case of an error at this stage, the docker image that is being created in the meanwhile, should be
deleted (docker rmi -f <image_name>). Once the issues have been resolved, the image has been
created. To view all the current images in the server, run docker images. 

• Step 5) Activate the CI service

The maintainer or the owner of the project, should activate in the main page of the repository, the CI
service (Set up CI/CD). This can be done by checking the :

settings > general > permissions > check pipelines

Note: If the project exists, in addition, it may needed to check the .gitmodules files in the repository,
if the submodule URL of the dependencies are clear.

5



• Step 6) Register Gitlab-runner(s)

In order to create the gitlab-runner (after its installation -IMPORTANT to install it from the official
repository of gitlab and not from Ubuntu’s apt), the first step is to register a runner. This can be
done from the server machine. This is where all the docker images, gitlab-runners and everything
needed for CI/CD is installed.  The command for register a new gitlab-runner is: 

• (sudo) gitlab-runner register

For the registration, some information must be provided by the user. These are, the instance, for
example  gitlab.cern.ch  or  ohwr.org,  the  registration  token,  as  it  can  be  seen  in  the
settings→CI→runners, as it can be seen in the Figures 4 and 5.

 

F  igure 4 and 5  . Settings tab in ohwr.org project and where to find the URL and token needed

Subsequently, define the description and the tag of the runner and select the executor (docker is the
mainly used one) and the default docker image (the one created in step 4).  In the end, when the
runner has been registered, the final step is to enable and verify the runner with these commands:

• (sudo) gitlab-runner start
• (sudo) gitlab-runner verify

6



In  settings→CI→runners, we need to check if the runner (with the specific tag) is not paused. By
that time, CI is ready to start. 

• Step 7) config.toml tips

This is the configuration file where the runners can be modified once they are registered. The path
for  this  is:  /etc/gitlab-runner/config.toml,  or  in  some  cases  it  can  be  found  in:
~/.gitlab-runner/config.toml

It can happen that, the log file probably exceeds the default maximum limit, which is 4MB. To
change it, this field must be modified manually, as it is shown in Figure 6:

Figure 6. Useful additions to the config.toml file 

In main web page of  GitLab, more information regarding all the config.toml file can be found [6].

Note: After every alteration in the runner, always run gitlab-runner restart and gitlab-runner verify.

• Step 8) .gitlab-ci.yml file development

Another important step is the development of the .gitlab-ci.yml file in the root directory of the
project’s repository. This file will have all the pipelines, jobs and in general everything needed to be
executed. For HDL gateware projects, two are the most important stages. These are the simulation
and the whole build of the design. Specifically, in this file you can define [5]: 

• The scripts you want to run. 

• Other configuration files and templates you want to include. 

• Dependencies and caches. 

• The commands you want to run in sequence and those you want to run in parallel. 

• The location to deploy your application to. 

• Whether you want to run the scripts automatically or trigger any of them manually. 

The basic  structure of this  file  can be seen below, in  the Figure 7,  with the very fundamental
structure :

7



Figure 7. Simple example of a simulation CI job

A complete guide of the available features can be found in the gitlab webpage [5]. In a few words, 
first there is the variable and the stages declaration. By grouping some of the jobs in stages, there is 
an opportunity to specify the sequence that they will run. In this example, the simulation jobs will 
start and if they pass with no errors, then the build stage jobs will follow. 

Each job has a name to describe what they do, a tag to refer to a specific Gitlab-runner and the stage
that they belong. In addition, there is of course the script part, where there are the commands that 
serially will be executed. Lastly, another important thing to declared is the artifacts and especially 
the path that exist the result(s) of each successful CI  job. 

• Step 9) Final step

At this final step everything is set up and the GitLab CI is ready. Depending on the configuration
that the owner/maintainer of the project prefers, every time that a push triggers the CI system, the
jobs start running. The status of them can be seen  in the tab on the left of the project’s start screen,
CI/CD → Pipelines.

Chapter 3 – Set up CI in a personal Openstack project

Openstack is an open source cloud computing software [7]. This cloud service can be used instead
of a private server. In this way, the provided resources are used by the user to create a cloud server
which will host the CI infrastructure. After the creation of this cloud server, the steps are the same
as the private server ones. 

• Step 1) Activate the openstack from CERN

8



First of all, the user should subscribe to the cern cloud infrastructure. After that, go to the webpage
https://openstack.cern.ch,  where the user opens a ticket in order to request for a personal project.
Unfortunately, this personal project has some default resources like 250Gb of disc space, and 20Gb
of RAM which can be used to create up to 5 virtual machines (instances, as they are called). More
specifically, every virtual machine can have the resources that the user defines. 

This approach, can be useful in smaller and less demanding projects and can be a testing server for
everyone who wants to experiment with CI and try different things. In addition, servers like them,
can be used to run simulation jobs (for gateware), simple software jobs and also build of lightweight
designs. 

• Step 2) Create a linux virtual machine

For this step and for all the following, there is also another documentation that the reader can refer
to, in order to read in more depth the whole process and learn more things about Openstack. 

The first thing after the subscription and having created the personal project in Openstack, is to
create a (Linux) virtual machine, to host your server. For that reason, a keypair is needed, which can
be generated from an lxplus/lxplus8 account with ssh  ssh-keygen -t rsa -f cloud.key.
Then, this keypair must be imported. In the main menu of openstack webpage the flow is from the
tab on the left to go Project > Compute > Key pairs > Import public key. 

There, a name should be given (e.x. lxplus) and the key type should be SSH KEY, before submitting
the public key. Different virtual machines can use the same public key, so this public key can be
used by others too. 

Subsequently, in the same menu and in the tab Project > Compute > Instances > Launch Instance is
where the user can create the Linux virtual machine and choose the resources that it will have. The
latest stable Linux version is the CentOS 8 (C8-x86_64 [2021-12-01]) among the others that are
provided in the list. When everything is set up, the machine is ready to be launched. If there are no
errors in the process, the personal server can be accessed by:  ssh root@VM_NAME or  ssh -i
cloud.key root@VM_NAME.  In the Figure 8, the window is shown that opens when an instance
is launched. Briefly, the user should provide the details of the instance, the source, the flavor (the
machine’s RAM), import the key and optionally, in Metadata tab, to select and activate CERN’s
metadata.

F  igure   8  . Launching an instance

9

https://openstack.cern.ch/


• Step 3) Create a volume

A volume is an arbitrary sized disk to be attached to your virtual machine, like plugging in a USB
stick. It is necessary, because by default, the server has limited disc space resources. From the menu
on the left of the web page  Project > Volumes > Create Volume and again the name, description
and size are the most important fields to be filled. Once it is created, it should be attached and then
mounted  to  the  specific  virtual  machine.  As  it  is  shown in  the  Figure  9  below,  these  are  the
appropriate fields:

Figure   9  .   Creation of a volume

First of all, name and short description must be provided, the type (it can be standard, io1, etc) and
the size. 
Once the volume has been created, it should be mounted to a virtual machine. This can be done
from lxplus and inside the virtual machine, with the help of the following commands:

10



openstack volume list (to check that it has been created)

openstack server add volume my-vm my-volume (to attach the volume to VM)

This action can be done also in the graphical environment and not only through terminal. Just by
clicking “Manage Attachments” in the specific volume. Then, the rest of the process is being done
inside after login to the virtual machine, as described in the previous step:

cat /proc/partitions (to verify that it is already attached)

mkfs -t ext4 /dev/vdb 

mount /dev/vdb /mnt  (to mount it)

df -H (check that is has mounted)

Note: Since this is a personal project in openstack.cern.ch, the resources are by default specified, so
there is no option to request for more (something that can be happen in case of a shared project).

• Step 4) Set up the server 

At this stage, all the previous steps can be followed, like the private server case (Chapter 2). Briefly,
what is needed is to install docker, git and gitlab-runner. In addition, the docker images should be
stored and the runner(s) should be registered. 

Below, there is a step by step guide on how to install everything needed in these CentOS virtual
machines:

• Install git:
◦ dnf update -y
◦ dnf install git -y

• Install docker:
◦ yum install -y yum-utils
◦ yum-config-manager \
  --add-repo  https://download.docker.com/linux/centos/docker-
ce.repo
◦ yum install docker-ce docker-ce-cli containerd.io

Note: It is suggested that the docker images should be stored in the attached volumes to the virtual
machine, because they demand more disc space than the provided by default. In order to change the
directory where the images will be stored, these are the actions needed:

• mkdir -p /etc/systemd/system/docker.service.d
• vim /etc/systemd/system/docker.service.d/docker-storage.conf

And in this file these are the changes that need to be applied:

[Service]
ExecStart=
ExecStart=/usr/bin/dockerd -H fd:// --data-root="/mnt"

11



• systemctl daemon-reload
• systemctl restart docker
• docker info|grep "Docker Root Dir"  (it should point to the new directory)
• rm -rf /var/lib/docker  (safely remove old Docker storage)

• Install gitlab-runner
• curl-L

https://packages.gitlab.com/install/repositories/runner/gitlab-
runner/script.rpm.sh | sudo bash

• yum install gitlab-runner

Note: If the user wants to use some docker images that are stored in another private server and
transfer them in this personal openstack project, there are some hints in order to achieve that. In the
virtual machine, the key of the other server should be added in the .ssh/authorized_keys. Then, the
docker image can be easily transferred by using this command: 

docker save IMAGE_ID | gzip | ssh root@VM_NAME ‘gunzip | docker load ‘

At this point, it is important to be mentioned, that docker images for various EDA tools can be
found  in  this  Gitlab  repository  https://gitlab.cern.ch/cce/docker_build/ made  by  EPC
section. Then, in the “Packages & Registries” and in “Container Registry”, there is a list of the most
common used docker images. The steps to pull these images are explained in the README file of
the repository.

Chapter 4. Set up in a shared openstack project

Here, the process is quite similar with the one in the previous chapter. One main difference is that in
this shared project doesn’t have a limitation in terms of the available resources. This is a useful
asset because in one project,  there can be multiple virtual machines and in this  way, it  can be
maintained easier. The user can request for more resources from IT, just by clicking on “Request a
quota change”, in the main web page of the shared project in Openstack. In addition, there is the
chance, anytime, to change the owner of this shared project, since it can be inherited from one user
to another, or can have multiple owners. 

In order to create this shared project in Openstack, the user should open a ticket, like in the case of
the personal project, but must predefined that this is a shared project and also request the initial
resources. Another important thing that must be included in the ticket is to mention the maximum
value of the RAM. By default it is large which is 7.5Gb, so it can be up to 15Gb (xlarge). This can
change in the future or even in the initial stage of the creation but it is a little more complicated in
terms that a more detailed report needs to be provided to IT, explaining the reason that something
like this is useful. 

The steps from 1 to 4, as they described in the previous Chapter are the same here and can be
applied in order to create virtual machines. Once everything has set up and the infrastructure is

12

https://gitlab.cern.ch/cce/docker_build/


ready, the user doesn’t need to change or maintain anything in this cloud server. The following step
is to go to the project’s repository (either it is in ohwr.org or gitlab.cern.ch) and activate the CI/CD
option, alongside with some configuration needed from Settings > CI/CD > General Pipelines, like
Timeout and Custom CI config path to be always .gtilab-ci.yml file. The final stage is to create the
gitlab-ci.yml  file  and  describe  the  whole  pipeline  flow  with  the  jobs.  The  use  of  continuous
integration now will be automatically and from this stage it is up to the user to use it regarding on
the individual needs of each project.

Chapter 5. Frequently Asked Questions

The majority of the issues that someone can face when using the CI infrastructure in Gitlab are
presented below. 

➔ How to add/give access to another user, in the virtual machine

At some point, it would be useful to let someone from the team to access to a virtual machine that is
created by someone else from the team. Below, it is described how to achieve that. For giving a
clearer example, assume user A is the owner/creator of the virtual machine and user B is the one
who the user A will provide the access rights to the server. From the user’s A side, these are the
actions that needs to be done:

• dnf install locmap-release
• dnf install locmap
• locmap --enable afs
• locmap --enable kerberos
• locmap --configure all
• locmap --enable sudo
• addusercern <user’s B cern name>
• usermod -a -G wheel <user’s B cern name>

User B then from his side, should provide the id_rsa.pub key, that he has in lxplus/lxplus8, and then
user A copy that in the VM’s file: /root/.ssh/authorized_keys.

After these actions, user A and user B can both access this virtual machine.

➔ In case of an error in the generation, or in the modification of a docker
image

In order to enter in the docker image, this command can be used:

docker run -it (-e <we can put arguments and some script if we want,
like in the entrypoint.sh for example>) --name <docker image new name>
<IMAGE ID > bash

From the command docker ps -a the opened containers can be viewed. Then, in order to commit
any change we simply run:

13



docker commit --change='CMD <the command(s) we want to run>' <CONTAINER
ID> <docker image new name>.

After any commit, the image name changes. So in order to not have many versions of the docker
image and always use the latest, the old one has to be deleted and change the name of the newest
one. This can be achieved with: 

 docker tag SOURCE_IMAGE[:TAG] TARGET_IMAGE[:TAG]

Otherwise, every time the name of the docker image should be changed in config.toml file, which is
not a convenient working approach.  

➔ In case that gitlab configuration is needed

At some projects, it may be needed to specify the git configuration, by adding the global user name
and user mail. As mentioned before, the docker commit command can be used, but the committed
command should be: 

git  config  --global  user.name  CI &&  git  config  --global  user.email
ci@ci.com

and move forward to change the tag, once it is finished. 

➔ The job or the pipeline is stuck

It can happen sometimes, that the triggered job will not start immediately. The user in that case, has
two options. One of the options is to wait for a few minutes and in parallel check in the:

 seetings > CI/CD > Runners (collapse the opened tab) > Runners activated for this project

if the specific runner which is responsible to run the job is activated. If it is not, then activate it and
refresh the CI/CD > pipelines window.

The second option is to access the server machine. Once you enter the cispace.cern.ch these are the
commands that you can run in order to start the continuous integration process:

sudo gitlab-runner restart

sudo gitlab-runner verify

Once it is finished, you can see that the pipeline will start running immediately. 

➔ Add a file/folder in a docker image

Once the docker image has been created, it may needed to add some extra files, or an entire folder
into the image. Below, there are some steps presented, on how to do it easily. The steps refer to the

14

mailto:ci@ci.com


process you follow when the docker image is locally stored and not if the docker image has been
pulled from another server. 

• Be sure that the docker image has been created (type docker images in the terminal). After
with the docker ps -a you can see the list of the containers. In case that there is no container
running  the  specific  image,  you  can  use  the  command:  docker  run  -it  -e
CI_PROJECT_URL=ohwr.org  -e  GITLAB_USER_ID=<user_ID>  -e
GITLAB_USER_LOGIN=<account_name> <IMAGE_ID> bash

• Then copy the file/folder into one directory inside the image:

docker cp <host/path/to/file> <CONTAINER_NAME>:</path/to/>

• Final step is to commit  that action:

docker commit <CONTAINER_NAME> <IMAGE_NAME>:<IMAGE_TAG>

An example of this process and the extra steps needed when the docker image is stored in another
server is the following:

• export IMAGE_URL=example.com/your_image:your_tag
• docker pull $IMAGE_URL
• docker create --name temp_container $IMAGE_URL
• docker cp /host/path/to/file temp_container:/container/path/to
• docker commit temp_container $IMAGE_URL
• docker push $IMAGE_URL

➔ How to share gitlab-runners among different project

Since the gitlab-runners that, as described in this guide, are specific and not shared, that means that
they can not be shown/used by default from all the projects in ohwr.org or gitlab.cern.ch. There are
some actions that need to be taken, in order to use a gitlab-runner in different projects. For better
understanding, an example is being described below. 

First  of  all,  a  user  in  order  to  add a  gitlab-runner  in  a  project,  must  be  a  maintainer.  This  is
happening,  because  only  the  maintainers  have  the  rights  to  initialize  and configure  continuous
integration in the project. The maintainer, after registered a runner in the virtual machine or in local
server,  then can enable the runner to the project, as it is shown in Figure 3. One important thing is
to go to settings (the pencil in Figure 10) of each runner and un-click the option “When a runner is
locked, it cannot be assigned to other projects” and set the “Maximum job timeout”.

Figure   10  .   Specific runner in Gitlab

15



Now  this  runner  is  registered,  configured  and  ready  to  be  used.  One  important  thing  to  be
mentioned is  that  in  order  this  runner  to  be  added in  other  projects  as  well  is  the  user  to  be
maintainer in the other projects too. This is the only handicap when it comes to specific runners. A
possible alteration to this approach is to use shared runners but this has to go through IT, since they
are responsible for these kind of actions. 

 

References

1. https://www.ibm.com/in-en/cloud/learn/docker
2. https://www.ibm.com/in-en/cloud/learn/containers
3. https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
4. https://docs.gitlab.com/ee/ci/yaml/gitlab_ci_yaml.html

5. https://docs.gitlab.com/ee/ci/yaml/

6. https://docs.gitlab.com/runner/configuration/advanced-configuration.html

7. https://clouddocs.web.cern.ch/index.html

16

https://docs.gitlab.com/runner/configuration/advanced-configuration.html
https://docs.gitlab.com/ee/ci/yaml/
https://docs.gitlab.com/ee/ci/yaml/gitlab_ci_yaml.html
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://www.ibm.com/in-en/cloud/learn/containers
https://www.ibm.com/in-en/cloud/learn/docker

