White Rabbit PTP Core User’s Manual

December 2015 (wrpc-v3.0)
Building and Running

Grzegorz Daniluk (CERN BE-CO-HT)

Table of Contents

Introduction 1
1 Software and hardware requirements 1
1.1 Repositories and Releases.t 1
1.2 Required hardware e 1
2 Building the Core 2
2.1 HDL Synthesis.o e 2
2.2 LM32 software compilationuoiiit e 3
3 Running and Configuring 4
3.1 Downloading firmware to SPEC 4
3.2 Writing configuration. 6
3.3 Running the Core 7
4 Troubleshooting 9
5 Questions, reporting bugs................. ... 9
Appendix A WRPC Shell Commands........................ 10
Appendix B WRPC GUl elements........................... 13

Appendix C Writing SDBFS image in standalone configuration
... 14

Chapter 1: Software and hardware requirements 1

Introduction

This is the user manual for the White Rabbit PTP Core, part of the White Rabbit project. It
describes the building and running process. If you don’t want to get your hands dirty and prefer
to use the binaries available at http://www.ohwr.org/projects/wr-cores/files please skip
Chapter 2 [Building the Core|, page 2 and move forward directly to Chapter 3 [Running and
Configuring|, page 4.

1 Software and hardware requirements

1.1 Repositories and Releases

This manual is about the official wrpc-v3.0 stable release of the White Rabbit PTP Core
(WRPCQ).

The code and documentation for the project is distributed in the following places:

http://www.ohwr.org/projects/wr-cores/documents
hosts the pdf documentation for every official release.

http://www.ohwr.org/projects/wr-cores/files
place where you can find a synthesized bitstream, ready to be downloaded to SPEC,
for every stable release

git://ohwr.org/hdl-core-lib/wr-cores.git
read-only repository with complete HDL sources of the WRPC

git://ohwr.org/hdl-core-1lib/wr-cores/wrpc-sw.git
read-only repository with the WRPC LM32 software

Other tools useful for building and running the WrRPC can be downloaded from the following
locations:

git://ohwr.org/misc/hdl-make.git
hdlmake is used in the HDL synthesis process to create a Makefile based on the set
of Manifest files.

http://www.ohwr.org/attachments/download/1133/1m32. tar.xz
LM32 toolchain used to compile the WRPC software

Repositories containing the WRPC gateware and software (wr-cores, wrpc-sw) are tagged with
wrpc-v3.0 tag. Other tools used to build the core and load it into SPEC board should be used
in their newest stable releases.

1.2 Required hardware

The absolute minimum to run the WR PTP CORE is a PC computer with Linux and a Simple
PCle FMC Carrier (SPEC) - http://www.ohwr.org/projects/spec. However, it is highly rec-
ommended to use also the DIO FMC card (http://www.ohwr.org/projects/fmc-dio-5chttla)
to be able to feed 1-PPS and 10MHz from external clock and output 1-PPS aligned to the WR
time. To test the White Rabbit synchronization, you will also need:

e another SPEC board with a DIO FMC or a White Rabbit Switch;

e pair of WR-supported SFP transceivers (the list of supported SFPs can be found on our wiki
page http://www.ohwr.org/projects/white-rabbit/wiki/SFP)

e a roll of G652, single mode fiber to connect your SPECs or SPEC with a WR Switch.

http://www.ohwr.org/projects/wr-cores/files
http://www.ohwr.org/projects/spec
http://www.ohwr.org/projects/fmc-dio-5chttla
http://www.ohwr.org/projects/white-rabbit/wiki/SFP

Chapter 2: Building the Core 2

2 Building the Core

Note: you can skip this chapter if you want to use the release binaries available from ohwr.oryg.

Building the core is a two step process. First you have to synthesize the FPGA firmware (gate-
ware) and then compile the software which will be executed by the LM32 soft-core processor. If
you don’t need to modify the LM32 software, you can skip the compilation stage since synthesized
gateware already embeds the default software for the release.

2.1 HDL synthesis

Before running the synthesis process you have to make sure your environment is set up correctly.
You need a Xilinx ISE software with at least a WebPack license. ISE provides a set of scripts:
settings32.sh, settings32.csh, settings64.sh and settings64.csh that configure all the system vari-
ables required by the Xilinx software. Depending on a shell you use and whether your Linux is
32 or 64-bits you should execute one of them before the other tools are used. For 64-bit system
and BASH shell you should call:

/opt/Xilinx/<version>/ISE_DS/settings64.sh

The easiest way to ensure that ISE-related variables are always set in your shell is adding the
execution of the script to your bash.rc file. You can check if the shell is configured correctly by
verifying if the $XILINX variable contains path to your ISE installation directory.

Note: current version of hdimake tool developed at CERN requires modification of $XILINX
variable after settings script execution. This (provided that the installation path for ISE is
Jopt/Xilinx/<version>) should be the following:

$ export XILINX=/opt/Xilinx/<version>/ISE_DS

Note: the Xilinx project file included in the WRPC sources was created with Xilinx ISE 14.5. It
is however recommended to use the newest available version of the ISE software.

HDL sources for the WR PTP CORE could be synthesized using Xilinx ISE without any additional
tools, but using hdlmake is more convenient. It creates a synthesis Makefile and ISE project file
based on a set of Manifest.py files deployed among the directories inside the wr-cores repository.

First, please clone the hdlmake repository from its location given in Section 1.1 [Repositories
and Releases|, page 1:

$ wget http://www.ohwr.org/attachments/download/2070/hdlmake-v1.0

$ git clone git://ohwr.org/misc/hdl-make.git <your_location>/hdl-make
$ cd <your_location>/hdl-make

$ git checkout 9d303ee

Then, using your favorite editor, you should create an hdlmake script in /usr/bin to be able to
call it from any directory. The script should have the following content:

#!/usr/bin/env bash
python2.7 /path_to_hdlmake_sources/hdl-make/hdlmake/__main__.py $@
After that, you should make your script executable:

chmod a+x /usr/bin/hdlmake

Having Xilinx ISE software and hdlmake in place, you can clone the main WR PTP CORE git
repository and start building the FPGA bitstream. First, please create a local copy of the
wr-cores:

Chapter 2: Building the Core 3

$ git clone git://ohwr.org/hdl-core-lib/wr-cores.git <your_location>/wr-cores
$ cd <your_location>/wr-cores

To build the gateware using sources of a stable release wrpc-v3.0, you have to checkout the
proper git tag:

$ git checkout wrpc-v3.0

If you use wr-cores within another project (like wr-nic), you may need to check out another
release tag for this repository. Please refer to the project’s documentation to find out which
version of this package you need to build.

You also need to fetch other git repositories containing modules instantiated inside the Wr PTP
CORE HDL. They are configured as git submodules:

$ git submodule init
$ git submodule update

The local copies of the submodules are stored to:

<your_location>/wr-cores/ip_cores

The subdirectory which contains the main synthesis Manifest.py for SPEC board and in which
you should perform the whole process is:

$ cd <your_location>/wr-cores/syn/spec_1_1/wr_core_demo/
First, please call hdlmake to create synthesis Makefile for Xilinx ISE:

$ hdlmake
After that, the actual synthesis is just the matter of executing:

$ make

This takes (depending on your computer speed) about 15 minutes and should create two files
with FPGA firmware: spec_top.bit and spec_top.bin. The former can be downloaded to FPGA
with Xilinx Platform Cable using e.g. Xilinz Impact. The latter can be used with kernel drivers
from the spec-sw repository (check example in Chapter 3 [Running and Configuring|, page 4).

If, on the other hand, you would like to clean-up the repository and rebuild everything from
scratch you can use the following commands:

e $ make clean - removes all synthesis reports and log files;

o $ make mrproper - removes spec_top.bin and spec_top.bit files;

2.2 LM32 software compilation

Note: By default, the LM32 software for a stable release is embedded inside the FPGA bitstream
you’ve downloaded from ohwr.org or synthesized in the previous step. This means you don’t
have to do a manual compilation of the LM32 software unless you want to use a development
version or you've made some changes required by your application.

To compile the LM32 software for the White Rabbit PTP Core you will need to download and un-
pack the LM32 toolchain from the location mentioned in Section 1.1 [Repositories and Releases],
page 1:

$ wget http://www.ohwr.org/attachments/download/1133/1m32.tar.xz

$ tar xJf 1m32.tar.xz -C <your_lm32_location>

Then you need to set a CROSS_COMPILE variable in order to compile the software for the LM32
processor:

Chapter 3: Running and Configuring 4

$ export CROSS_COMPILE="<your_lm32_location>/1m32/bin/1m32-elf-"

To get the sources of the WRPC software please clone the wrpc-sw git repository tagged with
wrpc-v3.0 tag. If you use WRPC within another project, you may need to checkout a different
tag or a specific commit. If this applies, please refer to a documentation for this project.

$ git clone git://ohwr.org/hdl-core-lib/wr-cores/wrpc-sw.git <your_location>/wrpc-sw

$ cd <your_location>/wrpc-sw

$ git checkout wrpc-v3.0 # or "git checkout master"
Before you can compile wrpc-sw you need to make a few configuration choices. The package
uses Kconfig as a configuration engine, so you may run one of the following commnads (the first
is text-mode, the second uses a KDE GUI and the third uses a Gnome GUI):

$ make menuconfig

$ make xconfig

$ make gconfig
Other Kconfig target applies, like config, oldconfig and so on. A few default known-good
configurations are found in ./configs and you choose one by makeing it by name:

$ make spec_defconfig
The most important configuration choice at this point in time is whether to enable Etherbone
or not. It is disabled by default in spec_defconfig and enabled by default in etherbone_
defconfig.
After the package is configured, just run make without parameters to build your binary file:

$ make

The first time you build, the Makefile automatically downloads the git submodules of this pack-
age, unless you already did that by hand. The second and later build won’t download anything
from the network.

The resulting binary wrc.bin can be then used with the loader from spec-sw software package
to program the LM32 inside the White Rabbit pTP Core (Chapter 3 [Running and Configuring],
page 4).

3 Running and Configuring

3.1 Downloading firmware to SPEC

For this step you will need a SPEC board software support package (SPEC-SW) from ohwr.org.
It is a set of Linux kernel drivers and userspace tools, that interact with a SPEC board plugged
into PCI-Express slot.

Instructions in this section are based on a development version of SPEC-SW so if a stable release
more recent than 2014-02 is available, you should use it instead.

If there is a more recent version of the SPEC software support, the up-to-date documentation
can always be found in doc/ subdirectory of SPEC-SW git repository.

First, please clone the git repository of SPEC-SW package and build it:

$ git clone git://ohwr.org/fmc-projects/spec/spec-sw.git <your_specsw_location>

$ cd <your_specsw_location>

$ git checkout cOel8a7

$ make
Then you should copy your spec-top.bin generated in Section 2.1 [HDL synthesis|, page 2 or
downloaded from the ohwr to /lib/firmware/fmc/. changing its name:

Note: the commands below have to be executed with superuser rights

Chapter 3: Running and Configuring 5

$ sudo cp <your_location>/wr-cores/syn/spec_1_1/wr_core_demo/spec_top.bin \
/lib/firmware/fmc/spec-3.0.bin

You have to download also the "golden" firmware for SPEC card. It is used by the drivers to
recognize the hardware:

$ wget http://www.ohwr.org/attachments/download/4057/spec-init.bin-2015-09-18
$ sudo mv spec-init.bin-2015-09-18 /lib/firmware/fmc/spec-init.bin

Now you can load the drivers necessary to access SPEC board from your system:

$ sudo insmod fmc-bus/kernel/fmc.ko
$ sudo insmod kernel/spec.ko

By default, when loading the spec.ko driver FPGA gets programmed with the "golden" bit-
stream. Starting from version 3.0, WR PTP CORE uses a flash memory chip on the carrier as a
default place for storing the calibration parameters and the init script. Also the storage format
of this information is now better organised in the files of the SDBFS filesystem. Therefore, start-
ing from v3.0 you have to write the SDBFS filesystem image to the flash before running the wr
PTP CORE. You can download the image from our project page:

$ wget http://www.ohwr.org/attachments/download/4060/sdbfs-flash.bin

It contains all the files required by the Wr PTP CORE. They are empty, but have to exist in the
SDBFS structure to be written later as described in Section 3.2 [Writing configuration], page 6.
To store the filesystem image in flash, please execute the following command:

$ sudo tools/flash-write -b 0x20 -c 0x0 0 1507712 < \
<your_location>/sdbfs-flash.bin

Note: Please refer to Appendix C [Writing SDBFS image in standalone configuration], page 14
for instructions on how to write the SDBFS image to a standalone SPEC or custom hardware.

Now, you are ready to load the last driver, which downloads the actual WrR PTP CORE bitstream
to the Spartan 6 FPGA:

$ sudo insmod fmc-bus/kernel/fmc-trivial.ko gateware=fmc/spec-3.0.bin

You can use the dmesg Linux command to verify if the FPGA firmware file was loaded into the
FPGA. Among plenty of messages you should be able to find something very similar to:

[1275526.738895] spec 0000:20:00.0:
[1275526.738906] spec 0000:20:00.0: PCI INT A -> GSI 16 (level, low) -> IRQ 16

0: probe for device 0020:0000

0
[1275526.738913] spec 0000:20:00.0: setting latency timer to 64

0

0

[1275526.743102] spec 0000:20:00.0: got file "fmc/spec-init.bin", 1485236 (0x16a9b4) bytes
[1275526.934710] spec 0000:20:00.0: FPGA programming successful

[1275527.296754] spec 0000:20:00.0: mezzanine 0

[1275527.296756] Manufacturer: CERN

[1275527.296757] Product name: FmcDio5cha

[12756593.973147] fmc FmcDio5cha-2000: Driver has no ID: matches all
[1275593.973177] spec 0000:20:00.0: reprogramming with fmc/spec-3.0.bin
[1275594.168249] spec 0000:20:00.0: FPGA programming successful

If everything went right up to this moment you have your board running the FPGA bitstream
with a default LM32 software. If you want to load your own wrec.bin built from the wrpc-sw
repository you can use the spec-cl tool:

$ sudo tools/spec-cl <your_location>/wrpc-sw/wrc.bin

Now you should be able to start a Virtual-UART tool (also part of the SPEC-SW package) that
will be used to interact with the WR PTP CORE shell:

$ sudo tools/spec-vuart

Chapter 3: Running and Configuring 6

If you are able to see the WRPC Shell prompt wrc# this means the Core is up and running on
your SPEC. Congratulations !

3.2 Writing configuration

First, you should perform a few configuration steps through the WRPC shell before using the
core.

Note: the examples below describe only a subset of the WRPC Shell commands. The full list of
supported commands can be found in Appendix A [WRPC Shell commands]|, page 10.

Before making the configuration changes, it is good to stop the PTP daemon. Then, debug
messages from the daemon will not show up to the console while you interact with the shell.

wrc# ptp stop

First you should make sure your board has a proper MAC address assigned:
wrc# mac get

If the result of above command is MAC-address: 22:33:ww:xx:yy:zz, this means MAC was not
yet configured and stored in the Flash/EEPROM. The value is based on thermometer serial
number as is unique among SPEC devices, globally accepted as “locally assigned”, but you
might want to assign your own address. A value 22:33:44:55:66:77 is the final fallback if
no thermometer is found (very unlikely). You should get the MAC for your board from its
manufacturer. To configure the address and store it into the Flash/EEPROM (so that it’s
automatically loaded every time the WRPC starts) you should type two commands in the WRPC
shell:

wrc# mac set XX:XX:XX:XX:XX:XX

Wrc# mac setp XX:XX:XX:XX:XX:!XX

where xx:xx:xx:xx:xx:xx is the MAC address of your board.

Next you should create a calibration database with fixed delays values and alpha parameters.
The example below presents the WRPC Shell commands that clear all previous entries and add
two Axcen transceivers with deltaTx, deltaRx and alpha parameters associated with them.

wrc# sfp erase
wrc# sfp add AXGE-1254-0531 180625 148451 72169888
wrc# sfp add AXGE-3454-0531 180625 148451 -73685416

To check the content of the SFP database you can execute the sfp show shell command.

Note: The deltaTx and deltaRx parameters above are the defaults for wrpc-v3.0 release bit-
stream available on ohwr.org, running on SPEC v4 board and calibrated to port 1 of a WR
Switch v3.3. These values as well as the parameters for the WR Switch are available on the
calibration wiki page (http://www.ohwr.org/projects/white-rabbit/wiki/Calibration). However,
if you re-synthesize the firmware or want to have the most accurate estimation of the fixed
delays and alpha for your fiber, you should read and perform the wr Calibration procedure
(http://www.ohwr.org/documents/213).

The WR PTP CORE mode of operation (GrandMaster/Master/Slave) can be set using the mode
command:

wrc# mode gm # for GrandMaster mode
wrc# mode master # for Master mode
wrc# mode slave # for Slave mode

This stops the PTP daemon, changes the mode of operation, but does not start it automatically.
Therefore, after calling it, you need to restart the daemon manually:

Chapter 3: Running and Configuring 7

wrc# ptp start

Note: For running the GrandMaster mode, you need to provide 1-PPS and 10MHz signal from
an external source (e.g. GPS receiver or Cesium clock). Please connect 1-PPS signal to the
LEMO connector No.4 and 10MHz to the LEMO connector No.5 on the FMC DIO mezzanine
board.

One option is to type all the commands to initialize the WRPC software to the required state
every time the Core starts. However, you can also write your own initialization script to the
Flash/EEPROM. It will be executed every time the WRPC software starts. A simple script that
loads the calibration parameters, configures the WR mode to Slave and starts the PTP daemon
is presented below:

wrc# init erase

wrc# init add ptp stop
wrc# init add sfp detect
wrc# init add sfp match
wrc# init add mode slave
wrc# init add ptp start

Almost exactly the same one can be used for running WRPC in the GrandMaster or Master
mode. The only difference would be changing the init add mode slave line to init add mode gm
or init add mode master.

3.3 Running the Core

Having the srp database, and the init script created in Section 3.2 [Writing configuration],
page 6 you can restart the WR PTP CORE by reprogramming the LM32 software (with spec-cl
tool) or by typing the shell command:

wrc# init boot
You should see log messages that confirm the execution of the initialization script:

executing: ptp stop

executing: sfp detect

AXGE-3454-0531

executing: sfp match

SFP matched, dTx=180707, dRx=148323, alpha=-73685416

executing: mode slave

Locking PLL

executing: ptp start

Slave Only, clock class set to 255

Now you should have the WR PTP CORE running in WR Slave mode. WRPC needs to make a
calibration of t24p phase transition value. It has to be done only once for a new bitstream and is
performed automatically when WRPC runs in the Slave mode. That is why it is very important,
even if WRPC is meant to run in the Master mode, to configure it to Slave for a moment and
connect to any WR Master. This has to be repeated every time a new bitstream (gateware) is
deployed. The measured value is automatically stored to Flash/EEPROM and used later in the
Master or GrandMaster mode.

The Shell also contains a monitoring function which you can use to check the Wr synchronization
status:

wrc# gui

The information is presented in a clear, auto-refreshing screen. The information is refreshed at
every WR iteration or periodically if nothing else happens (so you see an up-to-date timestamp).
The period defaults to 1 second and can be changed using the refresh command. To exit from

Chapter 3: Running and Configuring

this console mode press <Esc>. A full description of the information reported by gui is provided

in Appendix B [WRPC GUI elements|, page 13.

Note: the Synchronization status and Timing parameters in gui are available only in the WR
Slave mode. When running as WrR Master, you would be able to see only the current date and
time, link status, Tx and Rx packet counters, lock and calibration status.

WR PTP Core Sync Monitor v 1.0

Esc = exit

TAI Time:

wrul: Link up (RX: 742, TX:
PTP status: slave

Synchronization status:

Servo state:

Phase tracking:
Synchronization source:
Aux clock status:

Timing parameters:

Round-trip time (mu):
Master-slave delay:
Master PHY delays:
Slave PHY delays:
Total link asymmetry:
Cable rtt delay:
Clock offset:

Phase setpoint:

Skew:

Manual phase adjustment:
Update counter:

Fri, Jan 2, 1970, 03:12:46

TRACK_PHASE

ON

833913 ps
398192 ps

TX: 10 ps, RX:
RX:

TX: 0 ps,
37529
78680

-2
5341
-2

0
184

ps
ps
ps
ps
ps
ps

213), mode: WR Slave

163610 ps
126000 ps

Locked Calibrated

If you want to log statistics from the WRPC operation, it’s probably better to use the stat shell
command. It reports the same information as GUI but in a single long line, a form which is

easier to parse and analyze:

wrc# stat

Ink:1 rx:416 tx:118 lock:1 sv:1 ss:’TRACK_PHASE’

aux:0 sec:94197 \

nsec:793068184 mu:836241 dms:400556 dtxm:10 drxm:163610 dtxs:0 drxs:128400 \

asym:35129 crtt:544221 cko:-5 setp:7667 hd:61479

temp: 45.6875 C

Ink:1 rx:417 tx:119 lock:1 sv:1 ss:’TRACK_PHASE’

md:37221 ad:65000 ucnt:101 \

aux:0 sec:94198 \

nsec:293076296 mu:836253 dms:400562 dtxm:10 drxm:163610 dtxs:0 drxs:128400 \

asym:35129 crtt:544233 cko:-4 setp:7663 hd:61485

temp: 45.6875 C
...

md:37259 ad:65000 ucnt:102 \

Unlike gui, the stat command runs asynchronously: you can still issue shell commands while
stats are running (this is different from earlier wrpc-sw releases). You can stop statistics by
running stat again. As an alternative to the toggling action of stat alone, you can use “stat 1”

or “stat 07.

Statistics are printed every time the WR servo runs; thus no statistics are reported when the node
is running in master mode, nor when your node is running as slave and the master disappeared.

Chapter 5: Questions, reporting bugs 9

If you have a DIO mezzanine board plugged to your SPEC, you can verify the synchronization
performance by observing the offset between 1-PPS signals from the wrR Master and WR Slave.
The WR PTP CORE generates 1-PPS signal on the LEMO connector No. 1. Please remember to
use oscilloscope cables of the same length and type (with the same delay), or take their delay
difference into account in your measurements.

4 Troubleshooting

My computer hangs on loading spec.ko or fmc-trivial.ko driver.

This will occur when you try to load the driver while your spec-vuart is running and trying to get
messages from Virtual-UART’s registers inside the WRPC. Please remember to quit spec-vuart
before reloading the driver.

I want to synthesize WRPC but hdlmake does nothing, just quits without any message.

Please check if you have the Xilinx ISE-related system variables set correctly (settings64.sh
script provided by Xilinx sets them) and make sure you have overwritten the $XILINX variable
to:

$ export XILINX=/opt/Xilinx/<version>/ISE_DS

or similar, if your installation folder differs from default.

WR PTP CORE seems to work but I observe on my oscilloscope that the offset between 1-PPS
signals from WR Master and WR Slave is more than 1 ns.

If you’re trying to synchronize the SPEC board to WR Switch please remember to read the
document and perform the wr Calibration to find out the values of deltaRx and deltaTx for
your firmware. Check if the oscilloscope cables you use have the same delays (or take the delay
difference into account in your measurements).

5 Questions, reporting bugs

If you have found a bug, you have problems with the WR PTP CORE or one of the tools used to
build and run it, you can write to our mailing list white-rabbit-dev@ohwr.org

Appendix A: WRPC Shell Commands

10

Appendix A WRPC Shell Commands

help

ver

config

verbose <digits>

pll init <mode> <ref_channel> <align_pps>

pll cl <channel>
pll sps <channel> <picoseconds>
pll gps <channel>

pll start <channel>
pll stop <channel>
pll sdac <index> <val>
pll gdac <index>

gui

stat

stat bts

refresh

ptp start
ptp stop

mode
mode gm|master|slave

lists available commands in this instance of
the WRPC

prints which version of wrpc is running

prints the Kconfig file used to build this in-
stance of WRPC. It is an optional command,
enabled at build time by CONFIG_CMD_CONFIG

sets PPSi verbosity. See the PPSi man-
ual about the meaning of the digits (hint:
verbose 1111 is a good first bet to see how
the PTP system is working)

manually runs spll_init() function to initialize
SoftPll

checks if SoftPLL is locked for the channel
sets phase shift for the channel

gets current and target phase shift for the
channel

starts SoftPLL for the channel

stops Soft PLL for the channel

sets the dac

gets dac’s value

starts GUI WRPC monitor

toggles reporting of loggable statistics. You
can pass 1 or 0 as argument as an alternative
to toggling

prints bitslide value for established Wr Link,
needed by the calibration procedure

changes the update time period of the gui and
stat commands. Default period is 1 second.
If you set the period to 0, the log message is
only generated one time.

starts WR PTP daemon
stops WR PTP daemon

prints the current WR PTP mode

sets WRPC to operate as Grandmaster clock
(requires external 10MHz and 1-PPS refer-
ence), Master or Slave. After setting the
mode, ptp start must be re-issued

Appendix A: WRPC Shell Commands

calibration

time
time raw

time set <sec> <nsec>
time setsec <sec>

time setnsec <nsec>

sfp detect

sfp erase

sfp add <ID> <deltaTx> <deltaRx> <alpha>

sfp show

sfp match

init erase

init add <cmd>

init show

init boot

mac get
mac getp

mac set <mac>
mac setp <mac>

sdb

11

tries to read t2/4 phase transition value
from the Flash/EEPROM (in WR Master or
GrandMaster mode), or executes the t24p cal-
ibration procedure and stores its result to the
Flash/EEPROM (in WR Slave mode)

prints current time from WRPC

prints current time in a raw format (seconds,
nanoseconds)

sets WRPC time

sets only seconds of the WRPC time (useful
for setting time in GrandMaster mode, when
nanoseconds counter is aligned to external 1-
PPS and 10 MHz)

sets only nanoseconds of the WRPC time

prints the ID of a currently used SFP
transceiver

erases the SFP database stored in the

Flash/EEPROM

stores calibration parameters for SFP to a file
in Flash/EEPROM

prints all SFP transceivers stored in database

tries to load the calibration parameters for
currently used SFP transceiver (sfp detect
must be executed before match)

erases the initialization

Flash/EEPROM
adds shell command at the end of the initial-
ization script

script in

prints all commands from the script stored in
Flash/EEPROM

executes the script stored in Flash/EEPROM
(the same action is done automatically when
WRPC starts after resetting LM32)

prints WRPC’s MAC address
reads the MAC address
Flash/EEPROM

sets the MAC address of WRPC
stores the MAC address in Flash/EEPROM

stored in

prints devices connected to the Wishbone bus
inside WRPC

Appendix A: WRPC Shell Commands 12

ip get

ip set <ip> reports or sets the IPv4 address of the WRPC
(only available if CONFIG_ETHERBONE is set at
build time

wlw <offset> <byte> [<byte> ...]

wlr <offset> <len> If CONFIG_W1 is set and a OneWire EEPROM
exists, write and read data. For writing, byte
values are decimal

Appendix B: WRPC GUI elements 13

Appendix B WRPC GUI elements

TAI Time:

RX: / TX:

mode:

< Locked, NoLock >

Servo state:

Phase tracking:

Synchronization source:

Round-trip time (mu):
Master-slave delay:

Master PHY delays:

Slave PHY delays:

Total link asymmetry:
Cable rtt delay:
Clock offset:

Phase setpoint:

Skew:

Update counter:

current state of device’s local clock

Rx/Tx packets counters

operation mode of the WR PTP CORE - <WR Master, WR Slave>
SoftPLL lock state

current state of WR servo state machine - <Uninitialized,
SYNC_SEC, SYNC_NSEC, SYNC_PHASE, TRACK_PHASE>

is phase tracking enabled when WR Slave is synchronized to WR
Master - <ON, OFF>

network interface name from which WR daemon gets synchro-
nization - <wrul>

round-trip delay in picoseconds (delayarar)

estimated one-way (master to slave) link delay (delayyss)

transmission/reception delays of WR Master’'s hardware
(Arxn, Arx)

transmission/reception delays of WR Slave’s hardware
(Arxs, Arxs)

WR link asymmetry calculated as delayay — 2 - delayys
round-trip fiber latency

Slave to Master offset calculated by PTP daemon (of fsetyrs)
current Slave’s clock phase shift value

the difference between current and previous estimated one-way
link delay

the state of counter incremented every time the WR servo is up-
dated

Appendix C: Writing SDBFS image in standalone configuration 14

Appendix C Writing SDBFS image in standalone
configuration

If you use SPEC board in a host-less environment, or you use custom hardware and SPEC drivers
and tools cannot be used, there is still a possibility of writing SDBFS through Xilinx JTAG.

In case of SPEC running a reference bitstream provided with a stable WRPC release, you can sim-
ply program your Flash with spec_top.mcs provided with the release binaries using for example
Xilinx ISE Impact tool. This mcs file already includes both SDBFS image and FPGA bitstream.

In case of a custom gateware or hardware, you can download a standalone SDBFS image:
$ wget http://www.ohwr.org/attachments/download/4144/sdbfs-standalone.bin

and generate a custom *.mcs file with your own FPGA bitstream. You should use the following
layout:

0x000000 your FPGA bitstream
0x170000 SDBFS image

For example, to generate the *.mcs file for M25P32 Flash on SPEC, the following promgen
parameters should be used:

promgen -w -spi -p mcs -c FF -s 32768 -u O <your_bitstream>.bit \

-bd sdb-standalone.bin start 0x170000 -o output.mcs

After that, you can use the Xilinx JTAG cable and Xilinx ISE Impact tool to write your out-
put.mcs file to the Flash memory.

	Introduction
	Software and hardware requirements
	Repositories and Releases
	Required hardware

	Building the Core
	HDL synthesis
	LM32 software compilation

	Running and Configuring
	Downloading firmware to SPEC
	Writing configuration
	Running the Core

	Troubleshooting
	Questions, reporting bugs
	WRPC Shell Commands
	WRPC GUI elements
	Writing sdbfs image in standalone configuration

